The Design, Implementation, and Evaluation of Software and Architectural Support for ARM Virtualization

Total Page:16

File Type:pdf, Size:1020Kb

The Design, Implementation, and Evaluation of Software and Architectural Support for ARM Virtualization The Design, Implementation, and Evaluation of Software and Architectural Support for ARM Virtualization Christoffer Dall Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2018 c 2017 Christoffer Dall All rights reserved ABSTRACT The Design, Implementation, and Evaluation of Software and Architectural Support for ARM Virtualization Christoffer Dall The ARM architecture is dominating in the mobile and embedded markets and is making an up- wards push into the server and networking markets where virtualization is a key technology. Similar to x86, ARM has added hardware support for virtualization, but there are important differences be- tween the ARM and x86 architectural designs. Given two widely deployed computer architectures with different approaches to hardware virtualization support, we can evaluate, in practice, benefits and drawbacks of different approaches to architectural support for virtualization. This dissertation explores new approaches to combining software and architectural support for virtualization with a focus on the ARM architecture and shows that it is possible to provide virtual- ization services an order of magnitude more efficiently than traditional implementations. First, we investigate why the ARM architecture does not meet the classical requirements for virtualizable architectures and present an early prototype of KVM for ARM, a hypervisor using lightweight paravirtualization to run VMs on ARM systems without hardware virtualization sup- port. Lightweight paravirtualization is a fully automated approach which replaces sensitive instruc- tions with privileged instructions and requires no understanding of the guest OS code. Second, we introduce split-mode virtualization to support hosted hypervisor designs using ARM’s architectural support for virtualization. Different from x86, the ARM virtualization exten- sions are based on a new hypervisor CPU mode, separate from existing CPU modes. This separate hypervisor CPU mode does not support running existing unmodified OSes, and therefore hosted hypervisor designs, in which the hypervisor runs as part of a host OS, do not work on ARM. Split- mode virtualization splits the execution of the hypervisor such that the host OS with core hypervisor functionality runs in the existing kernel CPU mode, but a small runtime runs in the hypervisor CPU mode and supports switching between the VM and the host OS. Split-mode virtualization was used in KVM/ARM, which was designed from the ground up as an open source project and merged in the mainline Linux kernel, resulting in interesting lessons about translating research ideas into practice. Third, we present an in-depth performance study of 64-bit ARMv8 virtualization using server hardware and compare against x86. We measure the performance of both standalone and hosted hy- pervisors on both ARM and x86 and compare their results. We find that ARM hardware support for virtualization can enable faster transitions between the VM and the hypervisor for standalone hyper- visors compared to x86, but results in high switching overheads for hosted hypervisors compared to both x86 and to standalone hypervisors on ARM. We identify a key reason for high switching overhead for hosted hypervisors being the need to save and restore kernel mode state between the host OS kernel and the VM kernel. However, standalone hypervisors such as Xen, cannot leverage their performance benefit in practice for real application workloads. Other factors related to hyper- visor software design and I/O emulation play a larger role in overall hypervisor performance than low-level interactions between the hypervisor and the hardware. Fourth, realizing that modern hypervisors rely on running a full OS kernel, the hypervisor OS kernel, to support their hypervisor functionality, we present a new hypervisor design which runs the hypervisor and its hypervisor OS kernel in ARM’s separate hypervisor CPU mode and avoids the need to multiplex kernel mode CPU state between the VM and the hypervisor. Our design benefits from new architectural features, the virtualization host extensions (VHE), in ARMv8.1 to avoid modifying the hypervisor OS kernel to run in the hypervisor CPU mode. We show that the hypervisor must be co-designed with the hardware features to take advantage of running in a sep- arate CPU mode and implement our changes to KVM/ARM. We show that running the hypervisor OS kernel in a separate CPU mode from the VM and taking advantage of ARM’s ability to quickly switch between the VM and hypervisor results in an order of magnitude reduction in overhead for important virtualization microbenchmarks and reduces the overhead of real application workloads by more than 50%. Contents List of Figures iv List of Tables v Introduction 1 1 ARM Virtualization without Architectural Support 9 1.1 Requirements for Virtualizable Architectures . 9 1.1.1 Virtualization of ARMv7 . 11 1.1.2 Virtualization of ARMv8 . 15 1.2 KVM for ARM without Architectural Support . 15 1.2.1 Lightweight Paravirtualization . 17 1.2.2 CPU Exceptions . 22 1.2.3 Memory Virtualization . 24 1.3 Related Work . 27 1.4 Summary . 29 2 The Design and Implementation of KVM/ARM 30 2.1 ARM Virtualization Extensions . 32 2.1.1 CPU Virtualization . 32 2.1.2 Memory Virtualization . 36 2.1.3 Interrupt Virtualization . 38 2.1.4 Timer Virtualization . 43 2.1.5 Comparison of ARM VE with Intel VMX . 45 2.2 KVM/ARM System Architecture . 47 i 2.2.1 Split-mode Virtualization . 48 2.2.2 CPU Virtualization . 52 2.2.3 Memory Virtualization . 56 2.2.4 I/O Virtualization . 58 2.2.5 Interrupt Virtualization . 61 2.2.6 Timer Virtualization . 63 2.3 Reflections on Implementation and Adoption . 64 2.4 Experimental Results . 69 2.4.1 Methodology . 70 2.4.2 Performance and Power Measurements . 73 2.4.3 Implementation Complexity . 78 2.5 Related Work . 80 2.6 Summary . 82 3 Performance of ARM Virtualization 83 3.1 Hypervisor Design . 84 3.1.1 Hypervisor Overview . 85 3.1.2 ARM Hypervisor Implementations . 87 3.2 Experimental Design . 88 3.3 Microbenchmark Results . 90 3.4 Application Benchmark Results . 97 3.5 Related Work . 105 3.6 Summary . 107 4 Improving ARM Virtualization Performance 109 4.1 Architectural Support for Hosted Hypervisors . 112 4.1.1 Intel VMX . 112 4.1.2 ARM VE . 113 4.1.3 KVM . 114 4.2 Hypervisor OS Kernel Support . 116 4.2.1 Virtualization Host Extensions . 117 ii 4.2.2 el2Linux . 121 4.3 Hypervisor Redesign . 124 4.4 Experimental Results . 127 4.4.1 Microbenchmark Results . 129 4.4.2 Application Benchmark Results . 131 4.5 Related Work . 135 4.6 Summary . 136 5 Conclusions and Future Work 137 5.1 Conclusions . 137 5.2 Future Work . 141 Bibliography 146 iii List of Figures 1.1 Address Space Mappings . 25 2.1 ARMv7 Processor Modes . 33 2.2 ARMv8 Processor Modes . 33 2.3 Stage 1 and stage 2 Page Table Walk . 37 2.4 ARM Generic Interrupt Controller v2 (GICv2) overview . 41 2.5 KVM/ARM System Architecture . 50 2.6 UP VM Normalized lmbench Performance . 75 2.7 SMP VM Normalized lmbench Performance . 75 2.8 UP VM Normalized Application Performance . 76 2.9 SMP VM Normalized Application Performance . 76 2.10 SMP VM Normalized Energy Consumption . 78 3.1 Hypervisor Design . 85 3.2 Xen ARM Architecture . 87 3.3 KVM/ARM Architecture . 87 3.4 Application Benchmark Performance . 99 4.1 KVM on Intel VMX and ARM VE . 115 4.2 Hypervisor Designs and CPU Privilege Levels . 116 4.3 Virtualization Host Extensions (VHE) . 120 4.4 Application Benchmark Performance . 133 iv List of Tables 1.1 ARMv7 sensitive non-privileged instructions . 12 1.2 ARMv6 sensitive non-privileged instructions . 12 1.3 Sensitive non-privileged status register instruction descriptions . 14 1.4 Sensitive instruction encoding types . 21 1.5 ARMv7-A Exceptions . 23 2.1 Comparison of ARM VE with Intel VMX . 45 2.2 ARMv7 CPU State . 53 2.3 ARMv8 CPU state (AArch64) . 53 2.4 Instructions and registers that trap from the VM to the hypervisor . 54 2.5 Benchmark Applications . 72 2.6 Micro-Architectural Cycle Counts . 73 2.7 Code Complexity in Lines of Code (LOC) . 79 3.1 Microbenchmarks . ..
Recommended publications
  • Trusted Docker Containers and Trusted Vms in Openstack
    Trusted Docker Containers and Trusted VMs in OpenStack Raghu Yeluri Abhishek Gupta Outline o Context: Docker Security – Top Customer Asks o Intel’s Focus: Trusted Docker Containers o Who Verifies Trust ? o Reference Architecture with OpenStack o Demo o Availability o Call to Action Docker Overview in a Slide.. Docker Hub Lightweight, open source engine for creating, deploying containers Provides work flow for running, building and containerizing apps. Separates apps from where they run.; Enables Micro-services; scale by composition. Underlying building blocks: Linux kernel's namespaces (isolation) + cgroups (resource control) + .. Components of Docker Docker Engine – Runtime for running, building Docker containers. Docker Repositories(Hub) - SaaS service for sharing/managing images Docker Images (layers) Images hold Apps. Shareable snapshot of software. Container is a running instance of image. Orchestration: OpenStack, Docker Swarm, Kubernetes, Mesos, Fleet, Project Docker Layers Atomic, Lattice… Docker Security – 5 key Customer Asks 1. How do you know that the Docker Host Integrity is there? o Do you trust the Docker daemon? o Do you trust the Docker host has booted with Integrity? 2. How do you verify Docker Container Integrity o Who wrote the Docker image? Do you trust the image? Did the right Image get launched? 3. Runtime Protection of Docker Engine & Enhanced Isolation o How can Intel help with runtime Integrity? 4. Enterprise Security Features – Compliance, Manageability, Identity authentication.. Etc. 5. OpenStack as a single Control Plane for Trusted VMs and Trusted Docker Containers.. Intel’s Focus: Enable Hardware-based Integrity Assurance for Docker Containers – Trusted Docker Containers Trusted Docker Containers – 3 focus areas o Launch Integrity of Docker Host o Runtime Integrity of Docker Host o Integrity of Docker Images Today’s Focus: Integrity of Docker Host, and how to use it in OpenStack.
    [Show full text]
  • Interrupts and Exceptions CPU Modes and Address Spaces Dual-Mode Of
    CPU Modes and Address Spaces There are two processor (CPU) modes of operation: • Kernel (Supervisor) Mode and • User Mode The processor is in Kernel Mode when CPU mode bit in Status Interrupts and Exceptions register is set to zero. The processor enters Kernel Mode at power-up, or as result of an interrupt, exception, or error. The processor leaves Kernel Mode and enters User Mode when the CPU mode bit is set to one (by some instruction). Memory address space is divided in two ranges (simplified): • User address space – addresses in the range [0 – 7FFFFFFF16] Studying Assignment: A.7 • Kernel address space Reading Assignment: 3.1-3.2, A.10 – addresses in the range [8000000016 – FFFFFFFF16] g. babic Presentation B 28 g. babic 29 Dual-Mode of CPU Operation MIPS Privilege Instructions • CPU mode bit indicates the current CPU mode: 0 (=kernel) With CPU in User Mode, the program in execution has access or 1 (=user). only to the CPU and FPU registers, while when CPU operates • When an interrupt occurs, CPU hardware switches to the in Kernel Mode, the program has access to the full capabilities kernel mode. of processor including CP0 registers. • Switching to user mode (from kernel mode) done by setting CPU mode bit (by an instruction). Privileged instructions can not be executed when the Exception/Interrupt processor is in User mode, they can be executed only when the processor is in Kernel mode. kernel user Examples of MIPS privileged instructions: Set user mode • any instruction that accesses Kernel address space • all instructions that access any of CP0 registers, e.g.
    [Show full text]
  • Providing User Security Guarantees in Public Infrastructure Clouds
    1 Providing User Security Guarantees in Public Infrastructure Clouds Nicolae Paladi, Christian Gehrmann, and Antonis Michalas Abstract—The infrastructure cloud (IaaS) service model offers improved resource flexibility and availability, where tenants – insulated from the minutiae of hardware maintenance – rent computing resources to deploy and operate complex systems. Large-scale services running on IaaS platforms demonstrate the viability of this model; nevertheless, many organizations operating on sensitive data avoid migrating operations to IaaS platforms due to security concerns. In this paper, we describe a framework for data and operation security in IaaS, consisting of protocols for a trusted launch of virtual machines and domain-based storage protection. We continue with an extensive theoretical analysis with proofs about protocol resistance against attacks in the defined threat model. The protocols allow trust to be established by remotely attesting host platform configuration prior to launching guest virtual machines and ensure confidentiality of data in remote storage, with encryption keys maintained outside of the IaaS domain. Presented experimental results demonstrate the validity and efficiency of the proposed protocols. The framework prototype was implemented on a test bed operating a public electronic health record system, showing that the proposed protocols can be integrated into existing cloud environments. Index Terms—Security; Cloud Computing; Storage Protection; Trusted Computing F 1 INTRODUCTION host level. While support data encryption at rest is offered by several cloud providers and can be configured by tenants Cloud computing has progressed from a bold vision to mas- in their VM instances, functionality and migration capabil- sive deployments in various application domains. However, ities of such solutions are severely restricted.
    [Show full text]
  • NOVA: a Log-Structured File System for Hybrid Volatile/Non
    NOVA: A Log-structured File System for Hybrid Volatile/Non-volatile Main Memories Jian Xu and Steven Swanson, University of California, San Diego https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu This paper is included in the Proceedings of the 14th USENIX Conference on File and Storage Technologies (FAST ’16). February 22–25, 2016 • Santa Clara, CA, USA ISBN 978-1-931971-28-7 Open access to the Proceedings of the 14th USENIX Conference on File and Storage Technologies is sponsored by USENIX NOVA: A Log-structured File System for Hybrid Volatile/Non-volatile Main Memories Jian Xu Steven Swanson University of California, San Diego Abstract Hybrid DRAM/NVMM storage systems present a host of opportunities and challenges for system designers. These sys- Fast non-volatile memories (NVMs) will soon appear on tems need to minimize software overhead if they are to fully the processor memory bus alongside DRAM. The result- exploit NVMM’s high performance and efficiently support ing hybrid memory systems will provide software with sub- more flexible access patterns, and at the same time they must microsecond, high-bandwidth access to persistent data, but provide the strong consistency guarantees that applications managing, accessing, and maintaining consistency for data require and respect the limitations of emerging memories stored in NVM raises a host of challenges. Existing file sys- (e.g., limited program cycles). tems built for spinning or solid-state disks introduce software Conventional file systems are not suitable for hybrid mem- overheads that would obscure the performance that NVMs ory systems because they are built for the performance char- should provide, but proposed file systems for NVMs either in- acteristics of disks (spinning or solid state) and rely on disks’ cur similar overheads or fail to provide the strong consistency consistency guarantees (e.g., that sector updates are atomic) guarantees that applications require.
    [Show full text]
  • Firecracker: Lightweight Virtualization for Serverless Applications
    Firecracker: Lightweight Virtualization for Serverless Applications Alexandru Agache, Marc Brooker, Andreea Florescu, Alexandra Iordache, Anthony Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa, Amazon Web Services https://www.usenix.org/conference/nsdi20/presentation/agache This paper is included in the Proceedings of the 17th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’20) February 25–27, 2020 • Santa Clara, CA, USA 978-1-939133-13-7 Open access to the Proceedings of the 17th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’20) is sponsored by Firecracker: Lightweight Virtualization for Serverless Applications Alexandru Agache Marc Brooker Andreea Florescu Amazon Web Services Amazon Web Services Amazon Web Services Alexandra Iordache Anthony Liguori Rolf Neugebauer Amazon Web Services Amazon Web Services Amazon Web Services Phil Piwonka Diana-Maria Popa Amazon Web Services Amazon Web Services Abstract vantage over traditional server provisioning processes: mul- titenancy allows servers to be shared across a large num- Serverless containers and functions are widely used for de- ber of workloads, and the ability to provision new func- ploying and managing software in the cloud. Their popularity tions and containers in milliseconds allows capacity to be is due to reduced cost of operations, improved utilization of switched between workloads quickly as demand changes. hardware, and faster scaling than traditional deployment meth- Serverless is also attracting the attention of the research com- ods. The economics and scale of serverless applications de- munity [21,26,27,44,47], including work on scaling out video mand that workloads from multiple customers run on the same encoding [13], linear algebra [20, 53] and parallel compila- hardware with minimal overhead, while preserving strong se- tion [12].
    [Show full text]
  • KVM/ARM: Experiences Building the Linux ARM Hypervisor
    KVM/ARM: Experiences Building the Linux ARM Hypervisor Christoffer Dall and Jason Nieh fcdall, [email protected] Department of Computer Science, Columbia University Technical Report CUCS-010-13 April 2013 Abstract ization. To address this problem, ARM has introduced hardware virtualization extensions in the newest ARM As ARM CPUs become increasingly common in mo- CPU architectures. ARM has benefited from the hind- bile devices and servers, there is a growing demand sight of x86 in its design. For example, nested page for providing the benefits of virtualization for ARM- tables, not part of the original x86 virtualization hard- based devices. We present our experiences building the ware, are standard in ARM. However, there are impor- Linux ARM hypervisor, KVM/ARM, the first full sys- tant differences between ARM and x86 virtualization ex- tem ARM virtualization solution that can run unmodified tensions such that x86 hypervisor designs may not be guest operating systems on ARM multicore hardware. directly amenable to ARM. These differences may also KVM/ARM introduces split-mode virtualization, allow- impact hypervisor performance, especially for multicore ing a hypervisor to split its execution across CPU modes systems, but have not been evaluated with real hardware. to take advantage of CPU mode-specific features. This allows KVM/ARM to leverage Linux kernel services and We describe our experiences building KVM/ARM, functionality to simplify hypervisor development and the ARM hypervisor in the mainline Linux kernel. maintainability while utilizing recent ARM hardware KVM/ARM is the first hypervisor to leverage ARM virtualization extensions to run application workloads in hardware virtualization support to run unmodified guest guest operating systems with comparable performance operating systems (OSes) on ARM multicore hardware.
    [Show full text]
  • RTA-OSEK Binding Manual: TMS470/TI
    RTA-OSEK Binding Manual: TMS470/TI Contact Details ETAS Group www.etasgroup.com Germany USA ETAS GmbH ETAS Inc. Borsigstraße 14 3021 Miller Road 70469 Stuttgart Ann Arbor, MI 48103 Tel.:+49 (711) 8 96 61-102 Tel.: +1 (888) ETAS INC Fax:+49 (711) 8 96 61-106 Fax: +1 (734) 997-94 49 www.etas.de www.etasinc.com Japan France ETAS K.K. ETAS S.A.S. Queen's Tower C-17F, 1, place des États-Unis 2-3-5, Minatomirai, Nishi-ku, SILIC 307 Yokohama, Kanagawa 94588 Rungis Cedex 220-6217 Japan Tel.: +33 (1) 56 70 00 50 Tel.: +81 (45) 222-0900 Fax: +33 (1) 56 70 00 51 Fax: +81 (45) 222-0956 www.etas.fr www.etas.co.jp Korea Great Britain ETAS Korea Co. Ltd. ETAS UK Ltd. 4F, 705 Bldg. 70-5 Studio 3, Waterside Court Yangjae-dong, Seocho-gu Third Avenue, Centrum 100 Seoul 137-889, Korea Burton-upon-Trent Tel.: +82 (2) 57 47-016 Staffordshire DE14 2WQ Fax: +82 (2) 57 47-120 Tel.: +44 (0) 1283 - 54 65 12 www.etas.co.kr Fax: +44 (0) 1283 - 54 87 67 www.etas-uk.net Copyright Notice © 2001 - 2007 LiveDevices Ltd. All rights reserved. Version: M00088-001 No part of this document may be reproduced without the prior written consent of LiveDevices Ltd. The software described in this document is furnished under a license and may only be used or copied in accordance with the terms of such a license. Disclaimer The information in this document is subject to change without notice and does not represent a commitment on any part of LiveDevices.
    [Show full text]
  • Bringing Virtualization to the X86 Architecture with the Original Vmware Workstation
    12 Bringing Virtualization to the x86 Architecture with the Original VMware Workstation EDOUARD BUGNION, Stanford University SCOTT DEVINE, VMware Inc. MENDEL ROSENBLUM, Stanford University JEREMY SUGERMAN, Talaria Technologies, Inc. EDWARD Y. WANG, Cumulus Networks, Inc. This article describes the historical context, technical challenges, and main implementation techniques used by VMware Workstation to bring virtualization to the x86 architecture in 1999. Although virtual machine monitors (VMMs) had been around for decades, they were traditionally designed as part of monolithic, single-vendor architectures with explicit support for virtualization. In contrast, the x86 architecture lacked virtualization support, and the industry around it had disaggregated into an ecosystem, with different ven- dors controlling the computers, CPUs, peripherals, operating systems, and applications, none of them asking for virtualization. We chose to build our solution independently of these vendors. As a result, VMware Workstation had to deal with new challenges associated with (i) the lack of virtual- ization support in the x86 architecture, (ii) the daunting complexity of the architecture itself, (iii) the need to support a broad combination of peripherals, and (iv) the need to offer a simple user experience within existing environments. These new challenges led us to a novel combination of well-known virtualization techniques, techniques from other domains, and new techniques. VMware Workstation combined a hosted architecture with a VMM. The hosted architecture enabled a simple user experience and offered broad hardware compatibility. Rather than exposing I/O diversity to the virtual machines, VMware Workstation also relied on software emulation of I/O devices. The VMM combined a trap-and-emulate direct execution engine with a system-level dynamic binary translator to ef- ficiently virtualize the x86 architecture and support most commodity operating systems.
    [Show full text]
  • Koller Dan Williams IBM T
    An Ounce of Prevention is Worth a Pound of Cure: Ahead-of-time Preparation for Safe High-level Container Interfaces Ricardo Koller Dan Williams IBM T. J. Watson Research Center Abstract as the container filesystem is already layered at the same file- based granularity as images. Containers continue to gain traction in the cloud as However, relying on the host to implement the filesystem lightweight alternatives to virtual machines (VMs). This abstraction is not without cost: the filesystem abstraction is is partially due to their use of host filesystem abstractions, high-level, wide, and complex, providing an ample attack which play a role in startup times, memory utilization, crash surface to the host. Bugs in the filesystem implementation consistency, file sharing, host introspection, and image man- can be exploitedby a user to crash or otherwise get controlof agement. However, the filesystem interface is high-level and the host, resulting in (at least) a complete isolation failure in wide, presenting a large attack surface to the host. Emerg- a multi-tenant environment such as a container-based cloud. ing secure container efforts focus on lowering the level A search on the CVE database [13] for kernel filesystem vul- of abstraction of the interface to the host through deprivi- nerabilities provides a sobering reminder of the width, com- leged functionality recreation (e.g., VMs, userspace kernels). plexity, and ultimately danger of filesystem interfaces. However, the filesystem abstraction is so important that some have resorted to directly exposing it from the host instead of Efforts to improve the security of containers use low-level suffering the resulting semantic gap.
    [Show full text]
  • Verifying a High-Performance Crash-Safe File System Using a Tree Specification
    Verifying a high-performance crash-safe file system using a tree specification Haogang Chen,y Tej Chajed, Alex Konradi,z Stephanie Wang,x Atalay İleri, Adam Chlipala, M. Frans Kaashoek, Nickolai Zeldovich MIT CSAIL ABSTRACT 1 INTRODUCTION File systems achieve high I/O performance and crash safety DFSCQ is the first file system that (1) provides a precise by implementing sophisticated optimizations to increase disk fsync fdatasync specification for and , which allow appli- throughput. These optimizations include deferring writing cations to achieve high performance and crash safety, and buffered data to persistent storage, grouping many trans- (2) provides a machine-checked proof that its implementa- actions into a single I/O operation, checksumming journal tion meets this specification. DFSCQ’s specification captures entries, and bypassing the write-ahead log when writing to the behavior of sophisticated optimizations, including log- file data blocks. The widely used Linux ext4 is an example bypass writes, and DFSCQ’s proof rules out some of the of an I/O-efficient file system; the above optimizations allow common bugs in file-system implementations despite the it to batch many writes into a single I/O operation and to complex optimizations. reduce the number of disk-write barriers that flush data to The key challenge in building DFSCQ is to write a speci- disk [33, 56]. Unfortunately, these optimizations complicate fication for the file system and its internal implementation a file system’s implementation. For example, it took 6 years without exposing internal file-system details. DFSCQ in- for ext4 developers to realize that two optimizations (data troduces a metadata-prefix specification that captures the writes that bypass the journal and journal checksumming) properties of fsync and fdatasync, which roughly follows taken together can lead to disclosure of previously deleted the behavior of Linux ext4.
    [Show full text]
  • NOVA Introduction
    NOVA introduction Michal Sojka1 Czech Technical University in Prague, Email: [email protected] December 5, 2017 1Based on exercises by Benjamin Engel from TU Dresden. M. Sojka B4B35OSY NOVA intro December 5, 2017 1 / 16 NOVA microhypervisor I Research project of TU Dresden (< 2012) and Intel Labs (≥ 2012). I http://hypervisor.org/, x86, GPL. I We will use a stripped down version (2 kLoC) of the microhypervisor (kernel). M. Sojka B4B35OSY NOVA intro December 5, 2017 2 / 16 Table of content Prerequisites System booting Program binaries ELF headers Virtual memory management Additional information M. Sojka B4B35OSY NOVA intro December 5, 2017 3 / 16 Prerequisites What you need to know? I NOVA is implemented in C++ (and assembler). I Each user “program” is represented by execution context data structure (class Ec). I The first executed program is called root task (similar to init process in Unix). M. Sojka B4B35OSY NOVA intro December 5, 2017 4 / 16 Prerequisites Getting started unzip nova.zip cd nova make # Compile everything make run # Run it in Qemu emulator Understanding qemu invocation qemu-system-i386 -serial stdio -kernel kern/build/hypervisor -initrd user/hello I Serial line of the emulated machine will go to stdout I Address of user/hello binary will be passed to the kernel via Multiboot info data structure Source code layout I user/ – user space code (hello world + other simple programs) I kern/ – stripped down NOVA kernel I you will need to modify kern/src/ec.cc M. Sojka B4B35OSY NOVA intro December 5, 2017 5 / 16 0 0x2000 3G (0xC0000000) Remap 4G page Virtual memory User space Kernel space EIP EIPEIPEIPEIP Kernel code/data ELF header EIP User code/data User stack multiboot user/hello kern/build/hypervisor info System booting NOVA booting 1.
    [Show full text]
  • Linux Introduction
    LINUX INTRODUCTION Until recently, running Unix meant investing in a powerful workstation that cost megabucks. Linux changes all that, because it's a complete version of the Unix operating system (software that controls the basic functions of the personal computer) that runs on ordinary personal com- puters. The added fact that it's freely available and "open source" makes it all the more attractive. Linux is perfect for people who want to operate their own low-cost Internet servers, and it's ro- bust enough to satisfy the needs of many Internet service providers. Linux is a multiuser and multitasking environment, and it can access huge amounts of me mory (gigabytes) and huge amounts of disk storage space (terabytes). Linux offers virtually everything that Windows has been promising for years and may not deliver in a truly stable form for some time to come. Don't make the mistake of assuming that Linux is some kind of watered-down or underpowered Unix for the masses. Linux is Unix. POSIX certification (compliance with the industry stan- dards for Unix) makes it official that Linux can do everything that a Unix system is supposed to do. The only difference is that Linux works on a personal computer, whereas other versions of Unix run on larger workstations or mainframes. Linux is also being taken very seriously by the computer industry, with new Linux-compatible versions of popular software packages being announced every month. The Apache Web server software running on Linux platforms powers about half of all Web sites today. Even more tel- ling, Microsoft considers Linux a major threat to its Windows empire.
    [Show full text]