Positive Operator-Valued Measures and Phase-Space Representations

Total Page:16

File Type:pdf, Size:1020Kb

Positive Operator-Valued Measures and Phase-Space Representations Positive operator-valued measures and phase-space representations Citation for published version (APA): Beukema, R. (2003). Positive operator-valued measures and phase-space representations. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR561990 DOI: 10.6100/IR561990 Document status and date: Published: 01/01/2003 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement: www.tue.nl/taverne Take down policy If you believe that this document breaches copyright please contact us at: [email protected] providing details and we will investigate your claim. Download date: 26. Sep. 2021 Positive Operator-Valued Measures and Phase-Space Representations PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Technische Universiteit Eindhoven, op gezag van de Rector Magnificus, prof.dr. R.A. van Santen, voor een commissie aangewezen door het College voor Promoties in het openbaar te verdedigen op maandag 17 februari 2003 om 16.00 uur door Robbert Beukema geboren te Groningen Dit proefschrift is goedgekeurd door de promotoren: prof.dr.ir. J. de Graaf en prof.dr. F.W. Sluijter Copromotor: dr. W.M. de Muynck CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN Beukema, Robbert Positive operator-valued measures and phase-space representations / by Robbert Beukema. - Eindhoven : Technische Universiteit Eindhoven, 2003. Proefschrift. - ISBN 90-386-0662-1 NUR 921 Subject headings : functional analysis / quantum mechanics 2000 Mathematics Subject Classification : 46G10, 81S30, 81S99 Gedrukt door: Universiteitsdrukkerij, Technische Universiteit Eindhoven Contents Chapter 1. Introduction 7 1. Context 7 2. Probability distributions on the outcome space 8 3. Motivation 8 4. Results 10 5. Outline 11 Chapter 2. Preliminaries 13 1. Conventions, terminology and notation 13 2. Tensor product of two Hilbert spaces 13 3. Spaces of operators on a Hilbert space 14 4. Topologies on B∞(H) and L∞(µ) 14 Chapter 3. Positive operator-valued measures 17 1. Introduction 17 2. Conventions, terminology and notation 17 3. Preliminaries 18 4. Naimark’s theorem 19 5. Separability 21 6. Operator densities 23 7. Integration with respect to a POVM 26 8. Dominance of POVMs 29 9. Four remarks about the definition of ← 29 10. Dominance between PVMs 32 11. Isomorphic POVMs 33 12. Unitary equivalence 34 13. Image measures 35 14. Cones generated by POVMs 35 15. Maximal PVMs 37 16. Examples of maximal PVMs 39 17. Maximal POVMs 39 18. Bargmann POVM 46 19. Susskind-Glogower phase POVM 46 20. Density of the span of the range of a POVM 47 21. Prototypical POVMs 50 22. Multiplicity theory 51 23. Bounded subnormal operators 55 24. Restriction algebra 56 25. Constructing POVMs from PVMs 57 26. POVMs on Federer metric spaces 61 27. Integration of unbounded functions with respect to a POVM 64 Chapter 4. Wigner and Husimi representations, and in between 69 3 4 CONTENTS 1. Introduction 69 2. Conventions and notation 69 3. Wigner representation 70 4. A family of representations interpolating between the Wigner and Husimi representations 72 5. The range of Ws 74 6. The spaces B+ and B− 75 7. Characterization of Ws(B+) and Ws(B−) 76 Chapter 5. Phase-space analogues for quantum mechanical expectation values 79 1. Introduction 79 2. Wigner representation 80 3. Existence of phase-space analogues for quantum mechanical expectation values 80 4. Non-uniformity of approximation of expectation values 81 5. A method to approximate expectation values 82 Chapter 6. Extended Bargmann space 87 1. Introduction 87 2. Hermite polynomials 87 3. Laguerre polynomials 89 4. Relation between Hermite and Laguerre polynomials 92 5. Analytic and Harmonic functions 94 6. Extended Bargmann space 95 Appendix A. Miscellaneous results 99 1. Measurable covers and partitions 101 2. Hilbert-Schmidt operators 101 3. Trace-class operators 101 4. Convergence and σ-additivity of measures 101 5. Monotone convergence theorem and a partial converse 102 6. Radon-Nikodym theorem 102 7. Strong topological dual of L1(Ω, Σ, µ) 103 Appendix B. A criteria for the density of subspaces 105 Appendix C. Weak-star topology on dual Banach spaces 107 Appendix D. Bounded sesquilinear forms on Hilbert spaces 111 Appendix E. Hilbertian semi-norms 113 Appendix F. Bargmann space 117 Appendix G. C∗-algebras 119 1. Von Neumann algebras 119 2. Commutative von Neumann algebras 119 3. Maximal commutative von Neumann algebras 119 Appendix H. Operator ranges 121 Appendix I. Measurable Banach space-valued functions 123 Appendix J. Carleman operators 127 1. Generating vectors 127 CONTENTS 5 Appendix K. Application of Gauss’s theorem 129 1. On the real line 129 2. On the complex plane 130 m 3. Gaussian convolution on Lp(R ) 132 Appendix L. Integral operators with a Gaussian kernel 135 1. Calculations 135 2. The integral operators Spqr 136 1/2 Appendix M. Gelfand-Shilov space S1/2. 139 1. Introduction 139 2. The spaces H+ and H−. 139 (s) (s) 3. The spaces H+ and H− 140 (s) (s) 4. Duality between H− and H+ 141 5. Approximation in H− 141 Appendix N. Estimates 143 1. Estimates for Bessel functions on (0, ∞) 143 2. Estimates for the Gamma function 146 3. Estimates for Laguerre polynomials on (0, ∞) 146 Appendix O. Cambell-Baker-Hausdorff formulas 149 1. Introduction 149 2. e[A,·] if A is nilpotent 149 3. A generalization 150 4. If operators A and B are skew-adjoint 151 5. If operators A and B commute with [A, B]. 151 Bibliography 153 Index 157 Acknowledgement 159 Samenvatting 161 Curriculum Vitae 163 CHAPTER 1 Introduction 1. Context In the standard formalism of quantum mechanics as formulated by Dirac [36] and von Neumann [106], a measurement with outcome space Ω corresponds to a spectral measure M concentrated on Ω and acting on a complex separable Hilbert space H. States of a quantum mechanical system are described mathematically by density operators ρ, which are non-negative trace-class operators on H with trace 1. The set of all density operators, the ‘state space,’ is denoted by S(H). The following is postulated: (P) The number Tr(ρM(∆)), i.e. the trace of the composition of operators ρ and M(∆), is to be interpreted as the probability that in state ρ the outcome of the measurement lies in ∆. Two spectral measures E and F acting on the same Hilbert space, and defined on the Borel subsets of outcome spaces Ω1 and Ω2 respectively, can be combined to get a spectral measure E⊗F, defined on the Borel subsets of Ω1 ×Ω2 by E⊗F (∆1 ×∆2) = E(∆1)F (∆2) (and unique extension), if and only if E and F commute. Von Neumann shows (Section III.3 in [106]) that this condition is necessary and sufficient in order for the quantities corresponding to E and F to be simultaneously measurable with arbitrary high accuracy. Such measurements are not always desirable because they are very incomplete in the 0 sense that to each density operator ρ corresponds a large class [ρ]M of states ρ satisfying Tr((ρ − ρ0)M(∆)) = 0 for all ∆. In other words: The range of M, considered as a subspace of the vector space of bounded self-adjoint operators, has a large ‘orthogonal complement’ in the space of self-adjoint trace-class operators. More recent investigations [74, 73], [31] (among others) have led to the so-called ‘operational approach to quantum measurement.’ This theory is about the compound system formed by object and measurement instrument, and the interaction between these two parts plays an essential role. (See e.g. [58], [55], [30], [15] and [17].) A measure- ment is described mathematically by an operator-valued measure M, defined on a σ-field Σ of subsets of a set Ω and taking values in the set of non-negative bounded operators on a separable complex Hilbert space, and normalized by the condition M(Ω) = I, the identity operator. A measure M with these properties, is called a normalized positive operator-valued measure, which we abbreviate to ‘POVM.’ A POVM M whose range consists of projection operators only, is called a projection-valued measure, which we abbreviate to ‘PVM.’ Measurements corresponding to POVMs are called generalized measurements, and measurements corresponding to PVMs (spectral measures in par- ticular) are called simple measurements. Many experiments performed in practice are generalized measurements: For example [83].
Recommended publications
  • An Elementary Proof of the Spectral Radius Formula for Matrices
    AN ELEMENTARY PROOF OF THE SPECTRAL RADIUS FORMULA FOR MATRICES JOEL A. TROPP Abstract. We present an elementary proof that the spectral ra- dius of a matrix A may be obtained using the formula 1 ρ(A) = lim kAnk =n; n!1 where k · k represents any matrix norm. 1. Introduction It is a well-known fact from the theory of Banach algebras that the spectral radius of any element A is given by the formula ρ(A) = lim kAnk1=n: (1.1) n!1 For a matrix, the spectrum is just the collection of eigenvalues, so this formula yields a technique for estimating for the top eigenvalue. The proof of Equation 1.1 is beautiful but advanced. See, for exam- ple, Rudin's treatment in his Functional Analysis. It turns out that elementary techniques suffice to develop the formula for matrices. 2. Preliminaries For completeness, we shall briefly introduce the major concepts re- quired in the proof. It is expected that the reader is already familiar with these ideas. 2.1. Norms. A norm is a mapping k · k from a vector space X into the nonnegative real numbers R+ which has three properties: (1) kxk = 0 if and only if x = 0; (2) kαxk = jαj kxk for any scalar α and vector x; and (3) kx + yk ≤ kxk + kyk for any vectors x and y. The most fundamental example of a norm is the Euclidean norm k·k2 which corresponds to the standard topology on Rn. It is defined by 2 2 2 kxk2 = k(x1; x2; : : : ; xn)k2 = x1 + x2 + · · · + xn: Date: 30 November 2001.
    [Show full text]
  • Quasi-Expectations and Amenable Von Neumann
    PROCEEDINGS OI THE „ „ _„ AMERICAN MATHEMATICAL SOCIETY Volume 71, Number 2, September 1978 QUASI-EXPECTATIONSAND AMENABLEVON NEUMANN ALGEBRAS JOHN W. BUNCE AND WILLIAM L. PASCHKE1 Abstract. A quasi-expectation of a C*-algebra A on a C*-subalgebra B is a bounded linear projection Q: A -> B such that Q(xay) = xQ(a)y Vx,y £ B, a e A. It is shown that if M is a von Neumann algebra of operators on Hubert space H for which there exists a quasi-expectation of B(H) on M, then there exists a projection of norm one of B(H) on M, i.e. M is injective. Further, if M is an amenable von Neumann subalgebra of a von Neumann algebra N, then there exists a quasi-expectation of N on M' n N. These two facts yield as an immediate corollary the recent result of A. Cormes that all amenable von Neumann algebras are injective. Let A be a unital C*-algebra and B a unital C*-subalgebra of A. By a quasi-expectation of A on B, we mean a bounded linear projection Q: A -» B such that Q(xay) = xQ(a)y Vx,y G B, a G A. A classical result of J. Tomiyama [13] says that any projection of norm one of A onto F is a quasi-expectation. In what follows, we will show that if M is a von Neumann algebra of operators on Hubert space H, then the existence of a quasi-expec- tation of B(H) on M implies the existence of a projection of norm one of B(H) on M.
    [Show full text]
  • Studies in the Geometry of Quantum Measurements
    Irina Dumitru Studies in the Geometry of Quantum Measurements Studies in the Geometry of Quantum Measurements Studies in Irina Dumitru Irina Dumitru is a PhD student at the department of Physics at Stockholm University. She has carried out research in the field of quantum information, focusing on the geometry of Hilbert spaces. ISBN 978-91-7911-218-9 Department of Physics Doctoral Thesis in Theoretical Physics at Stockholm University, Sweden 2020 Studies in the Geometry of Quantum Measurements Irina Dumitru Academic dissertation for the Degree of Doctor of Philosophy in Theoretical Physics at Stockholm University to be publicly defended on Thursday 10 September 2020 at 13.00 in sal C5:1007, AlbaNova universitetscentrum, Roslagstullsbacken 21, and digitally via video conference (Zoom). Public link will be made available at www.fysik.su.se in connection with the nailing of the thesis. Abstract Quantum information studies quantum systems from the perspective of information theory: how much information can be stored in them, how much the information can be compressed, how it can be transmitted. Symmetric informationally- Complete POVMs are measurements that are well-suited for reading out the information in a system; they can be used to reconstruct the state of a quantum system without ambiguity and with minimum redundancy. It is not known whether such measurements can be constructed for systems of any finite dimension. Here, dimension refers to the dimension of the Hilbert space where the state of the system belongs. This thesis introduces the notion of alignment, a relation between a symmetric informationally-complete POVM in dimension d and one in dimension d(d-2), thus contributing towards the search for these measurements.
    [Show full text]
  • Von Neumann Algebras Form a Model for the Quantum Lambda Calculus∗
    Von Neumann Algebras form a Model for the Quantum Lambda Calculus∗ Kenta Cho and Abraham Westerbaan Institute for Computing and Information Sciences Radboud University, Nijmegen, the Netherlands {K.Cho,awesterb}@cs.ru.nl Abstract We present a model of Selinger and Valiron’s quantum lambda calculus based on von Neumann algebras, and show that the model is adequate with respect to the operational semantics. 1998 ACM Subject Classification F.3.2 Semantics of Programming Language Keywords and phrases quantum lambda calculus, von Neumann algebras 1 Introduction In 1925, Heisenberg realised, pondering upon the problem of the spectral lines of the hydrogen atom, that a physical quantity such as the x-position of an electron orbiting a proton is best described not by a real number but by an infinite array of complex numbers [12]. Soon afterwards, Born and Jordan noted that these arrays should be multiplied as matrices are [3]. Of course, multiplying such infinite matrices may lead to mathematically dubious situations, which spurred von Neumann to replace the infinite matrices by operators on a Hilbert space [44]. He organised these into rings of operators [25], now called von Neumann algebras, and thereby set off an explosion of research (also into related structures such as Jordan algebras [13], orthomodular lattices [2], C∗-algebras [34], AW ∗-algebras [17], order unit spaces [14], Hilbert C∗-modules [28], operator spaces [31], effect algebras [8], . ), which continues even to this day. One current line of research (with old roots [6, 7, 9, 19]) is the study of von Neumann algebras from a categorical perspective (see e.g.
    [Show full text]
  • On the Beurling Algebras A+ Α(D)—Derivations And
    IJMMS 2004:32, 1679–1701 PII. S0161171204309270 http://ijmms.hindawi.com © Hindawi Publishing Corp. ON THE BEURLING ALGEBRAS + D —DERIVATIONS Aα( ) AND EXTENSIONS HOLGER STEINIGER Received 27 September 2003 + D Based on a description of the squares of cofinite primary ideals of Aα( ), we prove the ≥ + D following results: for α 1, there exists a derivation from Aα( ) into a finite-dimensional module such that this derivation is unbounded on every dense subalgebra; for m ∈ N and ∈ + + D α [m,m 1), every finite-dimensional extension of Aα( ) splits algebraically if and only if α ≥ m+1/2. 2000 Mathematics Subject Classification: 46J15, 46M20, 46H40. 1. Introduction. Let α be a positive real number. By D, we denote the open unit + D D disk. The Beurling algebra Aα( ) is a subalgebra of the classical disk algebra A( ). ∈ D = ∞ n ∈ D For f A( ) with power series expansion f(z) n=0 anz (z ), the function f + D ∞ | | + α ∞ = belongs to Aα( ) if and only if n=0 an (n 1) < . In this case, we define f α : ∞ | | + α + D n=0 an (n 1) . Clearly, Aα( ) is a Banach algebra with respect to this norm. These algebras have been considered in [13] where results on primary ideals were applied to operator theory. More recently, the algebras have appeared in the examina- tion of finite-dimensional extensions of a whole range of commutative Banach algebras + D [4]. The present paper deals with continuity problems of derivations from Aα( ) and with finite-dimensional extensions of this special type of Beurling algebras. Some of the results of the first paper will be the starting point for our investigation.
    [Show full text]
  • AUTOMATIC CONTINUITY of CERTAIN ISOMORPHISMS BETWEEN REGULAR BANACH FUNCTION ALGEBRAS by JUAN J
    AUTOMATIC CONTINUITY OF CERTAIN ISOMORPHISMS BETWEEN REGULAR BANACH FUNCTION ALGEBRAS by JUAN J. FONTt (Received 9 May, 1996) Abstract. Let A and B be regular semisimple commutative Banach algebras; that is to say, regular Banach function algebras. A linear map T denned from A into B is said to be separating or disjointness preserving if/.g = 0 implies Tf.Tg = 0, for all f,g e A In this paper we prove that if A satisfies Ditkin's condition then a separating bijection is automatically continuous and its inverse is separating. If also B satisfies Ditkin's condition, then it induces a homeomorphism between the structure spaces of A and B. Finally, we show that linear isometries between regular uniform algebras are separating. As corollaries, a classical theorem of Nagasawa ([19]) and the Banach-Stone theorem (both for regular uniform algebras) are easily inferred. 1. Introduction. The basic problem in the theory of automatic continuity of linear operators consists of giving algebraic conditions on two Banach algebras si and 38 which ensure that every algebra homomorphism !T:s4-*2ft is necessarily continuous. The most important positive result in this context is due to B. E. Johnson ([15]). Every algebra homomorphism of a Banach algebra onto a semisimple Banach algebra is continuous. In this paper we shall study the automatic continuity of a special type of linear mapping which extends the concept of algebra homomorphism: Let A and B be two Banach algebras. Then a linear map T denned from A into B is said to be separating or disjointness preserving (also called d-homomorphisms, Lamperti operators,...) if f.g — 0 implies Tf.Tg=0, for all/,g e A.
    [Show full text]
  • Regularity Conditions for Banach Function Algebras
    Regularity conditions for Banach function algebras Dr J. F. Feinstein University of Nottingham June 2009 1 1 Useful sources A very useful text for the material in this mini-course is the book Banach Algebras and Automatic Continuity by H. Garth Dales, London Mathematical Society Monographs, New Series, Volume 24, The Clarendon Press, Oxford, 2000. In particular, many of the examples and conditions discussed here may be found in Chapter 4 of that book. We shall refer to this book throughout as the book of Dales. Most of my e-prints are available from www.maths.nott.ac.uk/personal/jff/Papers Several of my research and teaching presentations are available from www.maths.nott.ac.uk/personal/jff/Beamer 2 2 Introduction to normed algebras and Banach algebras 2.1 Some problems to think about Those who have seen much of this introductory material before may wish to think about some of the following problems. We shall return to these problems at suitable points in this course. Problem 2.1.1 (Easy using standard theory!) It is standard that the set of all rational functions (quotients of polynomials) with complex coefficients is a field: this is a special case of the “field of fractions" of an integral domain. Question: Is there an algebra norm on this field (regarded as an algebra over C)? 3 Problem 2.1.2 (Very hard!) Does there exist a pair of sequences (λn), (an) of non-zero complex numbers such that (i) no two of the an are equal, P1 (ii) n=1 jλnj < 1, (iii) janj < 2 for all n 2 N, and yet, (iv) for all z 2 C, 1 X λn exp (anz) = 0? n=1 Gap to fill in 4 Problem 2.1.3 Denote by C[0; 1] the \trivial" uniform algebra of all continuous, complex-valued functions on [0; 1].
    [Show full text]
  • Stat 309: Mathematical Computations I Fall 2018 Lecture 4
    STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 4 1. spectral radius • matrix 2-norm is also known as the spectral norm • name is connected to the fact that the norm is given by the square root of the largest eigenvalue of ATA, i.e., largest singular value of A (more on this later) n×n • in general, the spectral radius ρ(A) of a matrix A 2 C is defined in terms of its largest eigenvalue ρ(A) = maxfjλij : Axi = λixi; xi 6= 0g n×n • note that the spectral radius does not define a norm on C • for example the non-zero matrix 0 1 J = 0 0 has ρ(J) = 0 since both its eigenvalues are 0 • there are some relationships between the norm of a matrix and its spectral radius • the easiest one is that ρ(A) ≤ kAk n for any matrix norm that satisfies the inequality kAxk ≤ kAkkxk for all x 2 C , i.e., consistent norm { here's a proof: Axi = λixi taking norms, kAxik = kλixik = jλijkxik therefore kAxik jλij = ≤ kAk kxik since this holds for any eigenvalue of A, it follows that maxjλij = ρ(A) ≤ kAk i { in particular this is true for any operator norm { this is in general not true for norms that do not satisfy the consistency inequality kAxk ≤ kAkkxk (thanks to Likai Chen for pointing out); for example the matrix " p1 p1 # A = 2 2 p1 − p1 2 2 p is orthogonal and therefore ρ(A) = 1 but kAkH;1 = 1= 2 and so ρ(A) > kAkH;1 { exercise: show that any eigenvalue of a unitary or an orthogonal matrix must have absolute value 1 Date: October 10, 2018, version 1.0.
    [Show full text]
  • Proved for Real Hilbert Spaces. Time Derivatives of Observables and Applications
    AN ABSTRACT OF THE THESIS OF BERNARD W. BANKSfor the degree DOCTOR OF PHILOSOPHY (Name) (Degree) in MATHEMATICS presented on (Major Department) (Date) Title: TIME DERIVATIVES OF OBSERVABLES AND APPLICATIONS Redacted for Privacy Abstract approved: Stuart Newberger LetA andH be self -adjoint operators on a Hilbert space. Conditions for the differentiability with respect totof -itH -itH <Ae cp e 9>are given, and under these conditionsit is shown that the derivative is<i[HA-AH]e-itHcp,e-itHyo>. These resultsare then used to prove Ehrenfest's theorem and to provide results on the behavior of the mean of position as a function of time. Finally, Stone's theorem on unitary groups is formulated and proved for real Hilbert spaces. Time Derivatives of Observables and Applications by Bernard W. Banks A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy June 1975 APPROVED: Redacted for Privacy Associate Professor of Mathematics in charge of major Redacted for Privacy Chai an of Department of Mathematics Redacted for Privacy Dean of Graduate School Date thesis is presented March 4, 1975 Typed by Clover Redfern for Bernard W. Banks ACKNOWLEDGMENTS I would like to take this opportunity to thank those people who have, in one way or another, contributed to these pages. My special thanks go to Dr. Stuart Newberger who, as my advisor, provided me with an inexhaustible supply of wise counsel. I am most greatful for the manner he brought to our many conversa- tions making them into a mutual exchange between two enthusiasta I must also thank my parents for their support during the earlier years of my education.Their contributions to these pages are not easily descerned, but they are there never the less.
    [Show full text]
  • On Relaxation of Normality in the Fuglede-Putnam Theorem
    proceedings of the american mathematical society Volume 77, Number 3, December 1979 ON RELAXATION OF NORMALITY IN THE FUGLEDE-PUTNAM THEOREM TAKAYUKIFURUTA1 Abstract. An operator means a bounded linear operator on a complex Hubert space. The familiar Fuglede-Putnam theorem asserts that if A and B are normal operators and if X is an operator such that AX = XB, then A*X = XB*. We shall relax the normality in the hypotheses on A and B. Theorem 1. If A and B* are subnormal and if X is an operator such that AX = XB, then A*X = XB*. Theorem 2. Suppose A, B, X are operators in the Hubert space H such that AX = XB. Assume also that X is an operator of Hilbert-Schmidt class. Then A*X = XB* under any one of the following hypotheses: (i) A is k-quasihyponormal and B* is invertible hyponormal, (ii) A is quasihyponormal and B* is invertible hyponormal, (iii) A is nilpotent and B* is invertible hyponormal. 1. In this paper an operator means a bounded linear operator on a complex Hilbert space. An operator T is called quasinormal if F commutes with T* T, subnormal if T has a normal extension and hyponormal if [ F*, T] > 0 where [S, T] = ST - TS. The inclusion relation of the classes of nonnormal opera- tors listed above is as follows: Normal § Quasinormal § Subnormal ^ Hyponormal; the above inclusions are all proper [3, Problem 160, p. 101]. The familiar Fuglede-Putnam theorem is as follows ([3, Problem 152], [4]). Theorem A. If A and B are normal operators and if X is an operator such that AX = XB, then A*X = XB*.
    [Show full text]
  • (Measure Theory for Dummies) UWEE Technical Report Number UWEETR-2006-0008
    A Measure Theory Tutorial (Measure Theory for Dummies) Maya R. Gupta {gupta}@ee.washington.edu Dept of EE, University of Washington Seattle WA, 98195-2500 UWEE Technical Report Number UWEETR-2006-0008 May 2006 Department of Electrical Engineering University of Washington Box 352500 Seattle, Washington 98195-2500 PHN: (206) 543-2150 FAX: (206) 543-3842 URL: http://www.ee.washington.edu A Measure Theory Tutorial (Measure Theory for Dummies) Maya R. Gupta {gupta}@ee.washington.edu Dept of EE, University of Washington Seattle WA, 98195-2500 University of Washington, Dept. of EE, UWEETR-2006-0008 May 2006 Abstract This tutorial is an informal introduction to measure theory for people who are interested in reading papers that use measure theory. The tutorial assumes one has had at least a year of college-level calculus, some graduate level exposure to random processes, and familiarity with terms like “closed” and “open.” The focus is on the terms and ideas relevant to applied probability and information theory. There are no proofs and no exercises. Measure theory is a bit like grammar, many people communicate clearly without worrying about all the details, but the details do exist and for good reasons. There are a number of great texts that do measure theory justice. This is not one of them. Rather this is a hack way to get the basic ideas down so you can read through research papers and follow what’s going on. Hopefully, you’ll get curious and excited enough about the details to check out some of the references for a deeper understanding.
    [Show full text]
  • The Notion of Observable and the Moment Problem for ∗-Algebras and Their GNS Representations
    The notion of observable and the moment problem for ∗-algebras and their GNS representations Nicol`oDragoa, Valter Morettib Department of Mathematics, University of Trento, and INFN-TIFPA via Sommarive 14, I-38123 Povo (Trento), Italy. [email protected], [email protected] February, 17, 2020 Abstract We address some usually overlooked issues concerning the use of ∗-algebras in quantum theory and their physical interpretation. If A is a ∗-algebra describing a quantum system and ! : A ! C a state, we focus in particular on the interpretation of !(a) as expectation value for an algebraic observable a = a∗ 2 A, studying the problem of finding a probability n measure reproducing the moments f!(a )gn2N. This problem enjoys a close relation with the selfadjointness of the (in general only symmetric) operator π!(a) in the GNS representation of ! and thus it has important consequences for the interpretation of a as an observable. We n provide physical examples (also from QFT) where the moment problem for f!(a )gn2N does not admit a unique solution. To reduce this ambiguity, we consider the moment problem n ∗ (a) for the sequences f!b(a )gn2N, being b 2 A and !b(·) := !(b · b). Letting µ!b be a n solution of the moment problem for the sequence f!b(a )gn2N, we introduce a consistency (a) relation on the family fµ!b gb2A. We prove a 1-1 correspondence between consistent families (a) fµ!b gb2A and positive operator-valued measures (POVM) associated with the symmetric (a) operator π!(a). In particular there exists a unique consistent family of fµ!b gb2A if and only if π!(a) is maximally symmetric.
    [Show full text]