Chondrule Trace Element Geochemistry at the Mineral Scale
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Accretion of Water in Carbonaceous Chondrites: Current Evidence and Implications for the Delivery of Water to Early Earth
ACCRETION OF WATER IN CARBONACEOUS CHONDRITES: CURRENT EVIDENCE AND IMPLICATIONS FOR THE DELIVERY OF WATER TO EARLY EARTH Josep M. Trigo-Rodríguez1,2, Albert Rimola3, Safoura Tanbakouei1,3, Victoria Cabedo Soto1,3, and Martin Lee4 1 Institute of Space Sciences (CSIC), Campus UAB, Facultat de Ciències, Torre C5-parell-2ª, 08193 Bellaterra, Barcelona, Catalonia, Spain. E-mail: [email protected] 2 Institut d’Estudis Espacials de Catalunya (IEEC), Edif.. Nexus, c/Gran Capità, 2-4, 08034 Barcelona, Catalonia, Spain 3 Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain. E-mail: [email protected] 4 School of Geographical and Earth Sciences, University of Glasgow, Gregory Building, Lilybank Gardens, Glasgow G12 8QQ, UK. Manuscript Pages: 37 Tables: 2 Figures: 10 Keywords: comet; asteroid; meteoroid; meteorite; minor bodies; primitive; tensile strength Accepted in Space Science Reviews (SPAC-D-18-00036R3, Vol. Ices in the Solar System) DOI: 10.1007/s11214-019-0583-0 Abstract: Protoplanetary disks are dust-rich structures around young stars. The crystalline and amorphous materials contained within these disks are variably thermally processed and accreted to make bodies of a wide range of sizes and compositions, depending on the heliocentric distance of formation. The chondritic meteorites are fragments of relatively small and undifferentiated bodies, and the minerals that they contain carry chemical signatures providing information about the early environment available for planetesimal formation. A current hot topic of debate is the delivery of volatiles to terrestrial planets, understanding that they were built from planetesimals formed under far more reducing conditions than the primordial carbonaceous chondritic bodies. -
Experimental and Petrological Constraints on Lunar Differentiation from the Apollo 15 Green Picritic Glasses
Meteoritics & Planetary Science 38, Nr 4, 515–527(2003) Abstract available online at http://meteoritics.org Experimental and petrological constraints on lunar differentiation from the Apollo 15 green picritic glasses Linda T. ELKINS-TANTON,1* Nilanjan CHATTERJEE,2 and Timothy L. GROVE2 1Department of Geological Sciences, Brown University, Providence, Rhode Island, 02912, USA 2Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA *Corresponding author: [email protected] (Received 15 July 2002; revision accepted 23 September 2002) Abstract–Phase equilibrium experiments on the most magnesian Apollo 15C green picritic glass composition indicate a multiple saturation point with olivine and orthopyroxene at 1520°C and 1.3 GPa (about 260 km depth in the moon). This composition has the highest Mg# of any lunar picritic glass and the shallowest multiple saturation point. Experiments on an Apollo 15A composition indicate a multiple saturation point with olivine and orthopyroxene at 1520°C and 2.2 GPa (about 440 km depth in the moon). The importance of the distinctive compositional trends of the Apollo 15 groups A, B, and C picritic glasses merits the reanalysis of NASA slide 15426,72 with modern electron microprobe techniques. We confirm the compositional trends reported by Delano (1979, 1986) in the major element oxides SiO2, TiO2, Al2O3, Cr2O3, FeO, MnO, MgO, and CaO, and we also obtained data for the trace elements P2O5, K2O, Na2O, NiO, S, Cu, Cl, Zn, and F. Petrogenetic modeling demonstrates that the Apollo 15 A-B-C glass trends could not have been formed by fractional crystallization or any continuous assimilation/fractional crystallization (AFC) process. -
Chondrites and Chondrules Analogous to Sediments Dr
Chondrites and Chondrules Analogous to Sediments Dr. Richard K. Herd Curator, National Meteorite Collection, Geological Survey of Canada, Natural Resources Canada (Retired) 51st Annual Lunar and Planetary Science Conference Houston, Texas March 16-20, 2020 Introduction and Summary • Comparing chondrites and terrestrial conglomerates [1] continues • Meteorites are fragmental rocks, continually subjected to impacts and collisions, whatever their ultimate origin in space and time • Space outside Earth’s atmosphere may be considered a 4D debris field • Of the debris that reaches the surface of Earth and is available for study, > 80 % are chondrites • Chondrites and chondrules are generally considered the product of heating of dust in the early Solar System, and therefore effectively igneous in origin • Modelling these abundant and important space rocks as analogous to terrestrial detrital sediments, specifically conglomerates, is innovative, can help derive data on their true origins and history, and provide con text for ongoing analyses Chondrites and Chondrules • Chondrites are rocks made of rocks • They are composed of chondrules and chondrule-like objects from which they take their name • Chondrules are roughly spheroidal pebble-like rocks predominantly composed of olivine, pyroxene, feldspar, iron-nickel minerals, chromite, magnetite, sulphides etc. • They range from nanoscale to more than a centimetre, with some size variation by chondrite type. There are thousands/millions of them available for study • Hundreds of chondrules fill the area of a single 3.5 x 2.5 cm standard thin section What is Known ? • Adjacent chondrules may be millions of years different in age • They date from the time of earliest solar system objects (viz. -
Metal-Silicate Fractionation and Chondrule Formation
A756 Goldschmidt 2004, Copenhagen 6.3.12 6.3.13 Metal-silicate fractionation and Fe isotopes fractionation in chondrule formation: Fe isotope experimental chondrules 1 2 2,3 constraints S. LEVASSEUR , B. A. COHEN , B. ZANDA , 2 1 1 1 1 2 2 R.H. HEWINS AND A.N. HALLIDAY X.K. ZHU , Y. GUO , S.H. TANG , A. GALY , R.D. ASH 2 AND R.K O’NIONS 1 ETHZ, Dep. of Earth Sciences, Zürich, Switzerland ([email protected]) 1 Lab of Isotope Geology, MLR, Chinese Academy of 2 Rutgers University, Piscataway, NJ, USA Geological Sciences, 26Baiwanzhuang Road, Beijing, 3 Muséum National d’Histoire Naturelle, Paris, France China ([email protected]) 2 Department of Earth Sciences, Oxford University, Parks Road, Oxford, OX1 3PR, UK Natural chondrules show an Fe-isotopic mass fractionation range of a few δ-units [1,2] that is interpreted either as the result of Fe depletion from metal-silicate Recent studies have shown that considerable variations of fractionation during chondrule formation [1] or as the Fe isotopes exist in both meteoritic and terrestrial materials, reflection of the fractionation range of chondrule precursors and that they are related, through mass-dependent [2]. In order to better understand the iron isotopic fractionation, to a single isotopically homogeneous source[1]. compositions of chondrules we conducted experiments to This implies that the Fe isotope variations recorded in the study the effects of reduction and evaporation of iron on iron solar system materials must have resulted from mass isotope systematics. fractionation incurred by the processes within the solar system About 80mg of powdered slag fayalite was placed in a itself. -
Chondrule Sizes, We Have Compiled and Provide Commentary on Available Chondrule Dimension Literature Data
Invited review Chondrule size and related physical properties: a compilation and evaluation of current data across all meteorite groups. Jon M. Friedricha,b,*, Michael K. Weisbergb,c,d, Denton S. Ebelb,d,e, Alison E. Biltzf, Bernadette M. Corbettf, Ivan V. Iotzovf, Wajiha S. Khanf, Matthew D. Wolmanf a Department of Chemistry, Fordham University, Bronx, NY 10458 USA b Department of Earth and Planetary Sciences, American Museum of Natural History, New York, NY 10024 USA c Department of Physical Sciences, Kingsborough College of the City University of New York, Brooklyn, NY 11235, USA d Graduate Center of the City University of New York, 365 5th Ave, New York, NY 10016 USA e Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York 10964 USA f Fordham College at Rose Hill, Fordham University, Bronx, NY 10458 USA In press in Chemie der Erde – Geochemistry 21 August 2014 *Corresponding Author. Tel: +718 817 4446; fax: +718 817 4432. E-mail address: [email protected] 2 ABSTRACT The examination of the physical properties of chondrules has generally received less emphasis than other properties of meteorites such as their mineralogy, petrology, and chemical and isotopic compositions. Among the various physical properties of chondrules, chondrule size is especially important for the classification of chondrites into chemical groups, since each chemical group possesses a distinct size-frequency distribution of chondrules. Knowledge of the physical properties of chondrules is also vital for the development of astrophysical models for chondrule formation, and for understanding how to utilize asteroidal resources in space exploration. To examine our current knowledge of chondrule sizes, we have compiled and provide commentary on available chondrule dimension literature data. -
Lifetimes of Interstellar Dust from Cosmic Ray Exposure Ages of Presolar Silicon Carbide
Lifetimes of interstellar dust from cosmic ray exposure ages of presolar silicon carbide Philipp R. Hecka,b,c,1, Jennika Greera,b,c, Levke Kööpa,b,c, Reto Trappitschd, Frank Gyngarde,f, Henner Busemanng, Colin Madeng, Janaína N. Ávilah, Andrew M. Davisa,b,c,i, and Rainer Wielerg aRobert A. Pritzker Center for Meteoritics and Polar Studies, The Field Museum of Natural History, Chicago, IL 60605; bChicago Center for Cosmochemistry, The University of Chicago, Chicago, IL 60637; cDepartment of the Geophysical Sciences, The University of Chicago, Chicago, IL 60637; dNuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550; ePhysics Department, Washington University, St. Louis, MO 63130; fCenter for NanoImaging, Harvard Medical School, Cambridge, MA 02139; gInstitute of Geochemistry and Petrology, ETH Zürich, 8092 Zürich, Switzerland; hResearch School of Earth Sciences, The Australian National University, Canberra, ACT 2601, Australia; and iEnrico Fermi Institute, The University of Chicago, Chicago, IL 60637 Edited by Mark H. Thiemens, University of California San Diego, La Jolla, CA, and approved December 17, 2019 (received for review March 15, 2019) We determined interstellar cosmic ray exposure ages of 40 large ago. These grains are identified as presolar by their large isotopic presolar silicon carbide grains extracted from the Murchison CM2 anomalies that exclude an origin in the Solar System (13, 14). meteorite. Our ages, based on cosmogenic Ne-21, range from 3.9 ± Presolar stardust grains are the oldest known solid samples 1.6 Ma to ∼3 ± 2 Ga before the start of the Solar System ∼4.6 Ga available for study in the laboratory, represent the small fraction ago. -
Addibischoffite, Ca2al6al6o20, a New Calcium Aluminate Mineral from The
1 Revision 3 2 Addibischoffite, Ca2Al6Al6O20, a new calcium aluminate mineral from 3 the Acfer 214 CH carbonaceous chondrite: A new refractory phase from 4 the solar nebula 5 Chi Ma1,*, Alexander N. Krot2, Kazuhide Nagashima2 6 1Division of Geological and Planetary Sciences, California Institute of Technology, 7 Pasadena, California 91125, USA 8 2Hawai‘i Institute of Geophysics and Planetology, University of Hawai‘i at Mānoa, 9 Honolulu, Hawai‘i 96822, USA 10 11 ABSTRACT 12 Addibischoffite (IMA 2015-006), Ca2Al6Al6O20, is a new calcium aluminate mineral 13 that occurs with hibonite, perovskite, kushiroite, Ti-kushiroite, spinel, melilite, 14 anorthite and FeNi-metal in the core of a Ca-Al-rich inclusion (CAI) in the Acfer 15 214 CH3 carbonaceous chondrite. The mean chemical composition of type 16 addibischoffite by electron probe microanalysis is (wt%) Al2O3 44.63, CaO 15.36, 17 SiO2 14.62, V2O3 10.64, MgO 9.13, Ti2O3 4.70, FeO 0.46, total 99.55, giving rise to 18 an empirical formula of 3+ 3+ 2+ 19 (Ca2.00)(Al2.55Mg1.73V 1.08Ti 0.50Ca0.09Fe 0.05)Σ6.01(Al4.14Si1.86)O20. The general 20 formula is Ca2(Al,Mg,V,Ti)6(Al,Si)6O20. The end-member formula is Ca2Al6Al6O20. 21 Addibischoffite has the P1 aenigmatite structure with a = 10.367 Å, b = 10.756 Å, c 22 = 8.895 Å, α = 106.0°, β = 96.0°, γ = 124.7°, V = 739.7 Å3, and Z = 2, as revealed by 23 electron back-scatter diffraction. The calculated density using the measured 24 composition is 3.41 g/cm3. -
I-Xe Analysis of Enstatite Meteorites and a Eucrite
Testing an integrated chronology: I-Xe analysis of enstatite meteorites and a eucrite Item Type Article; text Authors Busfield, A.; Turner, G.; Gilmour, J. D. Citation Busfield, A., Turner, G., & Gilmour, J. D. (2008). Testing an integrated chronology: IXe analysis of enstatite meteorites and a eucrite. Meteoritics & Planetary Science, 43(5), 883-897. DOI 10.1111/j.1945-5100.2008.tb01087.x Publisher The Meteoritical Society Journal Meteoritics & Planetary Science Rights Copyright © The Meteoritical Society Download date 26/09/2021 21:32:45 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/656429 Meteoritics & Planetary Science 43, Nr 5, 883–897 (2008) AUTHOR’S PROOF Abstract available online at http://meteoritics.org Testing an integrated chronology: I-Xe analysis of enstatite meteorites and a eucrite A. BUSFIELD, G. TURNER, and J. D. GILMOUR* School of Earth, Atmospheric and Environmental Science, University of Manchester, Oxford Road, Manchester M13 9PL, UK *Corresponding author. E-mail: [email protected] (Supplementary tables and figures are available online at http://meteoritics.org/online supplements.htm) (Received 06 October 2006; revision accepted 21 November 2007) Abstract–We have determined initial 129I/127I ratios for mineral concentrates of four enstatite meteorites and a eucrite. In the case of the enstatite meteorites the inferred ages are associated with the pyroxene-rich separates giving pyroxene closure ages relative to the Shallowater standard of Indarch (EH4, 0.04 ± 0.67 Ma), Khairpur (EL6, −4.22 ± 0.67 Ma), Khor Temiki (aubrite, −0.06 Ma), and Itqiy (enstatite achondrite, −2.6 ± 2.6 Ma), negative ages indicate closure after Shallowater. -
Evaluating Chondrule Formation Models and the Protoplanetary Disk Background Temperature with Low-Temperature, Sub-Silicate Solidus Chondrule Cooling Rates
47th Lunar and Planetary Science Conference (2016) 1180.pdf EVALUATING CHONDRULE FORMATION MODELS AND THE PROTOPLANETARY DISK BACKGROUND TEMPERATURE WITH LOW-TEMPERATURE, SUB-SILICATE SOLIDUS CHONDRULE COOLING RATES. D. L. Schrader1, R. R. Fu2, and S. J. Desch3. 1Center for Meteorite Studies, School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, ([email protected]), 2Lamont-Doherty Earth Observatory, Columbia University, PO Box 1000 Palisades NY 10964, 3School of Earth and Space Exploration, Arizona State University, PO Box 871404, Tempe AZ 85287. Introduction: Constraining the complete thermal history of chondrules is essential to determining their formation mechanism(s) and the conditions of the pro- toplanetary disk during chondrule formation. Chon- drule cooling rates based on silicate compositions, tex- tures, and crystallization experiments conservatively range from >5000°C/hr above the silicate liquidus (>~1527°C), to 5–3000°C/hr between the silicate liquidus and solidus (~1527–1127°C) [1–4]. On aver- age, chondrules cooled at rates of 10–1000°C/hr be- tween the silicate liquidus and solidus [2]. These cool- ing rates have been used to test the validity of numer- Figure 1. Sulfide assemblage containing pyrrhotite ous models for chondrule formation [e.g., 4]. (po), pentlandite (pn), and Fe,Ni metal (met) in LAP However, these chondrule cooling rates are limited 02342,14 (CR2). as they only apply above the silicate solidus Analytical: Sulfide-bearing opaque assemblages (>1127°C). Chondrule cooling rates below the silicate were studied in FeO-rich (type II) chondrules from the solidus are not well constrained despite some previous CM2 Mighei, the LL3.00 Semarkona, and 8 CR2s; studies [e.g., 5,6]. -
Petrography and Mineral Chemistry of the Anhydrous Component of the Tagish Lake Carbonaceous Chondrite
Meteoritics & Planetary Science 38, Nr 5, 813–825 (2003) Abstract available online at http://meteoritics.org Petrography and mineral chemistry of the anhydrous component of the Tagish Lake carbonaceous chondrite S. B. SIMON1* and L. GROSSMAN1, 2 1Department of the Geophysical Sciences, 5734 South Ellis Avenue, The University of Chicago, Chicago, Illinois 60637, USA 2The Enrico Fermi Institute, 5640 South Ellis Avenue, The University of Chicago, Chicago, Illinois 60637, USA *Corresponding author. E-mail: [email protected] (Received 30 August 2002; revision accepted 16 January 2003) Abstract–Most studies of Tagish Lake have considered features that were either strongly affected by or formed during the extensive hydrous alteration experienced by this meteorite. This has led to some ambiguity as to whether Tagish Lake should be classified a CI, a CM, or something else. Unlike previous workers, we have focused upon the primary, anhydrous component of Tagish Lake, recovered through freeze-thaw disaggregation and density separation and located by thin section mapping. We found many features in common with CMs that are not observed in CIs. In addition to the presence of chondrules and refractory forsterite (which distinguish Tagish Lake from the CIs), we found hibonite-bearing refractory inclusions, spinel-rich inclusions, forsterite aggregates, Cr-, Al-rich spinel, and accretionary mantles on many clasts, which clearly establishes a strong link between Tagish Lake and the CM chondrites. The compositions of isolated olivine crystals in Tagish Lake are also like those found in CMs. We conclude that the anhydrous inclusion population of Tagish Lake was, originally, very much like that of the known CM chondrites and that the inclusions in Tagish Lake are heavily altered, more so than even those in Mighei, which are more heavily altered than those in Murchison. -
Connection Between Micrometeorites and Wild 2 Particles: from Antarctic Snow to Cometary Ices
Meteoritics & Planetary Science 44, Nr 10, 1643–1661 (2009) Abstract available online at http://meteoritics.org Connection between micrometeorites and Wild 2 particles: From Antarctic snow to cometary ices E. DOBRIC√1,*, C. ENGRAND1, J. DUPRAT1, M. GOUNELLE2, H. LEROUX3, E. QUIRICO4, and J.-N. ROUZAUD5 1Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, CNRS-Univ. Paris Sud, 91405 Orsay Campus, France 2Laboratoire de Minéralogie et de Cosmochimie, Muséum National d’Histoire Naturelle, 57 rue Cuvier, CP52, 75005 Paris, France 3Laboratoire de Structure et Propriétés de l’Etat Solide, CNRS-Univ. des Sciences et Technologies de Lille, 59655 Villeneuve d’Ascq, France 4Laboratoire de Planétologie de Grenoble, Univ. J. Fourier CNRS-INSU 38041 Grenoble Cedex 09, France 5Laboratoire de Géologie, Ecole Normale Supérieure, CNRS, 75231 Paris Cedex 5, France *Corresponding author. E-mail: [email protected] (Received 17 March 2009; revision accepted 21 September 2009) Abstract–We discuss the relationship between large cosmic dust that represents the main source of extraterrestrial matter presently accreted by the Earth and samples from comet 81P/Wild 2 returned by the Stardust mission in January 2006. Prior examinations of the Stardust samples have shown that Wild 2 cometary dust particles contain a large diversity of components, formed at various heliocentric distances. These analyses suggest large-scale radial mixing mechanism(s) in the early solar nebula and the existence of a continuum between primitive asteroidal and cometary matter. The recent collection of CONCORDIA Antarctic micrometeorites recovered from ultra-clean snow close to Dome C provides the most unbiased collection of large cosmic dust available for analyses in the laboratory. -
Radar-Enabled Recovery of the Sutter's Mill Meteorite, A
RESEARCH ARTICLES the area (2). One meteorite fell at Sutter’sMill (SM), the gold discovery site that initiated the California Gold Rush. Two months after the fall, Radar-Enabled Recovery of the Sutter’s SM find numbers were assigned to the 77 me- teorites listed in table S3 (3), with a total mass of 943 g. The biggest meteorite is 205 g. Mill Meteorite, a Carbonaceous This is a tiny fraction of the pre-atmospheric mass, based on the kinetic energy derived from Chondrite Regolith Breccia infrasound records. Eyewitnesses reported hearing aloudboomfollowedbyadeeprumble.Infra- Peter Jenniskens,1,2* Marc D. Fries,3 Qing-Zhu Yin,4 Michael Zolensky,5 Alexander N. Krot,6 sound signals (table S2A) at stations I57US and 2 2 7 8 8,9 Scott A. Sandford, Derek Sears, Robert Beauford, Denton S. Ebel, Jon M. Friedrich, I56US of the International Monitoring System 6 4 4 10 Kazuhide Nagashima, Josh Wimpenny, Akane Yamakawa, Kunihiko Nishiizumi, (4), located ~770 and ~1080 km from the source, 11 12 10 13 Yasunori Hamajima, Marc W. Caffee, Kees C. Welten, Matthias Laubenstein, are consistent with stratospherically ducted ar- 14,15 14 14,15 16 Andrew M. Davis, Steven B. Simon, Philipp R. Heck, Edward D. Young, rivals (5). The combined average periods of all 17 18 18 19 20 Issaku E. Kohl, Mark H. Thiemens, Morgan H. Nunn, Takashi Mikouchi, Kenji Hagiya, phase-aligned stacked waveforms at each station 21 22 22 22 23 Kazumasa Ohsumi, Thomas A. Cahill, Jonathan A. Lawton, David Barnes, Andrew Steele, of 7.6 s correspond to a mean source energy of 24 4 24 2 25 Pierre Rochette, Kenneth L.