Uniform Boundedness and Twisted Sums of Banach Spaces

Total Page:16

File Type:pdf, Size:1020Kb

Uniform Boundedness and Twisted Sums of Banach Spaces Houston Journal of Mathematics c 2004 University of Houston ­ Volume 30, No. 2, 2004 UNIFORM BOUNDEDNESS AND TWISTED SUMS OF BANACH SPACES FELIX´ CABELLO SANCHEZ´ AND JESUS´ M. F. CASTILLO Communicated by Gilles Pisier Abstract. We construct a Banach space X admitting an uncomplemented copy of l1 so that X/l1 = c0. To do that we study the uniform boundedness principles that arise when one considers exact sequences of Banach spaces; as well as several elements of homological algebra applied to the construction of nontrivial twisted sum of Banach spaces. The combination of both elements allows one to determine the existence of nontrivial twisted sums for almost all combinations of classical Banach spaces. 1. Introduction The objective of this paper is to be able to construct a nontrivial twisted sum of l1 and c0; precisely, to show the existence of a Banach space X admitting an un- complemented copy of l1 so that X/l1 = c0. To do that we need to develop certain uniform boundedness principles that arise when one considers exact sequences of Banach spaces and some homological constructions applied to the construction of twisted sum of Banach spaces. The combination of both approaches will show the existence of nontrivial twisted sums for almost all combinations of classical Banach spaces. This is not the first time that the existence “uniform boundedness principles” for twisted sums of (quasi) Banach spaces has been considered. Doma´nski[12] developed similar principles; while some of these topics have been recently consid- ered in [20]. There, some kind of uniform boundedness principle is used to attack the problem of which spaces admit a nontrivial twisted sum with l2. However, 2000 Mathematics Subject Classification. 46B25, 46A16, 46B08, 46M10. Supported in part by DGICYT project BFM2001-0813. 523 524 F. CABELLO AND J.M.F. CASTILLO those papers are not easy to read, the former because of the lack of an algebraic approach forces the author to develop time after time some ingenious devices of his own to resolve situations; and the latter because of the rather laconic form in which the difficult point of exactly how one can paste together the pieces (or pro- ceed to obtain local information) is treated. Moreover, the approaches of those two papers are almost disjoint: while Kalton and PeÀlczy´nskiuse hard local theory of Banach spaces (behaviour of cotype constants, Maurey’s theorem ...), Doma´nski has a more operator-ideal oriented point of view. In conclusion, that while there is no doubt that some experts are aware of the existence of some principles (see, e.g. [14], where the author mentions that “some localization technique” allows to conclude his argument) we think that a comprehensive theory for such principles has not been yet developed. Moreover, none of the known principles is able to produce a nontrivial twisted sum of l1 and c0. Such a construction can be seen (extremely) implicit in [2]; and also in [3]. In this paper we present a unified, and far simpler, approach to the topic based on the use of the elements of homological algebra and the theory of quasi-linear maps. Let us briefly outline the contents of the paper. Section 2 of the paper in- troduces the background required (some elements of homological algebra and an adaptation to the locally convex setting of the theory of quasi-linear maps). Section 3 contains the uniform boundedness principles. The section 4 contains nontrivial (in both senses of the word) examples of twisted sums of classical Ba- nach spaces, culminating in the promised nontrivial exact sequence 0 l → 1 → X c 0. The last section of the paper characterizes -spaces showing that → 0 → L1 Z is a -space if and only if Ext(R, Z) = 0 for every reflexive space R. L1 2. Background, with some applications In the sequel, the word operator means linear continuous map. For general in- formation about exact sequences the reader can consult [13]. Information about categorical constructions in the Banach space setting can be found in the mono- graph [5] or in Johnson paper [14]. A diagram 0 Y X Z 0 of Banach → → → → spaces and operators is said to be an exact sequence if the kernel of each arrow coincides with the image of the preceding. This means, by the open mapping theorem, that Y is (isomorphic to) a closed subspace of X and the corresponding quotient is (isomorphic to) Z. We shall also say that X is a twisted sum of Y and Z or an extension of Y by Z. Two exact sequences 0 Y X Z 0 → → → → and 0 Y X Z 0 are said to be equivalent if there is an operator → → 1 → → UNIFORM BOUNDEDNESS PRINCIPLES 525 T : X X making the diagram → 1 0 Y X Z 0 → → → → T k ↓ k 0 Y X Z 0 → → 1 → → commutative. The “three-lemma” (see [13, lemma 1.1]) and the open mapping theorem imply that T must be an isomorphism. The exact sequence 0 Y → → X Z 0 is said to split if it is equivalent to the trivial sequence 0 Y → → → → Y Z Z 0. This already implies that the twisted sum X is isomorphic ⊕ → → to the direct sum Y Z (the converse is not true). Given two Banach spaces Y ⊕ and Z we denote by Ext(Z, Y ) the set of exact sequences 0 Y X Z 0 → → → → modulo equivalence. Thus, Ext(Z, Y ) = 0 means that every exact sequence 0 → Y X Z 0 splits. → → → The pull-back square. Let A : U Z and B : V Z be two operators. The → → pull-back of A, B is the space PB = (u, v): Au = Bv U V endowed { } { } ⊂ × with the relative product topology, together with the restrictions of the canonical projections of U V onto, respectively, U and V . If 0 Y X Z 0 is × → → → → an exact sequence with quotient map q and T : V Z is an operator and PB → denotes the pull-back of the couple q, T then the diagram { } 0 Y X Z 0 → → → → T k ↑ ↑ 0 Y PB V 0 → → → → is commutative with exact rows. The three-lemma implies that the operator PB X is onto if and only T is. It is well-known that the pull-back sequence → splits if and only if the operator T can be lifted to X; i.e., there exists an operator τ : V X such that q τ = T . → ◦ 2.1. Application: nontrivial twisted sums of c0 and l . Consider a non- ∞ trivial sequence 0 c JL l (I) 0, where I has the power of continuum → 0 → 2 → 2 → (see [15]). The pull-back diagram 0 c JL l (I) 0 → 0 → 2 → 2 → q k ↑ ↑ 0 c0 PB l 0 → → → ∞ → where q : l l2(I) is a quotient map gives a nontrivial exact sequence as we ∞ → now show. The space PB cannot be isomorphic to c0 l since JL2 cannot be a ⊕ ∞ quotient of c0 l : if Q is such a quotient map, since no nonseparable subspace ⊕ ∞ of JL2 is isomorphic to a subspace of l ([15]), then by Rosenthal’s theorem [24] ∞ 526 F. CABELLO AND J.M.F. CASTILLO Q l is weakly compact and thus its range is separable, and the same occurs to | ∞ Q . |c0 2.2. Application: nontrivial twisted sums of c0 and L1(µ). Start with a nontrivial exact sequence 0 c0 JL c0(I) 0 (see again [15]), and → → ∞ → → observe that for some finite measure µ there exists a quotient map from L1(µ) onto c0(I) (see [24]). The space L1(µ) is WCG since µ is finite. The pull-back diagram 0 c0 JL c0(I) 0 → → ∞ → → q k ↑ ↑ 0 c PB L (µ) 0 → 0 → → 1 → produces a non WCG space PB that cannot therefore be isomorphic to the prod- uct c L (µ). 0 ⊕ 1 The push-out square. Let A : K X and B : K M be two operators. The → → push-out of A, B is the space PO = (M X)/∆, where ∆ = (Ak, Bk): k K { } ⊕ { ∈ } endowed with the quotient topology, together with the restrictions of the quotient map to, respectively, M and X. If 0 Y X Z 0 is an exact sequence → → → → with injection j and T : Y M is an operator and PO denotes the push-out of → the couple j, T then the diagram { } 0 Y X Z 0 → → → → T ↓ ↓ k 0 M PO Z 0 → → → → is commutative with exact rows. Note that the operator X PO is an isomorphic → embedding if and only if T is. The push-out sequence splits if and only if the operator T can be extended to X; i.e., there exists an operator τ : X M such → that τ j = T . ◦ Zero-linear maps and extensions. The by now classical theory of Kalton and Peck [16, 19] describes short exact sequences of quasi-Banach spaces in terms of the so-called quasi-linear maps. The theory of quasi-linear maps can be easily adapted to the locally convex (Banach) setting as follows (see [4]). A map F : Z Y acting between Banach spaces is said to be zero-linear if it is homogeneous → and satisfies that, for some constant K and all points x Z, one has i ∈ n n n F xi F (xi) K xi . ­ À ! − ­ ≤ À k k! ­ i=1 i=1 ­ i=1 ­ X X ­ X The infimum of the­ constants K as above is­ denoted Z(F ) and referred to as the ­ ­ zero-linearity constant of F . As in the quasi-linear case, zero-linear maps give rise UNIFORM BOUNDEDNESS PRINCIPLES 527 to twisted sums: given a zero-linear map F : Z Y , it is possible to construct → a twisted sum, which we shall denote by Y Z , endowing the product space ⊕F Y Z with the quasi-norm (y, z) = y F z + z which is always equivalent × k kF k − k k k to a norm that makes Y Z into a Banach space.
Recommended publications
  • Vector Measures with Variation in a Banach Function Space
    VECTOR MEASURES WITH VARIATION IN A BANACH FUNCTION SPACE O. BLASCO Departamento de An´alisis Matem´atico, Universidad de Valencia, Doctor Moliner, 50 E-46100 Burjassot (Valencia), Spain E-mail:[email protected] PABLO GREGORI Departament de Matem`atiques, Universitat Jaume I de Castell´o, Campus Riu Sec E-12071 Castell´o de la Plana (Castell´o), Spain E-mail:[email protected] Let E be a Banach function space and X be an arbitrary Banach space. Denote by E(X) the K¨othe-Bochner function space defined as the set of measurable functions f :Ω→ X such that the nonnegative functions fX :Ω→ [0, ∞) are in the lattice E. The notion of E-variation of a measure —which allows to recover the p- variation (for E = Lp), Φ-variation (for E = LΦ) and the general notion introduced by Gresky and Uhl— is introduced. The space of measures of bounded E-variation VE (X) is then studied. It is shown, amongother thingsand with some restriction ∗ ∗ of absolute continuity of the norms, that (E(X)) = VE (X ), that VE (X) can be identified with space of cone absolutely summingoperators from E into X and that E(X)=VE (X) if and only if X has the RNP property. 1. Introduction The concept of variation in the frame of vector measures has been fruitful in several areas of the functional analysis, such as the description of the duality of vector-valued function spaces such as certain K¨othe-Bochner function spaces (Gretsky and Uhl10, Dinculeanu7), the reformulation of operator ideals such as the cone absolutely summing operators (Blasco4), and the Hardy spaces of harmonic function (Blasco2,3).
    [Show full text]
  • Combinatorics in Banach Space Theory Lecture 2
    Combinatorics in Banach space theory Lecture 2 Now, we will derive the promised corollaries from Rosenthal's lemma. First, following [Ros70], we will show how this lemma implies Nikod´ym's uniform boundedness principle for bounded vector measures. Before doing this we need to recall some definitions. Definition 2.4. Let F be a set algebra. By a partition of a given set E 2 F we mean Sk a finite collection fE1;:::;Ekg of pairwise disjoint members of F such that j=1Ej = E. We denote Π(E) the set of all partitions of E. Let also X be a Banach space and µ: F ! X be a finitely additive set function (called a vector measure). The variation of µ is a function jµj: F ! [0; 1] given by ( ) X jµj(E) = sup kµ(A)k: π 2 Π(E) : A2π The semivariation of µ is a function kµk: F ! [0; 1] given by ∗ ∗ kµk = sup jx µj(E): x 2 BX∗ : By a straightforward calculation, one may check that the variation jµj is always finitely additive, whereas the semivariation kµk is monotone and finitely subadditive. Of course, we always have kµk 6 jµj. Moreover, since we know how the functionals on the scalar space (R or C) look like, it is easily seen that for scalar-valued measures the notions of variation and semivariation coincide. By saying that a vector measure µ: F ! X is bounded we mean that kµk is finitely valued. This is in turn equivalent to saying that the range of µ is a bounded subset of X.
    [Show full text]
  • CURRICULUM VITAE PISIER Gilles Jean Georges Born November 18 1950 in Nouméa, New Caledonia. French Nationality 1966-67 Mathéma
    CURRICULUM VITAE PISIER Gilles Jean Georges Born November 18 1950 in Noum´ea,New Caledonia. French Nationality 1966-67 Math´ematiquesEl´ementaires at Lyc´eeBuffon, Paris. 1967 Baccalaur´eat,section C. 1967-68 Math´ematiquesSup´erieuresand Math´ematiquesSp´eciales 1968-69 at Lyc´eeLouis-le Grand, Paris. 1969-72 Student at Ecole´ Polytechnique. 1971 Ma^ıtrisede math´ematiquesUniversit´ePARIS VII. 1972 D.E.A. de Math´ematiquespures Universit´ePARIS VI. Oct. 72 Stragiaire de Recherche at C.N.R.S. Oct. 74 Attach´ede Recherche at C.N.R.S. Nov. 77 Th`esede doctorat d'´etat `es-sciencesmath´ematiques, soutenue le 10 Novembre 1977 from Universit´ePARIS VII under the supervision of L. Schwartz. Oct. 79 Charg´ede Recherche at C.N.R.S. Oct. 81 Professor at the University of PARIS VI. Oct. 84-Jan.85 Visiting Professor at IHES (Bures s. Yvette). Sept. 85 Distinguished Professor (Owen Chair of Mathematics), Texas A&M University. Nov. 88 Short term Visitor, Institute of Advanced Study (Princeton). Feb. 90-Apr.90 Visiting Professor at IHES (Bures s. Yvette). Feb. 1991 Professeur de Classe Exceptionnelle (Universit´eParis 6) 1 VARIOUS DISTINCTIONS { Salem Prize 1979. { Cours Peccot at Coll`egede France 1981. { Prix Carri`erede l'Acad´emiedes Science de Paris 1982. { Invited speaker at the International Congress of Mathematicians (Warsaw,1983). {Fellow of the Institute of Mathematical Statistics 1989. {Grands prix de l'Acad´emiedes Sciences de Paris: Prix Fond´epar l'Etat 1992 {Invited one hour address at A.M.S. meeting in College Station, october 93. {Faculty Distinguished Achievement Award in Research 1993, Texas A&M University (from the Association of Former Students) {Elected \Membre correspondant" by \Acad´emiedes Sciences de Paris", April 94.
    [Show full text]
  • Banach Space Properties of V of a Vector Measure
    proceedings of the american mathematical society Volume 123, Number 12. December 1995 BANACHSPACE PROPERTIES OF V OF A VECTOR MEASURE GUILLERMO P. CURBERA (Communicated by Dale Alspach) Abstract. We consider the space L'(i>) of real functions which are integrable with respect to a measure v with values in a Banach space X . We study type and cotype for Lx{v). We study conditions on the measure v and the Banach space X that imply that Ll(v) is a Hilbert space, or has the Dunford-Pettis property. We also consider weak convergence in Lx(v). 1. Introduction Given a vector measure v with values in a Banach space X, Lx(v) denotes the space of (classes of) real functions which are integrable with respect to v in the sense of Bartle, Dunford and Schwartz [BDS] and Lewis [L-l]. This space has been studied by Kluvanek and Knowles [KK], Thomas [T] and Okada [O]. It is an order continuous Banach lattice with weak unit. In [C-l, Theorem 8] we have identified the class of spaces Lx(v) , showing that every order continuous Banach lattice with weak unit can be obtained, order isometrically, as L1 of a suitable vector measure. A natural question arises: what is the relation between, on the one hand, the properties of the Banach space X and the measure v, and, on the other hand, the properties of the resulting space Lx(v) . The complexity of the situ- ation is shown by the following example: the measures, defined over Lebesgue measurable sets of [0,1], vx(A) = m(A) £ R, v2(A) = Xa e £'([0, 1]) and v3 — (]"Ar„(t)dt) £ Co, where rn are the Rademacher functions, generate, order isometrically, the same space, namely 7J([0, 1]).
    [Show full text]
  • FLOWS of MEASURES GENERATED by VECTOR FIELDS 1. Introduction Every Sufficiently Smooth and Bounded Vector Field V in the Euclide
    FLOWS OF MEASURES GENERATED BY VECTOR FIELDS EMANUELE PAOLINI AND EUGENE STEPANOV Abstract. The scope of the paper is twofold. We show that for a large class of measurable vector fields in the sense of N. Weaver (i.e. derivations over the algebra of Lipschitz functions), called in the paper laminated, the notion of integral curves may be naturally defined and characterized (when appropriate) by an ODE. We further show, that for such vector fields the notion of a flow of the given positive Borel measure similar to the classical one generated by a smooth vector field (in a space with smooth structure) may be defined in a reasonable way, so that the measure “flows along” the appropriately understood integral curves of the given vector field and the classical continuity equation is satisfied in the weak sense. 1. Introduction Every sufficiently smooth and bounded vector field V in the Euclidean space E = Rn is well-known to generate a canonical flow of a given finite Borel measure t + t µ in E by setting µt := ϕ µ, t R , where ϕ (x) := θ(t), θ standing for the V # ∈ V unique solution to the differential equation (1.1) θ˙(t)= V (θ(t)) satisfying the initial condition θ(0) = x. Such a flow satisfies the continuity equation ∂µ (1.2) t + div v µ =0 ∂t t t + in the weak sense in E R , where vt : E E is some velocity field (of course, non unique for the given×V , but in particular,→ this equation is satisfied in this case with vt := V ).
    [Show full text]
  • Algebras and Orthogonal Vector Measures
    proceedings of the american mathematical society Volume 110, Number 3, November 1990 STATES ON IT*-ALGEBRAS AND ORTHOGONAL VECTOR MEASURES JAN HAMHALTER (Communicated by William D. Sudderth) Abstract. We show that every state on a If*-algebra sf without type I2 direct summand is induced by an orthogonal vector measure on sf . This result may find an application in quantum stochastics [1, 7]. Particularly, it allows us to find a simple formula for the transition probability between two states on sf [3, 8], 1. Preliminaries Here we fix some notation and recall basic facts about Hilbert-Schmidt op- erators (for details, see [9]). Let H be a complex Hilbert space and let 3§'HA) denote the set of all linear bounded operators on H . An operator A e 33(H) is said to be a trace class operator if the series ^2aeI(Aea, ea) is absolutely convergent for an orthonormal basis (ea)ae! of //. In this case the sum J2a€¡(Aea, ea) does not depend on the choice of the basis (ea)a€¡ and is called a trace of A (abbreviated Tr,4). Let us denote by CX(H) the set of all trace class operators on //. Then Tr AB = Tr BA whenever the product AB belongs to CX(H). Suppose that A e 33(H). Then A is called a Hilbert-Schmidt operator if IMII2 = {X3„e/II^JI } < 00 for some (and therefore for any) orthonor- mal basis (en)n€, of //. Let us denote by C2(H) the set of all Hilbert- Schmidt operators on //. Thus, C2(H) is a two-sided ideal in 33(H), and CX(H) c C2(H).
    [Show full text]
  • Continuity Properties of Vector Measures
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 86. 268-280 (1982) Continuity Properties of Vector Measures CECILIA H. BROOK Department of Mathematical Sciences, Northern Illinois Unirersity, DeKalb, Illinois 60115 Submitted b! G.-C Rota 1. INTRODUCTION This paper is a sequel to [ I 1. Using projections in the universal measure space of W. H. Graves [ 6 1, we study continuity and orthogonality properties of vector measures. To each strongly countably additive measure 4 on an algebra .d with range in a complete locally convex space we associate a projection P,, which may be thought of as the support of @ and as a projection-valued measure. Our main result is that, as measures, # and P, are mutually continuous. It follows that measures may be compared by comparing their projections. The projection P, induces a decomposition of vector measures which turns out to be Traynor’s general Lebesgue decomposition [8) relative to qs. Those measures $ for which algebraic d-continuity is equivalent to $- continuity are characterized in terms of projections, while $-continuity is shown to be equivalent to &order-continuity whenever -d is a u-algebra. Using projections associated with nonnegative measures, we approximate every 4 uniformly on the algebra ,d by vector measures which have control measures. Last, we interpret our results algebraically. Under the equivalence relation of mutual continuity, and with the order induced by continuity, the collection of strongly countably additive measures on .d which take values in complete spaces forms a complete Boolean algebra 1rV, which is isomorphic to the Boolean algebra of projections in the universal measure space.
    [Show full text]
  • THE RANGE of a VECTOR MEASURE the Purpose of This Note Is to Prove That the Range of a Countably Additive Finite Measure with Va
    THE RANGE OF A VECTOR MEASURE PAUL R. HALMOS The purpose of this note is to prove that the range of a countably additive finite measure with values in a finite-dimensional real vector space is closed and, in the non-atomic case, convex. These results were first proved (in 1940) by A. Liapounoff.1 In 1945 K. R. Buch (independently) proved the part of the statement concerning closure for non-negative measures of dimension one or two.2 In 1947 I offered a proof of Buch's results which, however, was correct in the one- dimensional case only.8 In this paper I present a simplified proof of LiapounofPs results. Let X be any set and let S be a <r-field of subsets of X (called the measurable set of X). A measure /i (or, more precisely, an iV-dimen- sional measure (#i, • • • , fix)) is a (bounded) countably additive function of the sets of S with values in iV-dimensional, real vector space (in which the "length" |&| + • • • +|£JV| of a vector ? = (?i» • • • » &v) is denoted by |£|). The measure (/xi, • • • /*#) is non-negative if fXi(E) ^0 for every ££S and i«= 1, • • • , N. For a numerical (one-dimensional) measure /x0, Mo*0E) will denote the total variation of /xo on £; in general, if /x = (jiu • • • , Mtf), M* will denote the non-negative measure (jit!*, • • • , /$). The length |JU*| =Mi*+ • • • +M#* is always a non-negative numerical measure.4 Presented to the Society, September 3,1947 ; received by the editors July 10,1947. 1 Sur les fonctions-vecteurs complètement additives, Bull.
    [Show full text]
  • Amenability, Group C -Algebras and Operator Spaces (WEP and LLP For
    Amenability, Group C ∗-algebras and Operator spaces (WEP and LLP for C ∗(G)) Gilles Pisier Texas A&M University Gilles Pisier Amenability, Group C ∗-algebras and Operator spaces (WEP and LLP for C ∗(G)) Main Source... E. Kirchberg, On nonsemisplit extensions, tensor products and exactness of group C∗-algebras. Invent. Math. 112 (1993), 449{489. Gilles Pisier Amenability, Group C ∗-algebras and Operator spaces (WEP and LLP for C ∗(G)) C ∗-algebras A C ∗-algebra is a closed self-adjoint subalgebra A ⊂ B(H) of the space of bounded operators on a Hilbert space H An operator space is a (closed) subspace E ⊂ A of a C ∗-algebra I will restrict to unital C ∗-algebras The norm on the ∗-algebra A satisfies 8x; y 2 A kxyk ≤ kxkkyk kxk = kx∗k kx∗xk = kxk2 Such norms are called C ∗-norms After completion (or if A is already complete): there is a unique C ∗-norm on A Gilles Pisier Amenability, Group C ∗-algebras and Operator spaces (WEP and LLP for C ∗(G)) Then any such A can be written as A = span[π(G)] for some discrete group G and some unitary representation π : G ! B(H) of G on H Typical operator space E = span[π(S)] S ⊂ G Throughout I will restrict to discrete groups Gilles Pisier Amenability, Group C ∗-algebras and Operator spaces (WEP and LLP for C ∗(G)) Tensor products On the algebraic tensor product (BEFORE completion) A ⊗ B there is a minimal and a maximal C ∗-norm denoted by k kmin and k kmax and in general k kmin ≤6= k kmax C ∗-norms 8x; y 2 A kxyk ≤ kxkkyk kxk = kx∗k kx∗xk = kxk2 Gilles Pisier Amenability, Group C ∗-algebras and Operator spaces (WEP and LLP for C ∗(G)) Nuclear pairs Let A; B be C ∗-algebras Definition The pair (A; B) is said to be a nuclear pair if the minimal and maximal C ∗-norms coincide on the algebraic tensor product A ⊗ B, in other words A ⊗min B = A ⊗max B Definition A C ∗-algebra A is called nuclear if this holds for ANY B Gilles Pisier Amenability, Group C ∗-algebras and Operator spaces (WEP and LLP for C ∗(G)) Let A1 = span[π(G1)] ⊂ B(H1) A2 = span[π(G2)] ⊂ B(H2) for some unitary rep.
    [Show full text]
  • Kuelbs–Steadman Spaces for Banach Space-Valued Measures
    mathematics Article Kuelbs–Steadman Spaces for Banach Space-Valued Measures Antonio Boccuto 1,*,† , Bipan Hazarika 2,† and Hemanta Kalita 3,† 1 Department of Mathematics and Computer Sciences, University of Perugia, via Vanvitelli, 1 I-06123 Perugia, Italy 2 Department of Mathematics, Gauhati University, Guwahati 781014, Assam, India; [email protected] 3 Department of Mathematics, Patkai Christian College (Autonomous), Dimapur, Patkai 797103, Nagaland, India; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Received: 2 June 2020; Accepted: 15 June 2020; Published: 19 June 2020 Abstract: We introduce Kuelbs–Steadman-type spaces (KSp spaces) for real-valued functions, with respect to countably additive measures, taking values in Banach spaces. We investigate the main properties and embeddings of Lq-type spaces into KSp spaces, considering both the norm associated with the norm convergence of the involved integrals and that related to the weak convergence of the integrals. Keywords: Kuelbs–Steadman space; Henstock–Kurzweil integrable function; vector measure; dense embedding; completely continuous embedding; Köthe space; Banach lattice MSC: Primary 28B05; 46G10; Secondary 46B03; 46B25; 46B40 1. Introduction Kuelbs–Steadman spaces have been the subject of many recent studies (see, e.g., [1–3] and the references therein). The investigation of such spaces arises from the idea to consider the L1 spaces as embedded in a larger Hilbert space with a smaller norm and containing in a certain sense the Henstock–Kurzweil integrable functions. This allows giving several applications to functional analysis and other branches of mathematics, for instance Gaussian measures (see also [4]), convolution operators, Fourier transforms, Feynman integrals, quantum mechanics, differential equations, and Markov chains (see also [1–3]).
    [Show full text]
  • Grothendieck's Theorem, Past and Present UNCUT Updated and Still Expanding
    Grothendieck's Theorem, past and present UNCUT updated and still expanding... by Gilles Pisier∗ Texas A&M University College Station, TX 77843, U. S. A. and Universit´eParis VI Equipe d'Analyse, Case 186, 75252 Paris Cedex 05, France October 13, 2015 Abstract Probably the most famous of Grothendieck's contributions to Banach space theory is the result that he himself described as \the fundamental theorem in the metric theory of tensor products". That is now commonly referred to as \Grothendieck's theorem" (GT in short), or sometimes as \Grothendieck's inequality". This had a major impact first in Banach space theory (roughly after 1968), then, later on, in C∗-algebra theory, (roughly after 1978). More recently, in this millennium, a new version of GT has been successfully developed in the framework of \operator spaces" or non-commutative Banach spaces. In addition, GT independently surfaced in several quite unrelated fields: in connection with Bell's inequality in quantum mechanics, in graph theory where the Grothendieck constant of a graph has been introduced and in computer science where the Grothendieck inequality is invoked to replace certain NP hard problems by others that can be treated by “semidefinite programming' and hence solved in polynomial time. This expository paper (where many proofs are included), presents a review of all these topics, starting from the original GT. We concentrate on the more recent developments and merely outline those of the first Banach space period since detailed accounts of that are already avail- able, for instance the author's 1986 CBMS notes. Warning: Compared to the published one in Bull Amer.
    [Show full text]
  • On Extensions of the Cournot-Nash Theorem
    STX 1088 COPY 2 . -km ; FACULTY WORKING PAPER NO. 10S8 On Extensions of the Coumot-Nash i hecrem M. AH Khan tHt1 JBR** College of Commerce and Buslnoss Administration Bureau ot Economic arid Business Research University of Illinois. Urbana-Champaign BEBR FACULTY WORKING PAPER NO. 1088 College of Commerce and Business Administration University of Illinois at Urbana-Champaign November, 1984 On Extensions of the Cournot-Nash Theorem M. Ali Khan, Professor Department of Economics Digitized by the Internet Archive in 2011 with funding from University of Illinois Urbana-Champaign http://www.archive.org/details/onextensionsofco1088khan On Extensions of the Cournot-Nash Theorem! by M. Ali Khan* October 1984 Ab_strac_t. This paper presents some recent results on the existence of Nash equilibria in games with a continuum of traders, non-ordered preferences and infinite dimensional strategy sets. The work reported here can also be seen as an application of functional analysis to a particular problem in mathematical economics. tResearch support from the National Science Foundation is gratefully acknowledged. Some of the results reported in this paper were devel- oped in collaboration with Rajiv Vohra and I am grateful to him for several discussions of this material over the last two years. Parts of this paper were presented at seminars at the Universities of Illinois and Toronto, Ohio State University, Wayne State University and the State University of New York at Stony Brook. I would like to thank, in particular, Tatsuro Ichiishi, Peter Loeb, Tom Muench, Nicholas Yannelis , Nicholas Papageorgiou and Mark Walker for their comments and questions. Errors are, of course, solely mine.
    [Show full text]