The Wronski Map and Grassmannians of Real Codimension 2 Subspaces
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
[Math.CV] 6 May 2005
HOLOMORPHIC FLEXIBILITY PROPERTIES OF COMPLEX MANIFOLDS FRANC FORSTNERICˇ Abstract. We obtain results on approximation of holomorphic maps by al- gebraic maps, the jet transversality theorem for holomorphic and algebraic maps between certain classes of manifolds, and the homotopy principle for holomorphic submersions of Stein manifolds to certain algebraic manifolds. 1. Introduction In the present paper we use the term holomorphic flexibility property for any of several analytic properties of complex manifolds which are opposite to Koba- yashi-Eisenman-Brody hyperbolicity, the latter expressing holomorphic rigidity. A connected complex manifold Y is n-hyperbolic for some n ∈{1,..., dim Y } if every entire holomorphic map Cn → Y has rank less than n; for n = 1 this means that every holomorphic map C → Y is constant ([4], [16], [46], [47]). On the other hand, all flexibility properties of Y will require the existence of many such maps. We shall center our discussion around the following classical property which was studied by many authors (see the surveys [53] and [25]): Oka property: Every continuous map f0 : X → Y from a Stein manifold X is homotopic to a holomorphic map f1 : X → Y ; if f0 is holomorphic on (a neighbor- hood of) a compact H(X)-convex subset K of X then a homotopy {ft}t∈[0,1] from f0 to a holomorphic map f1 can be chosen such that ft is holomorphic and uniformly close to f0 on K for every t ∈ [0, 1]. Here, H(X)-convexity means convexity with respect to the algebra H(X) of all holomorphic functions on X (§2). -
Moduli Spaces
spaces. Moduli spaces such as the moduli of elliptic curves (which we discuss below) play a central role Moduli Spaces in a variety of areas that have no immediate link to the geometry being classified, in particular in alge- David D. Ben-Zvi braic number theory and algebraic topology. Moreover, the study of moduli spaces has benefited tremendously in recent years from interactions with Many of the most important problems in mathemat- physics (in particular with string theory). These inter- ics concern classification. One has a class of math- actions have led to a variety of new questions and new ematical objects and a notion of when two objects techniques. should count as equivalent. It may well be that two equivalent objects look superficially very different, so one wishes to describe them in such a way that equiv- 1 Warmup: The Moduli Space of Lines in alent objects have the same description and inequiva- the Plane lent objects have different descriptions. Moduli spaces can be thought of as geometric solu- Let us begin with a problem that looks rather simple, tions to geometric classification problems. In this arti- but that nevertheless illustrates many of the impor- cle we shall illustrate some of the key features of mod- tant ideas of moduli spaces. uli spaces, with an emphasis on the moduli spaces Problem. Describe the collection of all lines in the of Riemann surfaces. (Readers unfamiliar with Rie- real plane R2 that pass through the origin. mann surfaces may find it helpful to begin by reading about them in Part III.) In broad terms, a moduli To save writing, we are using the word “line” to mean problem consists of three ingredients. -
Arxiv:Math/0608115V2 [Math.NA] 13 Aug 2006 H Osrcino Nt Lmn Cee N Oo.I H Re the the in Is On
Multivariate Lagrange Interpolation and an Application of Cayley-Bacharach Theorem for It Xue-Zhang Lianga Jie-Lin Zhang Ming Zhang Li-Hong Cui Institute of Mathematics, Jilin University, Changchun, 130012, P. R. China [email protected] Abstract In this paper,we deeply research Lagrange interpolation of n-variables and give an application of Cayley-Bacharach theorem for it. We pose the concept of sufficient inter- section about s(1 ≤ s ≤ n) algebraic hypersurfaces in n-dimensional complex Euclidean space and discuss the Lagrange interpolation along the algebraic manifold of sufficient intersection. By means of some theorems ( such as Bezout theorem, Macaulay theorem (n) and so on ) we prove the dimension for the polynomial space Pm along the algebraic manifold S = s(f1, · · · ,fs)(where f1(X) = 0, · · · ,fs(X) = 0 denote s algebraic hyper- surfaces ) of sufficient intersection and give a convenient expression for dimension calcu- lation by using the backward difference operator. According to Mysovskikh theorem, we give a proof of the existence and a characterizing condition of properly posed set of nodes of arbitrary degree for interpolation along an algebraic manifold of sufficient intersec- tion. Further we point out that for s algebraic hypersurfaces f1(X) = 0, · · · ,fs(X) = 0 of sufficient intersection, the set of polynomials f1, · · · ,fs must constitute the H-base of ideal Is =<f1, · · · ,fs >. As a main result of this paper, we deduce a general method of constructing properly posed set of nodes for Lagrange interpolation along an algebraic manifold, namely the superposition interpolation process. At the end of the paper, we use the extended Cayley-Bacharach theorem to resolve some problems of Lagrange interpolation along the 0-dimensional and 1-dimensional algebraic manifold. -
Mathematisches Forschungsinstitut Oberwolfach Singularities
Mathematisches Forschungsinstitut Oberwolfach Report No. 43/2009 DOI: 10.4171/OWR/2009/43 Singularities Organised by Andr´as N´emethi, Budapest Duco van Straten, Mainz Victor A. Vassiliev, Moscow September 20th – September 26th, 2009 Abstract. Local/global Singularity Theory is concerned with the local/global structure of maps and spaces that occur in differential topology or theory of algebraic or analytic varieties. It uses methods from algebra, topology, alge- braic geometry and multi-variable complex analysis. Mathematics Subject Classification (2000): 14Bxx, 32Sxx, 58Kxx. Introduction by the Organisers The workshop Singularity Theory took place from September 20 to 26, 2009, and continued a long sequence of workshops Singularit¨aten that were organized regu- larly at Oberwolfach. It was attended by 46 participants with broad geographic representation. Funding from the Marie Curie Programme of EU provided com- plementary support for young researchers and PhD students. The schedule of the meeting comprised 23 lectures of one hour each, presenting recent progress and interesting directions in singularity theory. Some of the talks gave an overview of the state of the art, open problems and new efforts and results in certain areas of the field. For example, B. Teissier reported about the Kyoto meeting on ‘Resolution of Singularities’ and about recent developments in the geometry of local uniformization. J. Sch¨urmann presented the general picture of various generalizations of classical characteristic classes and the existence of functors connecting different geometrical levels. Strong applications of this for hypersurfaces was provided by L. Maxim. M. Kazarian reported on his new results and construction about the Thom polynomial of contact singularities; R. -
§4 Grassmannians 73
§4 Grassmannians 4.1 Plücker quadric and Gr(2,4). Let 푉 be 4-dimensional vector space. e set of all 2-di- mensional vector subspaces 푈 ⊂ 푉 is called the grassmannian Gr(2, 4) = Gr(2, 푉). More geomet- rically, the grassmannian Gr(2, 푉) is the set of all lines ℓ ⊂ ℙ = ℙ(푉). Sending 2-dimensional vector subspace 푈 ⊂ 푉 to 1-dimensional subspace 훬푈 ⊂ 훬푉 or, equivalently, sending a line (푎푏) ⊂ ℙ(푉) to 한 ⋅ 푎 ∧ 푏 ⊂ 훬푉 , we get the Plücker embedding 픲 ∶ Gr(2, 4) ↪ ℙ = ℙ(훬 푉). (4-1) Its image consists of all decomposable¹ grassmannian quadratic forms 휔 = 푎∧푏 , 푎, 푏 ∈ 푉. Clearly, any such a form has zero square: 휔 ∧ 휔 = 푎 ∧ 푏 ∧ 푎 ∧ 푏 = 0. Since an arbitrary form 휉 ∈ 훬푉 can be wrien¹ in appropriate basis of 푉 either as 푒 ∧ 푒 or as 푒 ∧ 푒 + 푒 ∧ 푒 and in the laer case 휉 is not decomposable, because of 휉 ∧ 휉 = 2 푒 ∧ 푒 ∧ 푒 ∧ 푒 ≠ 0, we conclude that 휔 ∈ 훬 푉 is decomposable if an only if 휔 ∧ 휔 = 0. us, the image of (4-1) is the Plücker quadric 푃 ≝ { 휔 ∈ 훬푉 | 휔 ∧ 휔 = 0 } (4-2) If we choose a basis 푒, 푒, 푒, 푒 ∈ 푉, the monomial basis 푒 = 푒 ∧ 푒 in 훬 푉, and write 푥 for the homogeneous coordinates along 푒, then straightforward computation 푥 ⋅ 푒 ∧ 푒 ∧ 푥 ⋅ 푒 ∧ 푒 = 2 푥 푥 − 푥 푥 + 푥 푥 ⋅ 푒 ∧ 푒 ∧ 푒 ∧ 푒 < < implies that 푃 is given by the non-degenerated quadratic equation 푥푥 = 푥푥 + 푥푥 . -
Arxiv:Math/0005288V1 [Math.QA] 31 May 2000 Ilb Setal H Rjciecodnt Igo H Variety
Mannheimer Manuskripte 254 math/0005288 SINGULAR PROJECTIVE VARIETIES AND QUANTIZATION MARTIN SCHLICHENMAIER Abstract. By the quantization condition compact quantizable K¨ahler mani- folds can be embedded into projective space. In this way they become projec- tive varieties. The quantum Hilbert space of the Berezin-Toeplitz quantization (and of the geometric quantization) is the projective coordinate ring of the embedded manifold. This allows for generalization to the case of singular vari- eties. The set-up is explained in the first part of the contribution. The second part of the contribution is of tutorial nature. Necessary notions, concepts, and results of algebraic geometry appearing in this approach to quantization are explained. In particular, the notions of projective varieties, embeddings, sin- gularities, and quotients appearing in geometric invariant theory are recalled. Contents Introduction 1 1. From quantizable compact K¨ahler manifolds to projective varieties 3 2. Projective varieties 6 2.1. The definition of a projective variety 6 2.2. Embeddings into Projective Space 9 2.3. The projective coordinate ring 12 3. Singularities 14 4. Quotients 17 4.1. Quotients in algebraic geometry 17 4.2. The relation with the symplectic quotient 19 References 20 Introduction arXiv:math/0005288v1 [math.QA] 31 May 2000 Compact K¨ahler manifolds which are quantizable, i.e. which admit a holomor- phic line bundle with curvature form equal to the K¨ahler form (a so called quantum line bundle) are projective algebraic manifolds. This means that with the help of the global holomorphic sections of a suitable tensor power of the quantum line bundle they can be embedded into a projective space of certain dimension. -
The Symplectic Topology of Projective Manifolds with Small Dual 3
THE SYMPLECTIC TOPOLOGY OF PROJECTIVE MANIFOLDS WITH SMALL DUAL PAUL BIRAN AND YOCHAY JERBY Abstract. We study smooth projective varieties with small dual variety using methods from symplectic topology. For such varieties we prove that the hyperplane class is an invertible element in the quantum cohomology of their hyperplane sections. We also prove that the affine part of such varieties are subcritical. We derive several topological and algebraic geometric consequences from that. The main tool in our work is the Seidel representation associated to Hamiltonian fibrations. 1. introduction and summary of the main results In this paper we study a special class of complex algebraic manifolds called projective manifolds with small dual. A projectively embedded algebraic manifold X ⊂ CP N is said to have small dual if the dual variety X∗ ⊂ (CP N )∗ has (complex) codimension ≥ 2. Recall that the dual variety X∗ of a projectively embedded algebraic manifold X ⊂ CP N is by definition the space of all hyperplanes H ⊂ CP N that are not transverse to X, i.e. X∗ = {H ∈ (CP N )∗ | H is somewhere tangent to X}. Let us mention that for “most” manifolds the codimension of X∗ is 1, however in special situations the codimension might be larger. To measure to which extent X deviates from the typical case one defines the defect 1 of an algebraic manifold X ⊂ CP N by ∗ def(X) = codimC(X ) − 1. arXiv:1107.0174v2 [math.AG] 27 Jun 2012 Thus we will call manifolds with small dual also manifolds with positive defect. Note that this is not an intrinsic property of X, but rather of a given projective embedding of X. -
Commentary on Thurston's Work on Foliations
COMMENTARY ON FOLIATIONS* Quoting Thurston's definition of foliation [F11]. \Given a large supply of some sort of fabric, what kinds of manifolds can be made from it, in a way that the patterns match up along the seams? This is a very general question, which has been studied by diverse means in differential topology and differential geometry. ... A foliation is a manifold made out of striped fabric - with infintely thin stripes, having no space between them. The complete stripes, or leaves, of the foliation are submanifolds; if the leaves have codimension k, the foliation is called a codimension k foliation. In order that a manifold admit a codimension- k foliation, it must have a plane field of dimension (n − k)." Such a foliation is called an (n − k)-dimensional foliation. The first definitive result in the subject, the so called Frobenius integrability theorem [Fr], concerns a necessary and sufficient condition for a plane field to be the tangent field of a foliation. See [Spi] Chapter 6 for a modern treatment. As Frobenius himself notes [Sa], a first proof was given by Deahna [De]. While this work was published in 1840, it took another hundred years before a geometric/topological theory of foliations was introduced. This was pioneered by Ehresmann and Reeb in a series of Comptes Rendus papers starting with [ER] that was quickly followed by Reeb's foundational 1948 thesis [Re1]. See Haefliger [Ha4] for a detailed account of developments in this period. Reeb [Re1] himself notes that the 1-dimensional theory had already undergone considerable development through the work of Poincare [P], Bendixson [Be], Kaplan [Ka] and others. -
The Concept of a Simple Point of an Abstract Algebraic Variety
THE CONCEPT OF A SIMPLE POINT OF AN ABSTRACT ALGEBRAIC VARIETY BY OSCAR ZARISKI Contents Introduction. 2 Part I. The local theory 1. Notation and terminology. 5 2. The local vector space?á{W/V). 6 2.1. The mapping m—»m/tri2. 6 2.2. Reduction to dimension zero. 7 2.3. The linear transformation 'M(W/V)->'M(W/V'). 8 3. Simple points. 9 3.1. Definition of simple loci. 9 3.2. Geometric aspects of the definition. 10 3.3. Local ideal bases at a simple point. 12 3.4. Simple zeros of ideals. 14 4. Simple subvarieties. 15 4.1. Generalization of the preceding results. 15 4.2. Singular subvarieties and singular points. 16 4.3. Proof of Theorem 3. 17 4.4. Continuation of the proof. 17 4.5. The case of a reducible variety. 19 5. Simple loci and regular rings. 19 5.1. The identity of the two concepts. 19 5.2. Unique local factorization at simple loci. 22 5.3. The abstract analogue of Theorem 3 and an example of F. K. Schmidt.... 23 Part II. Jacobian criteria for simple loci 6. The vector spaceD(W0 of local differentials. 25 6.1. The local ^-differentials in S„. 25 6.2. The linear transformationM(W/S„)-+<D(W). 25 7. Jacobian criterion for simple points: the separable case. 26 7.1. Criterion for uniformizing parameters. 26 7.2. Criterion for simple points. 28 8. Continuation of the separable case: generalization to higher varieties in Sn. 28 8.1. Extension of the preceding results. -
Approximation of the Distance from a Point to an Algebraic Manifold
Approximation of the Distance from a Point to an Algebraic Manifold Alexei Yu. Uteshev and Marina V. Goncharova Faculty of Applied Mathematics, St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia Keywords: Algebraic Manifold, Distance Approximation, Discriminant, Level Set. 2 Abstract: The problem of geometric distance d evaluation from a point X0 to an algebraic curve in R or manifold 3 G(X) = 0 in R is treated in the form of comparison of exact value with two its successive approximations d(1) and d(2). The geometric distance is evaluated from the univariate distance equation possessing the zero 2 set coinciding with that of critical values of the function d (X0), while d(1)(X0) and d(2)(X0) are obtained 2 via expansion of d (X0) into the power series of the algebraic distance G(X0). We estimate the quality of approximation comparing the relative positions of the level sets of d(X), d(1)(X) and d(2)(X). 1 INTRODUCTION Approximation (2) is known as Sampson’s dis- tance (Sampson, 1982). We aim at comparison of We treat the problem of Euclidean distance evaluation the qualities of approximations (2) and (3). We deal from a point X0 to manifold defined implicitly by the mostly with the case of algebraic manifolds (1), i.e. equation G(X) 2 R[X]. For this case, the tolerances of the ap- G(X) = 0 (1) proximations can be evaluated via comparison with n the true (geometric) distance value determined from in R ;n 2 f2;3g. Here G(X) is twice differentiable real valued function and it is assumed that the equa- the so-called distance equation (Uteshev and Gon- n charova, 2017; Uteshev and Goncharova, 2018). -
Morse Theory for Codimension-One Foliations
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 298. Number 1. November 1986 MORSE THEORY FOR CODIMENSION-ONE FOLIATIONS STEVEN C. FERRY AND ARTHUR G. WASSERMAN ABSTRACT. It is shown that a smooth codimension-one foliation on a compact simply-connected manifold has a compact leaf if and only if every smooth real- valued function on the manifold has a cusp singularity. Introduction. Morse theory is a method of obtaining information about a smooth manifold by analyzing the singularities of a generic real-valued function on the manifold. If the manifold has the additional structure of a foliation, one can then consider as well the singularities of the function restricted to each leaf. The resulting singular set becomes more complicated, higher dimensional, and less trivially placed. In exchange, one obtains information about the. foliation. In this paper we consider codimension-one smooth foliations and show that, in this case, the occurrence of one type of singularity, the cusp, is related to the existence of compact leaves. Specifically, we show that a smooth codimension-one foliation on a compact simply-connected manifold has a compact leaf if and only if every real-valued function on M has a cusp. The singularities of a function on a foliated manifold are very similar to the singularities of a map to the plane. See [F, H-W, L 1, T 1, Wa, W]. However, Levine [L 1] has shown that the only obstruction to finding a map of a compact manifold to the plane without a cusp singularity is the mod 2 Euler characteristic of the manifold. -
1 Symplectic Vector Spaces
Symplectic Manifolds Tam´asHausel 1 Symplectic Vector Spaces Let us first fix a field k. Definition 1.1 (Symplectic form, symplectic vector space). Given a finite dimensional k-vector space W , a symplectic form on W is a bilinear, alternating non degenerate form on W , i.e. an element ! 2 ^2W ∗ such that if !(v; w) = 0 for all w 2 W then v = 0. We call the pair (W; !) a symplectic vector space. Example 1.2 (Standard example). Consider a finite dimensional k-vector space V and define W = V ⊕ V ∗. We can introduce a symplectic form on W : ! : W × W ! k ((v1; α1); (v2; α2)) 7! α1(v2) − α2(v1) Definition 1.3 (Symplectomorphism). Given two symplectic vector spaces (W1;!1) and (W2;!2), we say that a linear map f : W1 ! W2 is a symplectomorphism if it is an isomorphism of vector ∗ spaces and, furthermore, f !2 = !1. We denote by Sp(W ) the group of symplectomorphism W ! W . Let us consider a symplectic vector space (W; !) with even dimension 2n (we will see soon that it is always the case). Then ! ^ · · · ^ ! 2 ^2nW ∗ is a volume form, i.e. a non-degenerate top form. For f 2 Sp(W ) we must have !n = f ∗!n = det f · !n so that det f = 1 and, in particular, Sp(W ) ≤ SL(W ). We also note that, for n = 1, we have Sp(W ) =∼ SL(W ). Definition 1.4. Let U be a linear subspace of a symplectic vector space W . Then we define U ? = fv 2 W j !(v; w) = 0 8u 2 Ug: We say that U is isotropic if U ⊆ U ?, coisotropic if U ? ⊆ U and Lagrangian if U ? = U.