Zeitschrift Für Säugetierkunde
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Amblysomus Robustus – Robust Golden Mole
Amblysomus robustus – Robust Golden Mole continuing decline and possible severe fragmentation of habitat. Currently known from only five locations but probably more widespread. Further field surveys and molecular data are needed to accurately delimit its range. The Highveld grasslands favoured by this species are being degraded by mining for shallow coal deposits to fuel numerous power stations that occur in the preferred high-altitude grassland habitats of this species, which is an inferred major threat. Rehabilitation attempts at these sites appear to have been largely ineffective. These power stations form the backbone of South Africa's electricity network, and disturbance is likely to increase as human populations grow and the demand for power increases. While no mining sites and power generation plants occur at the five localities where this species has been collected, an environmental authorisation application to mine coal at a site near Belfast, close to where this species occurs, is Gary Bronner currently being assessed. Given the ubiquity of mines and power stations in the Mpumalanga grasslands, impacts on this species are likely if it is more widespread than current Regional Red List status (2016) Vulnerable B1ab(iii)* records indicate, which seems probable. Farming, tourism National Red List status (2004) Endangered resort developments and agro-forestry (exotic pine and B1,2ab(i-iv) eucalyptus plantations) have also transformed habitat, but less dramatically; these do not appear to pose a major Reasons for change Non-genuine: threat. More data is required on the distribution limits, New information ecology, densities and reproduction of this species. Global Red List status (2015) Vulnerable B1ab(iii) TOPS listing (NEMBA) None Distribution CITES listing None Endemic to South Africa, this species is known from only the Steenkampsberg Mountain Plateau and in the Endemic Yes Dullstroom and Belfast areas of Mpumalanga (Figure 1), extending eastwards to Lydenburg and possibly *Watch-list Data southwards towards the Ermelo district where A. -
Afrotherian Conservation – Number 16
AFROTHERIAN CONSERVATION Newsletter of the IUCN/SSC Afrotheria Specialist Group Number 16 Edited by PJ Stephenson September 2020 Afrotherian Conservation is published annually by the measure the effectiveness of SSC’s actions on biodiversity IUCN Species Survival Commission Afrotheria Specialist conservation, identification of major new initiatives Group to promote the exchange of news and information needed to address critical conservation issues, on the conservation of, and applied research into, consultations on developing policies, guidelines and aardvarks, golden moles, hyraxes, otter shrews, sengis and standards, and increasing visibility and public awareness of tenrecs. the work of SSC, its network and key partners. Remarkably, 2020 marks the end of the current IUCN Published by IUCN, Gland, Switzerland. quadrennium, which means we will be dissolving the © 2020 International Union for Conservation of Nature membership once again in early 2021, then reassembling it and Natural Resources based on feedback from our members. I will be in touch ISSN: 1664-6754 with all members at the relevant time to find out who wishes to remain a member and whether there are any Find out more about the Group people you feel should be added to our group. No one is on our website at http://afrotheria.net/ASG.html automatically re-admitted, however, so you will all need to and on Twitter @Tweeting_Tenrec actively inform me of your wishes. We will very likely need to reassess the conservation status of all our species during the next quadrennium, so get ready for another round of Red Listing starting Message from the Chair sometime in the not too distant future. -
Informes Individuales IUCN 2018.Indd
IUCN SSC Afrotheria Specialist Group 2018 Report Galen Rathbun Andrew Taylor Co-Chairs Mission statement of golden moles in species where it is neces- Galen Rathbun (1) The IUCN SSC Afrotheria Specialist Group (ASG) sary (e.g., Amblysomus and Neamblysomus Andrew Taylor (2) facilitates the conservation of hyraxes, aard- species); (3) collect basic data for 3-4 golden varks, elephant-shrews or sengis, golden moles, mole species, including geographic distributions Red List Authority Coordinator tenrecs and their habitats by: (1) providing and natural history data; (4) conduct surveys to determine distribution and abundance of Matthew Child (3) sound scientific advice and guidance to conser- vationists, governments, and other inter- five hyrax species; (5) revise taxonomy of five hyrax species; (6) develop and assess field trials Location/Affiliation ested groups; (2) raising public awareness; for standardised camera trapping methods (1) California Academy of Sciences, and (3) developing research and conservation to determine population estimates for giant California, US programmes. sengis; (7) conduct surveys to assess distribu- (2) The Endangered Wildlife Trust, tion, abundance, threats and taxonomic status Modderfontein, Johannesburg, South Africa Projected impact for the 2017-2020 of the Data Deficient sengi species; (8) build on (3) South African National Biodiversity Institute quadrennium current research to determine the systematics (SANBI), Kirstenbosch National Botanical If the ASG achieved all of its targets, it would be of giant sengis, especially Rhynchocyon Garden, Newlands Cape Town, South Africa able to deliver more accurate, data-driven Red species; (9) survey Aardvark (Orycteropus afer) List assessments for more Afrotherian species populations to determine abundance, distribu- Number of members and, therefore, be in a better position to move tion and trends; (10) conduct taxonomic studies 34 to conservation planning, especially for priority to determine the systematics of aardvarks, with species. -
The Adapted Ears of Big Cats and Golden Moles: Exotic Outcomes of the Evolutionary Radiation of Mammals
FEATURED ARTICLE The Adapted Ears of Big Cats and Golden Moles: Exotic Outcomes of the Evolutionary Radiation of Mammals Edward J. Walsh and JoAnn McGee Through the process of natural selection, diverse organs and organ systems abound throughout the animal kingdom. In light of such abundant and assorted diversity, evolutionary adaptations have spawned a host of peculiar physiologies. The anatomical oddities that underlie these physiologies and behaviors are the telltale indicators of trait specialization. Following from this, the purpose of this article is to consider a number of auditory “inventions” brought about through natural selection in two phylogenetically distinct groups of mammals, the largely fossorial golden moles (Order Afrosoricida, Family Chrysochloridae) and the carnivorous felids of the genus Panthera along with its taxonomic neigh- bor, the clouded leopard (Neofelis nebulosa). In the Beginning The first vertebrate land invasion occurred during the Early Carboniferous period some 370 million years ago. The primitive but essential scaffolding of what would become the middle and inner ears of mammals was present at this time, although the evolution of the osseous (bony) middle ear system and the optimization of cochlear fea- tures and function would play out over the following 100 million years. Through natural selection, the evolution of the middle ear system, composed of three small articu- lated bones, the malleus, incus, and stapes, and a highly structured and coiled inner ear, came to represent all marsupial and placental (therian) mammals on the planet Figure 1. Schematics of the outer, middle, and inner ears (A) and thus far studied. The consequences of this evolution were the organ of Corti in cross section (B) of a placental mammal. -
Late Eocene Potamogalidae and Tenrecidae (Mammalia) from the Sperrgebiet, Namibia
Late Eocene Potamogalidae and Tenrecidae (Mammalia) from the Sperrgebiet, Namibia Martin Pickford Sorbonne Universités (CR2P, UMR 7207 du CNRS, Département Histoire de la Terre, Muséum National d’Histoire Naturelle et Université Pierre et Marie Curie) case postale 38, 57 rue Cuvier, 75005 Paris. e-mail: < [email protected] > Abstract : The Late Eocene (Bartonian) Eocliff Limestone has yielded a rich, diverse and well- preserved micromammalian fauna which includes three tenrecoids, a chrysochlorid, several macroscelidids and at least eight taxa of rodents. The available cranio-dental and post-cranial elements reveal that the three tenrecoid species are closely related to potamogalids (one taxon) and to tenrecids (two taxa). The dichotomy between these two families probably occurred a long time before deposition of the Eocliff carbonate, possibly during the Palaeocene or even as early as the Late Cretaceous. The dentitions of the Eocliff potamogalid and tenrecids exhibit primitive versions of protozalambdodonty, in which the upper molars have clear metacones. Three new genera and species are described. Key Words : Potamogalidae, Tenrecidae, Zalambdodonty, Late Eocene, Namibia, Evolution To cite this paper: Pickford, M., 2015. Late Eocene Potamogalidae and Tenrecidae (Mammalia) from the Sperrgebiet, Namibia. Co mmunications of the Geological Survey of Namibia , 16, 114-152. Submitted in 2015. Introduction the suborder Tenrecoidea is not well represented in North Africa. The Late Eocene The discovery of Bartonian vertebrates Namibian fossils thus help to fill extensive in the Sperrgebiet, Namibia, is of major chronological and geographic gaps in the significance for throwing light on the evolution history and distribution of zalambdodont of African Palaeogene mammals, especially mammals in Africa, although the geographic that of rodents, tenrecoids and chrysochlorids position of the deposits from which they were (Pickford et al. -
Subterranean Mammals Show Convergent Regression in Ocular Genes and Enhancers, Along with Adaptation to Tunneling
RESEARCH ARTICLE Subterranean mammals show convergent regression in ocular genes and enhancers, along with adaptation to tunneling Raghavendran Partha1, Bharesh K Chauhan2,3, Zelia Ferreira1, Joseph D Robinson4, Kira Lathrop2,3, Ken K Nischal2,3, Maria Chikina1*, Nathan L Clark1* 1Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, United States; 2UPMC Eye Center, Children’s Hospital of Pittsburgh, Pittsburgh, United States; 3Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, United States; 4Department of Molecular and Cell Biology, University of California, Berkeley, United States Abstract The underground environment imposes unique demands on life that have led subterranean species to evolve specialized traits, many of which evolved convergently. We studied convergence in evolutionary rate in subterranean mammals in order to associate phenotypic evolution with specific genetic regions. We identified a strong excess of vision- and skin-related genes that changed at accelerated rates in the subterranean environment due to relaxed constraint and adaptive evolution. We also demonstrate that ocular-specific transcriptional enhancers were convergently accelerated, whereas enhancers active outside the eye were not. Furthermore, several uncharacterized genes and regulatory sequences demonstrated convergence and thus constitute novel candidate sequences for congenital ocular disorders. The strong evidence of convergence in these species indicates that evolution in this environment is recurrent and predictable and can be used to gain insights into phenotype–genotype relationships. DOI: https://doi.org/10.7554/eLife.25884.001 *For correspondence: [email protected] (MC); [email protected] (NLC) Competing interests: The Introduction authors declare that no The subterranean habitat has been colonized by numerous animal species for its shelter and unique competing interests exist. -
Morphological Diversity in Tenrecs (Afrosoricida, Tenrecidae)
Morphological diversity in tenrecs (Afrosoricida, Tenrecidae): comparing tenrec skull diversity to their closest relatives Sive Finlay and Natalie Cooper School of Natural Sciences, Trinity College Dublin, Dublin, Ireland Trinity Centre for Biodiversity Research, Trinity College Dublin, Dublin, Ireland ABSTRACT It is important to quantify patterns of morphological diversity to enhance our un- derstanding of variation in ecological and evolutionary traits. Here, we present a quantitative analysis of morphological diversity in a family of small mammals, the tenrecs (Afrosoricida, Tenrecidae). Tenrecs are often cited as an example of an ex- ceptionally morphologically diverse group. However, this assumption has not been tested quantitatively. We use geometric morphometric analyses of skull shape to test whether tenrecs are more morphologically diverse than their closest relatives, the golden moles (Afrosoricida, Chrysochloridae). Tenrecs occupy a wider range of ecological niches than golden moles so we predict that they will be more morpho- logically diverse. Contrary to our expectations, we find that tenrec skulls are only more morphologically diverse than golden moles when measured in lateral view. Furthermore, similarities among the species-rich Microgale tenrec genus appear to mask higher morphological diversity in the rest of the family. These results reveal new insights into the morphological diversity of tenrecs and highlight the impor- tance of using quantitative methods to test qualitative assumptions about patterns of morphological diversity. Submitted 29 January 2015 Subjects Evolutionary Studies, Zoology Accepted 13 April 2015 Keywords Golden moles, Geometric morphometrics, Disparity, Morphology Published 30 April 2015 Corresponding author Natalie Cooper, [email protected] INTRODUCTION Academic editor Analysing patterns of morphological diversity (the variation in physical form Foote, Laura Wilson 1997) has important implications for our understanding of ecological and evolutionary Additional Information and traits. -
A New Chrysochlorid from Makapansgat
CORE Metadata, citation and similar papers at core.ac.uk Provided by Wits Institutional Repository on DSPACE A NEW CHRYSOCHLORID FROM MAKAPANSGAT By G. DE GRAAFF ABSTRACf In this paper a new species of golden m:ole Chrysotricha hamiltoni sp. nov. from Limeworks, Makapansgat, is described. This is the first occurrence of a fossil golden mole at this site; two fossil forms (Proamblysomus antiquus Broom and Chlorotalpa spelea Broom) have previously been recorded from Sterkfontein. INTRODUCfION During a visit to the fossil-yielding dumps at Limeworks in the Makapansgat valley near Potgietersrus in the Central Transvaal in April 1957, Mr. J. W. Kitching of the Bernard Price Institute for Palaeontological Research discovered a small skull embedded in a piece of yellowish grey breccia. The exposed portion was the dorsal part of a cranium from which the parietals had been flaked off leaving a well preserved endocranial cast in position within the remainder of the skull. On development the specimen proved to be the virtually complete skull of a new species of golden mole. Hitherto only two genera have been found as fossils in the dolomite caves of the Transvaal. These were both discovered in the Sterkfontein valley near Krugersdorp. These two fossil types, Proamblysomus antiquus Broom, from the locality known as Bolts Farm, and Chlorotalpa spelea Broom from the Plesianthropus cave at the Sterkfontein site were identified and described by Broom (1941). A third golden mole fossil skull has been found at Kromdraai: it possibly belongs to the species Proamblysomus antiquus but its identity is uncertain owing to the damaged condition of the palate and the teeth. -
Molecular Evolution and Phylogenetic Importance of a Gamete Recognition Gene Zan Reveals a Unique Contribution to Mammalian Speciation
Molecular evolution and phylogenetic importance of a gamete recognition gene Zan reveals a unique contribution to mammalian speciation. by Emma K. Roberts A Dissertation In Biological Sciences Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Approved Robert D. Bradley Chair of Committee Daniel M. Hardy Llewellyn D. Densmore Caleb D. Phillips David A. Ray Mark Sheridan Dean of the Graduate School May, 2020 Copyright 2020, Emma K. Roberts Texas Tech University, Emma K. Roberts, May 2020 ACKNOWLEDGMENTS I would like to thank numerous people for support, both personally and professionally, throughout the course of my degree. First, I thank Dr. Robert D. Bradley for his mentorship, knowledge, and guidance throughout my tenure in in PhD program. His ‘open door policy’ helped me flourish and grow as a scientist. In addition, I thank Dr. Daniel M. Hardy for providing continued support, knowledge, and exciting collaborative efforts. I would also like to thank the remaining members of my advisory committee, Drs. Llewellyn D. Densmore III, Caleb D. Phillips, and David A. Ray for their patience, guidance, and support. The above advisors each helped mold me into a biologist and I am incredibly gracious for this gift. Additionally, I would like to thank numerous mentors, friends and colleagues for their advice, discussions, experience, and friendship. For these reasons, among others, I thank Dr. Faisal Ali Anwarali Khan, Dr. Sergio Balaguera-Reina, Dr. Ashish Bashyal, Joanna Bateman, Karishma Bisht, Kayla Bounds, Sarah Candler, Dr. Juan P. Carrera-Estupiñán, Dr. Megan Keith, Christopher Dunn, Moamen Elmassry, Dr. -
Loss of RXFP2 and INSL3 Genes in Afrotheria Shows That Testicular Descent Is the Ancestral Condition in Placental Mammals
SHORT REPORTS Loss of RXFP2 and INSL3 genes in Afrotheria shows that testicular descent is the ancestral condition in placental mammals Virag Sharma1,2,3, Thomas Lehmann4, Heiko Stuckas5, Liane Funke1, Michael Hiller1,2,3* 1 Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany, 2 Max Planck Institute for the Physics of Complex Systems, Dresden, Germany, 3 Center for Systems Biology Dresden, Germany, 4 Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany, 5 Museum of Zoology, Senckenberg Dresden, Germany a1111111111 a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 Abstract Descent of testes from a position near the kidneys into the lower abdomen or into the scro- tum is an important developmental process that occurs in all placental mammals, with the OPEN ACCESS exception of five afrotherian lineages. Since soft-tissue structures like testes are not pre- Citation: Sharma V, Lehmann T, Stuckas H, Funke served in the fossil record and since key parts of the placental mammal phylogeny remain L, Hiller M (2018) Loss of RXFP2 and INSL3 genes controversial, it has been debated whether testicular descent is the ancestral or derived con- in Afrotheria shows that testicular descent is the dition in placental mammals. To resolve this debate, we used genomic data of 71 mamma- ancestral condition in placental mammals. PLoS lian species and analyzed the evolution of two key genes (relaxin/insulin-like family peptide Biol 16(6): e2005293. https://doi.org/10.1371/ journal.pbio.2005293 receptor 2 [RXFP2] and insulin-like 3 [INSL3]) that induce the development of the guberna- culum, the ligament that is crucial for testicular descent. -
Cryptochloris Zyli – Van Zyl's Golden Mole
Cryptochloris zyli – Van Zyl’s Golden Mole not conspecific (Meester 1974). Recent (but unpublished) phylogenetic analyses based on both morphological and genetic data support the allocation of these taxa to separate species, and justify synonymizing Cryptochloris as a subgenus of Chrysochloris, corroborating the close phylogenetic association of these taxa reported by Asher et al. (2010). Assessment Rationale Until recently this species was known only from a single location, but in 2003 a second location near Groenriviermond was recorded. This suggests that the range of this species is more widespread than previously recognized. The extent of occurrence is estimated to be c. 5,000 km2 and area of occupancy is estimated to be 32 km2 (assuming a grid cell area of 16 km2). Further field surveys are needed to discover other potential subpopulations. Dramatic habitat alteration owing to mining of coastal sands for alluvial diamonds could be impacting on the coastal dune habitats of this species, as Jennifer Jarvis this has been identified as a threat to Eremitalpa granti with which this species coexists. Additionally, large-scale Regional Red List status (2016) Endangered alluvial diamond mines occur at Hondeklipbaai (c. 60 km B1ab(iii)+2ab(iii)* from the Groenriviermond subpopulation) and are undergoing expansion. Habitat alteration owing to the National Red List status (2004) Critically Endangered erection of wind farms near the type locality is a potential B1ab(iii)+2ab(iii)+D emerging, but localized, threat. The species is therefore Reasons for change Non-genuine change: confirmed as Endangered under criterion B1ab(iii)+2ab(iii). New information Global Red List status (2015) Endangered Distribution B1ab(iii)+2ab(iii) Until recently this species was recorded from only the type TOPS listing (NEMBA) None locality near Lambert's Bay, South Africa (Helgen & Wilson 2001). -
List of 28 Orders, 129 Families, 598 Genera and 1121 Species in Mammal Images Library 31 December 2013
What the American Society of Mammalogists has in the images library LIST OF 28 ORDERS, 129 FAMILIES, 598 GENERA AND 1121 SPECIES IN MAMMAL IMAGES LIBRARY 31 DECEMBER 2013 AFROSORICIDA (5 genera, 5 species) – golden moles and tenrecs CHRYSOCHLORIDAE - golden moles Chrysospalax villosus - Rough-haired Golden Mole TENRECIDAE - tenrecs 1. Echinops telfairi - Lesser Hedgehog Tenrec 2. Hemicentetes semispinosus – Lowland Streaked Tenrec 3. Microgale dobsoni - Dobson’s Shrew Tenrec 4. Tenrec ecaudatus – Tailless Tenrec ARTIODACTYLA (83 genera, 142 species) – paraxonic (mostly even-toed) ungulates ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BOVIDAE (46 genera) - cattle, sheep, goats, and antelopes 1. Addax nasomaculatus - Addax 2. Aepyceros melampus - Impala 3. Alcelaphus buselaphus - Hartebeest 4. Alcelaphus caama – Red Hartebeest 5. Ammotragus lervia - Barbary Sheep 6. Antidorcas marsupialis - Springbok 7. Antilope cervicapra – Blackbuck 8. Beatragus hunter – Hunter’s Hartebeest 9. Bison bison - American Bison 10. Bison bonasus - European Bison 11. Bos frontalis - Gaur 12. Bos javanicus - Banteng 13. Bos taurus -Auroch 14. Boselaphus tragocamelus - Nilgai 15. Bubalus bubalis - Water Buffalo 16. Bubalus depressicornis - Anoa 17. Bubalus quarlesi - Mountain Anoa 18. Budorcas taxicolor - Takin 19. Capra caucasica - Tur 20. Capra falconeri - Markhor 21. Capra hircus - Goat 22. Capra nubiana – Nubian Ibex 23. Capra pyrenaica – Spanish Ibex 24. Capricornis crispus – Japanese Serow 25. Cephalophus jentinki - Jentink's Duiker 26. Cephalophus natalensis – Red Duiker 1 What the American Society of Mammalogists has in the images library 27. Cephalophus niger – Black Duiker 28. Cephalophus rufilatus – Red-flanked Duiker 29. Cephalophus silvicultor - Yellow-backed Duiker 30. Cephalophus zebra - Zebra Duiker 31. Connochaetes gnou - Black Wildebeest 32. Connochaetes taurinus - Blue Wildebeest 33. Damaliscus korrigum – Topi 34.