Uniform Boundedness and Twisted Sums of Banach Spaces
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Vector Measures with Variation in a Banach Function Space
VECTOR MEASURES WITH VARIATION IN A BANACH FUNCTION SPACE O. BLASCO Departamento de An´alisis Matem´atico, Universidad de Valencia, Doctor Moliner, 50 E-46100 Burjassot (Valencia), Spain E-mail:[email protected] PABLO GREGORI Departament de Matem`atiques, Universitat Jaume I de Castell´o, Campus Riu Sec E-12071 Castell´o de la Plana (Castell´o), Spain E-mail:[email protected] Let E be a Banach function space and X be an arbitrary Banach space. Denote by E(X) the K¨othe-Bochner function space defined as the set of measurable functions f :Ω→ X such that the nonnegative functions fX :Ω→ [0, ∞) are in the lattice E. The notion of E-variation of a measure —which allows to recover the p- variation (for E = Lp), Φ-variation (for E = LΦ) and the general notion introduced by Gresky and Uhl— is introduced. The space of measures of bounded E-variation VE (X) is then studied. It is shown, amongother thingsand with some restriction ∗ ∗ of absolute continuity of the norms, that (E(X)) = VE (X ), that VE (X) can be identified with space of cone absolutely summingoperators from E into X and that E(X)=VE (X) if and only if X has the RNP property. 1. Introduction The concept of variation in the frame of vector measures has been fruitful in several areas of the functional analysis, such as the description of the duality of vector-valued function spaces such as certain K¨othe-Bochner function spaces (Gretsky and Uhl10, Dinculeanu7), the reformulation of operator ideals such as the cone absolutely summing operators (Blasco4), and the Hardy spaces of harmonic function (Blasco2,3). -
Combinatorics in Banach Space Theory Lecture 2
Combinatorics in Banach space theory Lecture 2 Now, we will derive the promised corollaries from Rosenthal's lemma. First, following [Ros70], we will show how this lemma implies Nikod´ym's uniform boundedness principle for bounded vector measures. Before doing this we need to recall some definitions. Definition 2.4. Let F be a set algebra. By a partition of a given set E 2 F we mean Sk a finite collection fE1;:::;Ekg of pairwise disjoint members of F such that j=1Ej = E. We denote Π(E) the set of all partitions of E. Let also X be a Banach space and µ: F ! X be a finitely additive set function (called a vector measure). The variation of µ is a function jµj: F ! [0; 1] given by ( ) X jµj(E) = sup kµ(A)k: π 2 Π(E) : A2π The semivariation of µ is a function kµk: F ! [0; 1] given by ∗ ∗ kµk = sup jx µj(E): x 2 BX∗ : By a straightforward calculation, one may check that the variation jµj is always finitely additive, whereas the semivariation kµk is monotone and finitely subadditive. Of course, we always have kµk 6 jµj. Moreover, since we know how the functionals on the scalar space (R or C) look like, it is easily seen that for scalar-valued measures the notions of variation and semivariation coincide. By saying that a vector measure µ: F ! X is bounded we mean that kµk is finitely valued. This is in turn equivalent to saying that the range of µ is a bounded subset of X. -
CURRICULUM VITAE PISIER Gilles Jean Georges Born November 18 1950 in Nouméa, New Caledonia. French Nationality 1966-67 Mathéma
CURRICULUM VITAE PISIER Gilles Jean Georges Born November 18 1950 in Noum´ea,New Caledonia. French Nationality 1966-67 Math´ematiquesEl´ementaires at Lyc´eeBuffon, Paris. 1967 Baccalaur´eat,section C. 1967-68 Math´ematiquesSup´erieuresand Math´ematiquesSp´eciales 1968-69 at Lyc´eeLouis-le Grand, Paris. 1969-72 Student at Ecole´ Polytechnique. 1971 Ma^ıtrisede math´ematiquesUniversit´ePARIS VII. 1972 D.E.A. de Math´ematiquespures Universit´ePARIS VI. Oct. 72 Stragiaire de Recherche at C.N.R.S. Oct. 74 Attach´ede Recherche at C.N.R.S. Nov. 77 Th`esede doctorat d'´etat `es-sciencesmath´ematiques, soutenue le 10 Novembre 1977 from Universit´ePARIS VII under the supervision of L. Schwartz. Oct. 79 Charg´ede Recherche at C.N.R.S. Oct. 81 Professor at the University of PARIS VI. Oct. 84-Jan.85 Visiting Professor at IHES (Bures s. Yvette). Sept. 85 Distinguished Professor (Owen Chair of Mathematics), Texas A&M University. Nov. 88 Short term Visitor, Institute of Advanced Study (Princeton). Feb. 90-Apr.90 Visiting Professor at IHES (Bures s. Yvette). Feb. 1991 Professeur de Classe Exceptionnelle (Universit´eParis 6) 1 VARIOUS DISTINCTIONS { Salem Prize 1979. { Cours Peccot at Coll`egede France 1981. { Prix Carri`erede l'Acad´emiedes Science de Paris 1982. { Invited speaker at the International Congress of Mathematicians (Warsaw,1983). {Fellow of the Institute of Mathematical Statistics 1989. {Grands prix de l'Acad´emiedes Sciences de Paris: Prix Fond´epar l'Etat 1992 {Invited one hour address at A.M.S. meeting in College Station, october 93. {Faculty Distinguished Achievement Award in Research 1993, Texas A&M University (from the Association of Former Students) {Elected \Membre correspondant" by \Acad´emiedes Sciences de Paris", April 94. -
Banach Space Properties of V of a Vector Measure
proceedings of the american mathematical society Volume 123, Number 12. December 1995 BANACHSPACE PROPERTIES OF V OF A VECTOR MEASURE GUILLERMO P. CURBERA (Communicated by Dale Alspach) Abstract. We consider the space L'(i>) of real functions which are integrable with respect to a measure v with values in a Banach space X . We study type and cotype for Lx{v). We study conditions on the measure v and the Banach space X that imply that Ll(v) is a Hilbert space, or has the Dunford-Pettis property. We also consider weak convergence in Lx(v). 1. Introduction Given a vector measure v with values in a Banach space X, Lx(v) denotes the space of (classes of) real functions which are integrable with respect to v in the sense of Bartle, Dunford and Schwartz [BDS] and Lewis [L-l]. This space has been studied by Kluvanek and Knowles [KK], Thomas [T] and Okada [O]. It is an order continuous Banach lattice with weak unit. In [C-l, Theorem 8] we have identified the class of spaces Lx(v) , showing that every order continuous Banach lattice with weak unit can be obtained, order isometrically, as L1 of a suitable vector measure. A natural question arises: what is the relation between, on the one hand, the properties of the Banach space X and the measure v, and, on the other hand, the properties of the resulting space Lx(v) . The complexity of the situ- ation is shown by the following example: the measures, defined over Lebesgue measurable sets of [0,1], vx(A) = m(A) £ R, v2(A) = Xa e £'([0, 1]) and v3 — (]"Ar„(t)dt) £ Co, where rn are the Rademacher functions, generate, order isometrically, the same space, namely 7J([0, 1]). -
FLOWS of MEASURES GENERATED by VECTOR FIELDS 1. Introduction Every Sufficiently Smooth and Bounded Vector Field V in the Euclide
FLOWS OF MEASURES GENERATED BY VECTOR FIELDS EMANUELE PAOLINI AND EUGENE STEPANOV Abstract. The scope of the paper is twofold. We show that for a large class of measurable vector fields in the sense of N. Weaver (i.e. derivations over the algebra of Lipschitz functions), called in the paper laminated, the notion of integral curves may be naturally defined and characterized (when appropriate) by an ODE. We further show, that for such vector fields the notion of a flow of the given positive Borel measure similar to the classical one generated by a smooth vector field (in a space with smooth structure) may be defined in a reasonable way, so that the measure “flows along” the appropriately understood integral curves of the given vector field and the classical continuity equation is satisfied in the weak sense. 1. Introduction Every sufficiently smooth and bounded vector field V in the Euclidean space E = Rn is well-known to generate a canonical flow of a given finite Borel measure t + t µ in E by setting µt := ϕ µ, t R , where ϕ (x) := θ(t), θ standing for the V # ∈ V unique solution to the differential equation (1.1) θ˙(t)= V (θ(t)) satisfying the initial condition θ(0) = x. Such a flow satisfies the continuity equation ∂µ (1.2) t + div v µ =0 ∂t t t + in the weak sense in E R , where vt : E E is some velocity field (of course, non unique for the given×V , but in particular,→ this equation is satisfied in this case with vt := V ). -
Algebras and Orthogonal Vector Measures
proceedings of the american mathematical society Volume 110, Number 3, November 1990 STATES ON IT*-ALGEBRAS AND ORTHOGONAL VECTOR MEASURES JAN HAMHALTER (Communicated by William D. Sudderth) Abstract. We show that every state on a If*-algebra sf without type I2 direct summand is induced by an orthogonal vector measure on sf . This result may find an application in quantum stochastics [1, 7]. Particularly, it allows us to find a simple formula for the transition probability between two states on sf [3, 8], 1. Preliminaries Here we fix some notation and recall basic facts about Hilbert-Schmidt op- erators (for details, see [9]). Let H be a complex Hilbert space and let 3§'HA) denote the set of all linear bounded operators on H . An operator A e 33(H) is said to be a trace class operator if the series ^2aeI(Aea, ea) is absolutely convergent for an orthonormal basis (ea)ae! of //. In this case the sum J2a€¡(Aea, ea) does not depend on the choice of the basis (ea)a€¡ and is called a trace of A (abbreviated Tr,4). Let us denote by CX(H) the set of all trace class operators on //. Then Tr AB = Tr BA whenever the product AB belongs to CX(H). Suppose that A e 33(H). Then A is called a Hilbert-Schmidt operator if IMII2 = {X3„e/II^JI } < 00 for some (and therefore for any) orthonor- mal basis (en)n€, of //. Let us denote by C2(H) the set of all Hilbert- Schmidt operators on //. Thus, C2(H) is a two-sided ideal in 33(H), and CX(H) c C2(H). -
Continuity Properties of Vector Measures
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 86. 268-280 (1982) Continuity Properties of Vector Measures CECILIA H. BROOK Department of Mathematical Sciences, Northern Illinois Unirersity, DeKalb, Illinois 60115 Submitted b! G.-C Rota 1. INTRODUCTION This paper is a sequel to [ I 1. Using projections in the universal measure space of W. H. Graves [ 6 1, we study continuity and orthogonality properties of vector measures. To each strongly countably additive measure 4 on an algebra .d with range in a complete locally convex space we associate a projection P,, which may be thought of as the support of @ and as a projection-valued measure. Our main result is that, as measures, # and P, are mutually continuous. It follows that measures may be compared by comparing their projections. The projection P, induces a decomposition of vector measures which turns out to be Traynor’s general Lebesgue decomposition [8) relative to qs. Those measures $ for which algebraic d-continuity is equivalent to $- continuity are characterized in terms of projections, while $-continuity is shown to be equivalent to &order-continuity whenever -d is a u-algebra. Using projections associated with nonnegative measures, we approximate every 4 uniformly on the algebra ,d by vector measures which have control measures. Last, we interpret our results algebraically. Under the equivalence relation of mutual continuity, and with the order induced by continuity, the collection of strongly countably additive measures on .d which take values in complete spaces forms a complete Boolean algebra 1rV, which is isomorphic to the Boolean algebra of projections in the universal measure space. -
THE RANGE of a VECTOR MEASURE the Purpose of This Note Is to Prove That the Range of a Countably Additive Finite Measure with Va
THE RANGE OF A VECTOR MEASURE PAUL R. HALMOS The purpose of this note is to prove that the range of a countably additive finite measure with values in a finite-dimensional real vector space is closed and, in the non-atomic case, convex. These results were first proved (in 1940) by A. Liapounoff.1 In 1945 K. R. Buch (independently) proved the part of the statement concerning closure for non-negative measures of dimension one or two.2 In 1947 I offered a proof of Buch's results which, however, was correct in the one- dimensional case only.8 In this paper I present a simplified proof of LiapounofPs results. Let X be any set and let S be a <r-field of subsets of X (called the measurable set of X). A measure /i (or, more precisely, an iV-dimen- sional measure (#i, • • • , fix)) is a (bounded) countably additive function of the sets of S with values in iV-dimensional, real vector space (in which the "length" |&| + • • • +|£JV| of a vector ? = (?i» • • • » &v) is denoted by |£|). The measure (/xi, • • • /*#) is non-negative if fXi(E) ^0 for every ££S and i«= 1, • • • , N. For a numerical (one-dimensional) measure /x0, Mo*0E) will denote the total variation of /xo on £; in general, if /x = (jiu • • • , Mtf), M* will denote the non-negative measure (jit!*, • • • , /$). The length |JU*| =Mi*+ • • • +M#* is always a non-negative numerical measure.4 Presented to the Society, September 3,1947 ; received by the editors July 10,1947. 1 Sur les fonctions-vecteurs complètement additives, Bull. -
Amenability, Group C -Algebras and Operator Spaces (WEP and LLP For
Amenability, Group C ∗-algebras and Operator spaces (WEP and LLP for C ∗(G)) Gilles Pisier Texas A&M University Gilles Pisier Amenability, Group C ∗-algebras and Operator spaces (WEP and LLP for C ∗(G)) Main Source... E. Kirchberg, On nonsemisplit extensions, tensor products and exactness of group C∗-algebras. Invent. Math. 112 (1993), 449{489. Gilles Pisier Amenability, Group C ∗-algebras and Operator spaces (WEP and LLP for C ∗(G)) C ∗-algebras A C ∗-algebra is a closed self-adjoint subalgebra A ⊂ B(H) of the space of bounded operators on a Hilbert space H An operator space is a (closed) subspace E ⊂ A of a C ∗-algebra I will restrict to unital C ∗-algebras The norm on the ∗-algebra A satisfies 8x; y 2 A kxyk ≤ kxkkyk kxk = kx∗k kx∗xk = kxk2 Such norms are called C ∗-norms After completion (or if A is already complete): there is a unique C ∗-norm on A Gilles Pisier Amenability, Group C ∗-algebras and Operator spaces (WEP and LLP for C ∗(G)) Then any such A can be written as A = span[π(G)] for some discrete group G and some unitary representation π : G ! B(H) of G on H Typical operator space E = span[π(S)] S ⊂ G Throughout I will restrict to discrete groups Gilles Pisier Amenability, Group C ∗-algebras and Operator spaces (WEP and LLP for C ∗(G)) Tensor products On the algebraic tensor product (BEFORE completion) A ⊗ B there is a minimal and a maximal C ∗-norm denoted by k kmin and k kmax and in general k kmin ≤6= k kmax C ∗-norms 8x; y 2 A kxyk ≤ kxkkyk kxk = kx∗k kx∗xk = kxk2 Gilles Pisier Amenability, Group C ∗-algebras and Operator spaces (WEP and LLP for C ∗(G)) Nuclear pairs Let A; B be C ∗-algebras Definition The pair (A; B) is said to be a nuclear pair if the minimal and maximal C ∗-norms coincide on the algebraic tensor product A ⊗ B, in other words A ⊗min B = A ⊗max B Definition A C ∗-algebra A is called nuclear if this holds for ANY B Gilles Pisier Amenability, Group C ∗-algebras and Operator spaces (WEP and LLP for C ∗(G)) Let A1 = span[π(G1)] ⊂ B(H1) A2 = span[π(G2)] ⊂ B(H2) for some unitary rep. -
Kuelbs–Steadman Spaces for Banach Space-Valued Measures
mathematics Article Kuelbs–Steadman Spaces for Banach Space-Valued Measures Antonio Boccuto 1,*,† , Bipan Hazarika 2,† and Hemanta Kalita 3,† 1 Department of Mathematics and Computer Sciences, University of Perugia, via Vanvitelli, 1 I-06123 Perugia, Italy 2 Department of Mathematics, Gauhati University, Guwahati 781014, Assam, India; [email protected] 3 Department of Mathematics, Patkai Christian College (Autonomous), Dimapur, Patkai 797103, Nagaland, India; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Received: 2 June 2020; Accepted: 15 June 2020; Published: 19 June 2020 Abstract: We introduce Kuelbs–Steadman-type spaces (KSp spaces) for real-valued functions, with respect to countably additive measures, taking values in Banach spaces. We investigate the main properties and embeddings of Lq-type spaces into KSp spaces, considering both the norm associated with the norm convergence of the involved integrals and that related to the weak convergence of the integrals. Keywords: Kuelbs–Steadman space; Henstock–Kurzweil integrable function; vector measure; dense embedding; completely continuous embedding; Köthe space; Banach lattice MSC: Primary 28B05; 46G10; Secondary 46B03; 46B25; 46B40 1. Introduction Kuelbs–Steadman spaces have been the subject of many recent studies (see, e.g., [1–3] and the references therein). The investigation of such spaces arises from the idea to consider the L1 spaces as embedded in a larger Hilbert space with a smaller norm and containing in a certain sense the Henstock–Kurzweil integrable functions. This allows giving several applications to functional analysis and other branches of mathematics, for instance Gaussian measures (see also [4]), convolution operators, Fourier transforms, Feynman integrals, quantum mechanics, differential equations, and Markov chains (see also [1–3]). -
Grothendieck's Theorem, Past and Present UNCUT Updated and Still Expanding
Grothendieck's Theorem, past and present UNCUT updated and still expanding... by Gilles Pisier∗ Texas A&M University College Station, TX 77843, U. S. A. and Universit´eParis VI Equipe d'Analyse, Case 186, 75252 Paris Cedex 05, France October 13, 2015 Abstract Probably the most famous of Grothendieck's contributions to Banach space theory is the result that he himself described as \the fundamental theorem in the metric theory of tensor products". That is now commonly referred to as \Grothendieck's theorem" (GT in short), or sometimes as \Grothendieck's inequality". This had a major impact first in Banach space theory (roughly after 1968), then, later on, in C∗-algebra theory, (roughly after 1978). More recently, in this millennium, a new version of GT has been successfully developed in the framework of \operator spaces" or non-commutative Banach spaces. In addition, GT independently surfaced in several quite unrelated fields: in connection with Bell's inequality in quantum mechanics, in graph theory where the Grothendieck constant of a graph has been introduced and in computer science where the Grothendieck inequality is invoked to replace certain NP hard problems by others that can be treated by “semidefinite programming' and hence solved in polynomial time. This expository paper (where many proofs are included), presents a review of all these topics, starting from the original GT. We concentrate on the more recent developments and merely outline those of the first Banach space period since detailed accounts of that are already avail- able, for instance the author's 1986 CBMS notes. Warning: Compared to the published one in Bull Amer. -
On Extensions of the Cournot-Nash Theorem
STX 1088 COPY 2 . -km ; FACULTY WORKING PAPER NO. 10S8 On Extensions of the Coumot-Nash i hecrem M. AH Khan tHt1 JBR** College of Commerce and Buslnoss Administration Bureau ot Economic arid Business Research University of Illinois. Urbana-Champaign BEBR FACULTY WORKING PAPER NO. 1088 College of Commerce and Business Administration University of Illinois at Urbana-Champaign November, 1984 On Extensions of the Cournot-Nash Theorem M. Ali Khan, Professor Department of Economics Digitized by the Internet Archive in 2011 with funding from University of Illinois Urbana-Champaign http://www.archive.org/details/onextensionsofco1088khan On Extensions of the Cournot-Nash Theorem! by M. Ali Khan* October 1984 Ab_strac_t. This paper presents some recent results on the existence of Nash equilibria in games with a continuum of traders, non-ordered preferences and infinite dimensional strategy sets. The work reported here can also be seen as an application of functional analysis to a particular problem in mathematical economics. tResearch support from the National Science Foundation is gratefully acknowledged. Some of the results reported in this paper were devel- oped in collaboration with Rajiv Vohra and I am grateful to him for several discussions of this material over the last two years. Parts of this paper were presented at seminars at the Universities of Illinois and Toronto, Ohio State University, Wayne State University and the State University of New York at Stony Brook. I would like to thank, in particular, Tatsuro Ichiishi, Peter Loeb, Tom Muench, Nicholas Yannelis , Nicholas Papageorgiou and Mark Walker for their comments and questions. Errors are, of course, solely mine.