H.S.M. Coxeter, Angles and Arcs in the Hyperbolic Plane, P 17-34Mathschron009-004.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

H.S.M. Coxeter, Angles and Arcs in the Hyperbolic Plane, P 17-34Mathschron009-004.Pdf ANGLES AND ARCS IN THE HYPERBOLIC PLANE H.S.M. Coxeter Dedicated to H.G. Forder on his 90th birthday (received 17 May, 1979) 1. Introduction This essay may be regarded as a sequel to Chapter V of H.G. Forder's charming little book, Geometry [Forder 1950, pp. 80-95], which is summarized in Sections 2 and 3. Section 4 gives a fuller account of Lobachevsky's approach to hyperbolic trigonometry. Section 5 contains a simple proof that the natural unit of measurement is the length of a horocyclic arc such that the tangent at one end is parallel to the diameter at the other end. Section 6 frees Poincare's half-plane model from its dependence on cross-ratio, by introducing a more natural concept: the inversive distance between two disjoint circles. Section 7 shows how an equidistant-curve of altitude a is represented by lines crossing the absolute line at angles ±n(a) . Finally, Section 8 provides an easy deduction of Poincare's formula \dz\/y for the hyperbolic line- element. B Math. Chronicle 9(1980) 17-33. 17 2. Asymptotic triangles Felix Klein once said that "non-Euclidean geometry ... forms one of the few parts of mathematics which ... is talked about in wide circles, so that any teacher may be asked about it at any moment" [Klein 1939, p. 135]. The richest kind of non-Euclidean geometry is the one discovered independently about 1826 by J. Bolyai (1802-1860) and N.I. Lobachevsky (1793-1856). After 1858, when B. Riemann and L. Schlafli had discovered another kind, Klein named the old kind hyperbolic. This geometry shares with Euclid the first 28 propositions and many more. The first departure occurs when we consider a line i and a point B not on it (see Figure 1). In the plane Bl , the pencil of rays going out from B includes some that intersect the infinitely long line I and others that do not. The two special rays that separate those intersecting I from all the rest are said to be parallel to I . In Euclid's geometry they are the two halves of a single line, but in hyperbolic geometry they form an angle. This angle is bisected by the perpendicular BC from B to I . Lobachevsky called either half the angle of parallelism corresponding to the distance a - BC , and denoted it by II (a) . After proving that parallelism is an equivalence relation it becomes natural to describe the two rays parallel to I as BM and BN where M and N are ideal points: the infinitely distant ends of the line I = MN . (It was D. Hilbert who first called them ends.) We speak of asymptotic triangles BCM , BCN , and call BMN a doubly asymptotic triangle. The limiting form of BMN when B recedes from C towards the end L of the ray CB is the trebly asymptotic triangle LMN (Figure 2): a triangle whose three angles are all zero while its three sides are all infinitely long! 18 --------------- 1-------------- C Figure 2 : A trebly asymptotic triangle Gauss, in his famous letter of March 1832 to Bolyai's father, gave an extremely elegant proof that the area of any triangle ABC is proportional to its angular defeat k - A - B - C [see Coxeter 1969, pp. 297-299]. The second of the seven numbered steps in this proof is the statement that a trebly asymptotic triangle has a finite area. Admirers of Lewis Carroll [Dodgson 1890, p. 14] must face the sad fact that he rejected the possibility of hyperbolic geometry because he found it unthinkable that a triangle (or quadrangle) could retain a finite area when its sides were indefinitely lengthened. This gap in Gauss's proof was finally closed in 1905 by Liebmann [1912, p. 54; see also Coxeter 1969, p. 295]. For Liebmann saw how to dissect a finite quadrangle into an infinite sequence of small pieces that can be reassembled to form an asymptotic triangle. 3. The horocycle and the horosphere Lobachevsky announced his newly discovered world in a lecture at Kazan on the 12th of February, 1826, which he published later as a little book, Geometric investigations on the theory of parallel lines. 19 The Dover edition of Bonola's Non-Euclidean Geometry [Bonola 1955] includes, as an Appendix, G.B. Halsted's translation of that little book. There we can see how cleverly Lobachevsky derived hyperbolic trigonometry from spherical trigonometry (which is independent of considerations of parallel lines). Figure 4 : An arc of a horocycle Figure 3 shows an arc e = CC' of a circle of radius b = AC = AC' . When C stays fixed while b tends to infinity, so that the centre A tends to the end N of the ray CA , the limiting form of the circle is an interesting curve called a limiting curve or boundary line or horocycle (Figure 4), whose diameters form a pencil of parallel lines having N as their common end [Forder 1950, p. 85; Coxeter 1969, p. 300]. (The term horocycle has the same root as horizon.) In three-dimensional space, continuous rotation about the diameter NC yields a surface called a horoephere, which is the limiting form of a sphere whose centre recedes to infinity. All the lines through N , diameters of the horosphere, form a bundle of parallel lines, and each plane through any one of these lines cuts the horosphere along a horocycle. Many of Lobachevsky's results are derived from his observation that the intrinsic geometry of the horosphere is Euclidean: the set of horocycles on the horosphere can be represented isometrically by the set of straight lines in the ordinary Euclidean plane. We shall find a modern proof in Section 6 [see also Liebmann 1912, p. 61; Coxeter 1969, p. 304]. 20 B 4. Lobachevsky's asymptotic orthoscheme In 1620, John Napier, Baron of Merchiston, obtained the = 10 formulae which connect (in threes) the five parts of a right-angled spherical traingle ABC (right-angled at C): namely the three sides a , b , o and the acute angles A , B . For instance, cos a = cos a cos b = cot A cot B [Donnay 1945, p. 40]. What Lobachevsky did was to base a special kind of asymptotic tetrahedron BCAN on a hyperbolic triangle ABC by erecting a ray AN perpendicular to the plane ABC and completing the tetrahedron with parallel rays BN and CN so that the three edges BC , CA , AN are mutually perpendicular, BC is perpendicular to the plane ACN , and Z . CBN = n(a), {-ACN = II(Z>) , Z ABN = JI(c) . This tetrahedron BCAN (Figure 5) is called an asymptotic orthoscheme [Coxeter 1969, p. 156]. 21 Lobachevsky observed that the three planes NBC , NCA , NAB , whose lines of intersection are parallel, cut out, from any horosphere with centre N , a horospherical triangle which is isometric to a Euclidean traingle. Since the first two of these three planes are perpendicular, this triangle is right-angled; therefore its two acute angles, which are the dihedral angles along the edges NA and NB of the orthoscheme, are complementary. But the dihedral angle along NA is equal to the angle A of the hyperbolic triangle ABC ; therefore the dihedral angle along NB is - A . It follows that the three planes BCA , BAN , BNd cut out, from a suitable sphere with centre B , a right-angled epherioal triangle with sides B , 11(c) , 11(a) and acute angles hit - A , II(2>) . In this way, Napier's ten spherical formulae (which remain valid in hyperbolic space) yield a corresponding set of ten hyperbolic formulae. For instance, Napier's cos a = cot A cot B yields (4.1) cos 11(a) = tan A cot n(<?>) . At this stage, n(a:) remains an unknown function of x , decreasing from 11(0) = *sir to n(°°) = 0 , but after some rather formidable work Lobachevsky finds (4.2) tan = e~X . At first he allows this e to be any positive number, but then he chooses a natural unit of measurement by identifying e with the base of Naperian logarithms. Many simpler proofs of this famous formula have been discovered since Lobachevsky's time [for instance, Carslaw 1916, p. 109; Coxeter 1969, p. 453, Figure 16.7a; 1978, p. 395]. It obviously implies cos n(x) = tanh x , cot n(x) = sinh x ; 22 hence (4.1) becomes, in modern notation, (4.3) tanh a = tan A sinh b , analogous to Napier's spherical formula tan a = tan A sin b . 5. The unit horocyclic arc With this background, we can pass easily to some further results concerning circles and horocycles. Consider (in the hyperbolic plane) a regular n-gon with centre A and an inscribed circle of radius b = AC , as in Figure 6. A typical vertex B forms, with A and C , a right-angled triangle ABC in which the side a = BC is half a side of the polygon. By (4.3), in the form tanh a = tan(m/«)sinh b , the perimeter of the n-gon is 23 • * tanh ; > • We may now make a tend to zero and n to infinity (while fixing b) and deduce that the circumference of a circle of radius b is 2ir sinh b . Consequently the area of a circle of radius r is tr 2ir J sinh b db = 2n(cosh r - 1) = 4v sinh2 . 'or Restricting attention to what happens inside the angle A , as in Figure 3, we deduce that a circular arc of radius b subtending an angle A has length (5.1) s = A sinh b and that a sector of radius b and angle A has area (5.2) 2A sinh 2 y = e tanh y .
Recommended publications
  • Notes on Euclidean Geometry Kiran Kedlaya Based
    Notes on Euclidean Geometry Kiran Kedlaya based on notes for the Math Olympiad Program (MOP) Version 1.0, last revised August 3, 1999 c Kiran S. Kedlaya. This is an unfinished manuscript distributed for personal use only. In particular, any publication of all or part of this manuscript without prior consent of the author is strictly prohibited. Please send all comments and corrections to the author at [email protected]. Thank you! Contents 1 Tricks of the trade 1 1.1 Slicing and dicing . 1 1.2 Angle chasing . 2 1.3 Sign conventions . 3 1.4 Working backward . 6 2 Concurrence and Collinearity 8 2.1 Concurrent lines: Ceva’s theorem . 8 2.2 Collinear points: Menelaos’ theorem . 10 2.3 Concurrent perpendiculars . 12 2.4 Additional problems . 13 3 Transformations 14 3.1 Rigid motions . 14 3.2 Homothety . 16 3.3 Spiral similarity . 17 3.4 Affine transformations . 19 4 Circular reasoning 21 4.1 Power of a point . 21 4.2 Radical axis . 22 4.3 The Pascal-Brianchon theorems . 24 4.4 Simson line . 25 4.5 Circle of Apollonius . 26 4.6 Additional problems . 27 5 Triangle trivia 28 5.1 Centroid . 28 5.2 Incenter and excenters . 28 5.3 Circumcenter and orthocenter . 30 i 5.4 Gergonne and Nagel points . 32 5.5 Isogonal conjugates . 32 5.6 Brocard points . 33 5.7 Miscellaneous . 34 6 Quadrilaterals 36 6.1 General quadrilaterals . 36 6.2 Cyclic quadrilaterals . 36 6.3 Circumscribed quadrilaterals . 38 6.4 Complete quadrilaterals . 39 7 Inversive Geometry 40 7.1 Inversion .
    [Show full text]
  • On the Deformation of Inversive Distance Circle Packings, Ii
    ON THE DEFORMATION OF INVERSIVE DISTANCE CIRCLE PACKINGS, II HUABIN GE, WENSHUAI JIANG ABSTRACT. We show that the results in [GJ16] are still true in hyperbolic background geometry setting, that is, the solution to Chow-Luo’s combinatorial Ricci flow can always be extended to a solution that exists for all time, furthermore, the extended solution converges exponentially fast if and only if there exists a metric with zero curvature. We also give some results about the range of discrete Gaussian curvatures, which generalize Andreev-Thurston’s theorem to some extent. 1. INTRODUCTION 1.1. Background. We continue our study about the deformation of inversive distance circle patterns on a surface M with triangulation T. If the triangulated surface is obtained by taking a finite collection of Eu- clidean triangles in E2 and identifying their edges in pairs by isometries, we call it in Euclidean background geometry. While if the triangulated surface is obtained by taking a finite collection of hyperbolic triangles in H2 and identifying their edges in pairs by isometries, we shall call it in hyperbolic background geometry. Consider a closed surface M with a triangulation T = fV; E; Fg, where V; E; F represent the sets of ver- tices, edges and faces respectively. Thurston [Th76] once introduced a metric structure on (M; T) by circle patterns. The idea is taking the triangulation as the nerve of a circle pattern, while the length structure on (M; T) can be constructed from radii of circles and intersection angles between circles in the pattern. More π precisely, let Φi j 2 [0; 2 ] be intersection angles between two circles ci, c j for each nerve fi jg 2 E, and let r 2 (0; +1) be the radius of circle c for each vertex i 2 V, see Figure 1.1.
    [Show full text]
  • On a Combinatorial Curvature for Surfaces with Inversive Distance Circle Packing Metrics
    On a combinatorial curvature for surfaces with inversive distance circle packing metrics Huabin Ge, Xu Xu May 30, 2018 Abstract In this paper, we introduce a new combinatorial curvature on triangulated surfaces with inversive distance circle packing metrics. Then we prove that this combinatorial curvature has global rigidity. To study the Yamabe problem of the new curvature, we introduce a combinatorial Ricci flow, along which the curvature evolves almost in the same way as that of scalar curvature along the surface Ricci flow obtained by Hamilton [21]. Then we study the long time behavior of the combinatorial Ricci flow and obtain that the existence of a constant curvature metric is equivalent to the convergence of the flow on triangulated surfaces with nonpositive Euler number. We further generalize the combinatorial curvature to α-curvature and prove that it is also globally rigid, which is in fact a generalized Bower-Stephenson conjecture [6]. We also use the combinatorial Ricci flow to study the corresponding α-Yamabe problem. Mathematics Subject Classification (2010). 52C25, 52C26, 53C44. 1 Introduction This is a continuation of our work on combinatorial curvature in [17]. This paper gen- eralizes our results in [17] to triangulated surfaces with inversive distance circle packing arXiv:1701.01795v2 [math.GT] 29 May 2018 metrics. Circle packing is a powerful tool in the study of differential geometry and geo- metric topology and there are lots of research on this topic. In his work on constructing hyperbolic structure on 3-manifolds, Thurston ([28], Chapter 13) introduced the notion of Euclidean and hyperbolic circle packing metrics on triangulated surfaces with prescribed intersection angles.
    [Show full text]
  • MATH32052 Hyperbolic Geometry
    MATH32052 Hyperbolic Geometry Charles Walkden 12th January, 2019 MATH32052 Contents Contents 0 Preliminaries 3 1 Where we are going 6 2 Length and distance in hyperbolic geometry 13 3 Circles and lines, M¨obius transformations 18 4 M¨obius transformations and geodesics in H 23 5 More on the geodesics in H 26 6 The Poincar´edisc model 39 7 The Gauss-Bonnet Theorem 44 8 Hyperbolic triangles 52 9 Fixed points of M¨obius transformations 56 10 Classifying M¨obius transformations: conjugacy, trace, and applications to parabolic transformations 59 11 Classifying M¨obius transformations: hyperbolic and elliptic transforma- tions 62 12 Fuchsian groups 66 13 Fundamental domains 71 14 Dirichlet polygons: the construction 75 15 Dirichlet polygons: examples 79 16 Side-pairing transformations 84 17 Elliptic cycles 87 18 Generators and relations 92 19 Poincar´e’s Theorem: the case of no boundary vertices 97 20 Poincar´e’s Theorem: the case of boundary vertices 102 c The University of Manchester 1 MATH32052 Contents 21 The signature of a Fuchsian group 109 22 Existence of a Fuchsian group with a given signature 117 23 Where we could go next 123 24 All of the exercises 126 25 Solutions 138 c The University of Manchester 2 MATH32052 0. Preliminaries 0. Preliminaries 0.1 Contact details § The lecturer is Dr Charles Walkden, Room 2.241, Tel: 0161 27 55805, Email: [email protected]. My office hour is: WHEN?. If you want to see me at another time then please email me first to arrange a mutually convenient time. 0.2 Course structure § 0.2.1 MATH32052 § MATH32052 Hyperbolic Geoemtry is a 10 credit course.
    [Show full text]
  • The Euler Line in Hyperbolic Geometry
    The Euler Line in Hyperbolic Geometry Jeffrey R. Klus Abstract- In Euclidean geometry, the most commonly known system of geometry, a very interesting property has been proven to be common among all triangles. For every triangle, there exists a line that contains three major points of concurrence for that triangle: the centroid, orthocenter, and circumcenter. The centroid is the concurrence point for the three medians of the triangle. The orthocenter is the concurrence point of the altitudes. The circumcenter is the point of concurrence of the perpendicular bisectors of each side of the triangle. This line that contains these three points is called the Euler line. This paper discusses whether or not the Euler line exists in Hyperbolic geometry, an alternate system of geometry. The Poincare Disc Model for Hyperbolic geometry, together with Geometer’s Sketchpad software package was used extensively to answer this question. Introduction In Euclidean geometry, the most Second, for any circle that is orthogonal commonly known system of geometry, a to the unit circle, the points on that circle very interesting property has been lying in the interior of the unit circle will proven to be common among all be considered a hyperbolic line triangles. For every triangle, there exists (Wallace, 1998, p. 336). a line that contains three major points of concurrence for that triangle: the Methods centroid, orthocenter, and circumcenter. Locating the Centroid The centroid is the concurrence point for In attempting to locate the Euler line, the the three medians of the triangle. The first thing that needs to be found is the orthocenter is the concurrence point of midpoint of each side of the hyperbolic the altitudes.
    [Show full text]
  • DIY Hyperbolic Geometry
    DIY hyperbolic geometry Kathryn Mann written for Mathcamp 2015 Abstract and guide to the reader: This is a set of notes from a 5-day Do-It-Yourself (or perhaps Discover-It-Yourself) intro- duction to hyperbolic geometry. Everything from geodesics to Gauss-Bonnet, starting with a combinatorial/polyhedral approach that assumes no knowledge of differential geometry. Al- though these are set up as \Day 1" through \Day 5", there is certainly enough material hinted at here to make a five week course. In any case, one should be sure to leave ample room for play and discovery before moving from one section to the next. Most importantly, these notes were meant to be acted upon: if you're reading this without building, drawing, and exploring, you're doing it wrong! Feedback: As often happens, these notes were typed out rather more hastily than I intended! I would be quite happy to hear suggestions/comments and know about typos or omissions. For the moment, you can reach me at [email protected] As some of the figures in this work are pulled from published work (remember, this is just a class handout!), please only use and distribute as you would do so with your own class mate- rials. Day 1: Wrinkly paper If we glue equilateral triangles together, 6 around a vertex, and keep going forever, we build a flat (Euclidean) plane. This space is called E2. Gluing 5 around a vertex eventually closes up and gives an icosahedron, which I would like you to think of as a polyhedral approximation of a round sphere.
    [Show full text]
  • The Hyperbolic Smarandache Theorem in the Poincaré Upper Half Plane
    The hyperbolic Smarandache theorem in the Poincaré upper half-plane model of hyperbolic geometry Nilgün Sönmez and CA¼tA¼lin Barbu Abstract. In this study, we give a hyperbolic version of the Smarandache’s theorem in the Poincaré upper half-plane model. 2000 Mathematical Subject Classi…cation: 30F45, 51M10 Keywords and phrases: hyperbolic geometry, hyperbolic triangle, Smarandache’s theorem, Poincaré upper half-plane model 1. Introduction Non-Euclidean geometry in general, and hyperbolic geometry in particular, is an area of mathematics which has an interesting history and which is still being actively studied by researchers around the world. One reason for the continuing interest in hyperbolic geometry is that it touches on a number of di¤erent …elds, including but not limited to Complex Analysis, Abstract Algebra and Group Theory, Number Theory, Diferential Geometry, and Low-dimensional Topology [1]. In hyperbolic geometry, a type of non-Eucliean geometry that retains the …rst four postulates of Euclid, the parallel postulate is replaced by the following: Through a given point not on a given line there can be drawn at least two lines parallel to the given line. The development of hyperbolic geometry is attributed to Lobachevsky, Bolyai, and Gauss, but there is certainly some evidence that Euclid had an inkling of its existence [2]. There are known many models for hyperbolic geometry, such as: Poincaré upper half- plane, Poincaré disc model, Klein model, etc. Here, in this study, we give a hyperbolic version of the Smarandache theorem in the Poincaré upper half-plane model. The Euclidean version of this well-known theorem states that if the points Mi; i = 1; n are the projections of a point M on the sides AiAi+1; i = 1; n; where An+1 = A1, of the polygon A1A2:::An; then 2 2 2 2 2 2 2 M1A1 + M2A2 + ::: + MnAn = M1A2 + M2A3 + ::: + Mn 1An + MnA1 (1) (see [5] or [8]).
    [Show full text]
  • Non-Euclidean Shadows of Classical Projective Theorems Arxiv
    Non-euclidean shadows of classical projective theorems Ruben Vigara Centro Universitario de la Defensa - Zaragoza I.U.M.A. - Universidad de Zaragoza January 23, 2015 arXiv:1412.7589v2 [math.MG] 22 Jan 2015 Contents 1 Introduction 3 2 Basics of planar projective geometry. 12 2.1 Cross ratios . 13 2.2 Segments . 15 2.3 Triangles . 15 2.4 Quadrangles . 15 2.5 Poles and polars . 16 2.6 Conjugate points and lines . 17 2.7 Harmonic sets and harmonic conjugacy . 18 2.8 Conics whose polarity preserves real elements . 20 3 Cayley-Klein models for hyperbolic and elliptic planar ge- ometries 21 3.1 Distances and angles . 22 3.2 Midpoints of a segment . 23 3.3 Proyective trigonometric ratios . 27 4 Pascal's and Chasles' theorems and classical triangle centers 31 4.1 Quad theorems . 31 4.2 Triangle notation . 32 4.3 Chasles' Theorem and the orthocenter . 35 4.4 Pascal's Theorem and classical centers . 36 5 Desargues' Theorem, alternative triangle centers and the Euler-Wildberger line 43 5.1 Pseudobarycenter . 43 5.2 Pseudocircumcenter . 45 5.3 The Euler-Wildberger line . 47 5.4 The nine-point conic . 50 1 Contents 6 Menelaus' Theorem and non-euclidean trigonometry 55 6.1 Trigonometry of generalized right-angled triangles . 56 6.1.1 Non-euclidean Pythagorean Theorems . 59 6.1.2 More trigonometric relations . 61 6.2 Trigonometry of generalized, non right-angled, triangles . 64 6.2.1 The general (squared) law of sines. 64 6.2.2 The general (squared) law of cosines . 65 7 Carnot's Theorem and..
    [Show full text]
  • C 2009 Karan Mohan Puri ALL RIGHTS RESERVED FACTORIZATION of ISOMETRIES of HYPERBOLIC
    c 2009 Karan Mohan Puri ALL RIGHTS RESERVED FACTORIZATION OF ISOMETRIES OF HYPERBOLIC 4-SPACE AND A DISCRETENESS CONDITION By Karan Mohan Puri A dissertation submitted to the Graduate School-Newark Rutgers, The State University of New Jersey in partial fulfillment of the requirements for the degree of Doctor of Philosophy Graduate Program in Mathematical Sciences written under the direction of Professor Jane P. Gilman and approved by Newark, New Jersey May, 2009 Abstract Factorization of isometries of Hyperbolic 4-space and a Discreteness Condition By Karan Mohan Puri Dissertation Director: Professor Jane P. Gilman Gilman's NSDC condition is a sufficient condition for the discrete- ness of a two generator subgroup of P SL(2; C). We address the question of the extension of this condition to subgroups of isometries of hyper- bolic 4-space. While making this new construction, namely the NSDS condition, we are led to ask whether every orientation preserving isom- etry of hyperbolic 4-space can be factored into the product of two half- turns. We use some techniques developed by Wilker to first, define a half-turn suitably in dimension 4 and then answer the former question. It turns out that defining a half-turn in this way in any dimension n enables us to generalize some of Gilman's theorems to dimension n ≥ 4. We also give an exposition on part of Wilker's work and give new proofs for some of his results. ii To my parents, my sister and to Neha. Acknowledgements: A large number of people have had an influence on the writing and completion of this thesis.
    [Show full text]
  • LOCAL RIGIDITY of INVERSIVE DISTANCE CIRCLE PACKING 3 Is Given by the Formula 2 2 2 L − R1 − R2 I(C1,C2)=
    LOCAL RIGIDITY OF INVERSIVE DISTANCE CIRCLE PACKING REN GUO Abstract. A Euclidean (or hyperbolic) circle packing on a closed triangulated surface with prescribed inversive distance is locally determined by its cone angles. We prove this by applying a variational principle. 1. Introduction 1.1. Andreev-Thurston Theorem. In his work on constructing hyperbolic met- rics on 3-manifolds, W. Thurston ([21], Chapter 13) studied a Euclidean (or hyper- bolic) circle packing on a closed triangulated surface with prescribed intersection angles. Thurston’s work generalizes Andreev’s result of circle packing on a sphere [1, 2]. The special case of tangent circle packing (every intersection angle is zero) on sphere was obtained by Koebe [14]. Suppose (Σ,T ) is a closed triangulated surface so that V,E,F are sets of all vertices, edges and triangles in T. We identify vertexes of T with indexes, edges of T with pairs of indexes and triangles of T with triples of indexes. This means V = {1, 2, ...|V |}, E = {ij | i, j ∈ V } and F = {△ijk | i, j, k ∈ V }. Fix a vector R|E| π Θ ∈ indexed by the set of edges E, such that Θij ∈ [0, 2 ] for the each ij ∈ E. This vector is call a weight on (Σ,T ). A circle packing on a closed triangulated weighted surface (Σ,T, Θ) is a con- figuration {ci,i ∈ V } of circles such that the intersection angle of ci and cj is Θij which is the prescribed weight on the edge ij. To obtain a Euclidean (or hyperbolic) R|V | circle packing for (Σ,T, Θ), we start with a radius vector r = (r1, r2, ..., r|V |) ∈ >0 which assigns each vertex i ∈ V a positive number ri.
    [Show full text]
  • Download Article (PDF)
    DEMONSTRATIO MATHEMATICA Vol. XLII No 2 2009 Nilgun Sônmez SOME FEATURES IN CONNECTION WITH TRIANGLES IN THE POINCARÉ UPPER HALF PLANE Abstract. In this work, it is shown that the product of lengths that are segments reserved to altitudes of orthocenter is constant in the Poincaré triangle. I defined to Carnot theorem Poincaré upper half plane. 1. Introduction The Poincaré upper half plane geometry has been introduced by Henri Poincaré. Poincaré upper half plane is the upper half plane of the Euclidean analytical plane M2. Although the points in the Poincaré upper half plane are the same as the points in the upper half plane of the Euclidean analytical plane R2, the lines and the distance function between any two points are different. The lines in the Poincaré upper half plane are defined by 2 aL = {(x, y) € M | x = a, y > 0, a € M, a constant} half lines and 2 2 2 2 c:L r = {(x, y) G M I (x - c) + y = r , y > 0, c, r G R, c, r constant, r > 0} half circles. If A={x\, y\) and B—(x2, 2/2 ) are any two points in H then the Poincaré distance between these points is given by |ln(y2/yi)|, if X\ = X2 dH(A,B) = i lnfy2{xi-c + r)\ In if Xl ± X2 \yi(x2 - c + r)J ' 1991 Mathematics Subject Classification: 51K05, 51K99. Key words and phrases: Poincaré upper half plane, Poincaré circle, Poincaré triangle. 404 N. Sònmez where c={yl~y\ + xl- X\)/2{X2 - xi), 2 2 r = ^(xi - c) + y\ = yj(x2 ~ c) + y\.
    [Show full text]
  • A ROUNDABOUT INTRODUCTION to HYPERBOLIC AREA Contents 1
    A ROUNDABOUT INTRODUCTION TO HYPERBOLIC AREA SARAH ZHANG Abstract. The Gauss-Bonnet theorem gives a simple formula for the area of any \reasonable" hyperbolic polygon based on its internal angle measures. To approach this result, we give an abbreviated overview of M¨obiustransforma- tions, two models of hyperbolic space, convexity in the hyperbolic plane, and related formulas for hyperbolic area. Contents 1. Introduction 1 2. M¨obiustransformations 1 3. The upper half plane H and the Poincar´edisc D 6 4. Convexity 9 5. Hyperbolic polygons and the Gauss-Bonnet formula 10 Acknowledgments 15 References 16 1. Introduction When it comes to two dimensional spaces, the usual go-to is the Euclidean plane, where lines are straight, shapes are flat, and the curvature of the space is uniformly zero. Another is the surface of a sphere, where the shortest paths between points are portions of great circles (potentially nonunique if the points are at polar opposite locations) and the curvature of the space is uniformly positive. Another still is the hyperbolic plane, a space with constant negative curvature often called \wrinkly" for (among other crimes) \having too much area everywhere." We contend with this one. (For a hands-on visualization, see [2] or look up some of the online tutorials for crocheting/tiling/etc. the hyperbolic plane.) The report is organized as follows: Section 2 explores the properties of M¨obius transformations on the Riemann sphere. Section 3 defines the hyperbolic metric and introduces two models of the hyperbolic plane. Section 4 explores convexity in the hyperbolic plane. Section 5 defines hyperbolic area and works towards a proof of the generalized Gauss-Bonnet theorem, which states that a reasonable hyperbolic n-gon has area (n − 2)π minus the sum of its internal angles.
    [Show full text]