Generalized Probabilities in Statistical Theories
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Foundations of Probability Theory and Statistical Mechanics
Chapter 6 Foundations of Probability Theory and Statistical Mechanics EDWIN T. JAYNES Department of Physics, Washington University St. Louis, Missouri 1. What Makes Theories Grow? Scientific theories are invented and cared for by people; and so have the properties of any other human institution - vigorous growth when all the factors are right; stagnation, decadence, and even retrograde progress when they are not. And the factors that determine which it will be are seldom the ones (such as the state of experimental or mathe matical techniques) that one might at first expect. Among factors that have seemed, historically, to be more important are practical considera tions, accidents of birth or personality of individual people; and above all, the general philosophical climate in which the scientist lives, which determines whether efforts in a certain direction will be approved or deprecated by the scientific community as a whole. However much the" pure" scientist may deplore it, the fact remains that military or engineering applications of science have, over and over again, provided the impetus without which a field would have remained stagnant. We know, for example, that ARCHIMEDES' work in mechanics was at the forefront of efforts to defend Syracuse against the Romans; and that RUMFORD'S experiments which led eventually to the first law of thermodynamics were performed in the course of boring cannon. The development of microwave theory and techniques during World War II, and the present high level of activity in plasma physics are more recent examples of this kind of interaction; and it is clear that the past decade of unprecedented advances in solid-state physics is not entirely unrelated to commercial applications, particularly in electronics. -
Randomized Algorithms Week 1: Probability Concepts
600.664: Randomized Algorithms Professor: Rao Kosaraju Johns Hopkins University Scribe: Your Name Randomized Algorithms Week 1: Probability Concepts Rao Kosaraju 1.1 Motivation for Randomized Algorithms In a randomized algorithm you can toss a fair coin as a step of computation. Alternatively a bit taking values of 0 and 1 with equal probabilities can be chosen in a single step. More generally, in a single step an element out of n elements can be chosen with equal probalities (uniformly at random). In such a setting, our goal can be to design an algorithm that minimizes run time. Randomized algorithms are often advantageous for several reasons. They may be faster than deterministic algorithms. They may also be simpler. In addition, there are problems that can be solved with randomization for which we cannot design efficient deterministic algorithms directly. In some of those situations, we can design attractive deterministic algoirthms by first designing randomized algorithms and then converting them into deter- ministic algorithms by applying standard derandomization techniques. Deterministic Algorithm: Worst case running time, i.e. the number of steps the algo- rithm takes on the worst input of length n. Randomized Algorithm: 1) Expected number of steps the algorithm takes on the worst input of length n. 2) w.h.p. bounds. As an example of a randomized algorithm, we now present the classic quicksort algorithm and derive its performance later on in the chapter. We are given a set S of n distinct elements and we want to sort them. Below is the randomized quicksort algorithm. Algorithm RandQuickSort(S = fa1; a2; ··· ; ang If jSj ≤ 1 then output S; else: Choose a pivot element ai uniformly at random (u.a.r.) from S Split the set S into two subsets S1 = fajjaj < aig and S2 = fajjaj > aig by comparing each aj with the chosen ai Recurse on sets S1 and S2 Output the sorted set S1 then ai and then sorted S2. -
Studies in the Geometry of Quantum Measurements
Irina Dumitru Studies in the Geometry of Quantum Measurements Studies in the Geometry of Quantum Measurements Studies in Irina Dumitru Irina Dumitru is a PhD student at the department of Physics at Stockholm University. She has carried out research in the field of quantum information, focusing on the geometry of Hilbert spaces. ISBN 978-91-7911-218-9 Department of Physics Doctoral Thesis in Theoretical Physics at Stockholm University, Sweden 2020 Studies in the Geometry of Quantum Measurements Irina Dumitru Academic dissertation for the Degree of Doctor of Philosophy in Theoretical Physics at Stockholm University to be publicly defended on Thursday 10 September 2020 at 13.00 in sal C5:1007, AlbaNova universitetscentrum, Roslagstullsbacken 21, and digitally via video conference (Zoom). Public link will be made available at www.fysik.su.se in connection with the nailing of the thesis. Abstract Quantum information studies quantum systems from the perspective of information theory: how much information can be stored in them, how much the information can be compressed, how it can be transmitted. Symmetric informationally- Complete POVMs are measurements that are well-suited for reading out the information in a system; they can be used to reconstruct the state of a quantum system without ambiguity and with minimum redundancy. It is not known whether such measurements can be constructed for systems of any finite dimension. Here, dimension refers to the dimension of the Hilbert space where the state of the system belongs. This thesis introduces the notion of alignment, a relation between a symmetric informationally-complete POVM in dimension d and one in dimension d(d-2), thus contributing towards the search for these measurements. -
Dichotomy Between Deterministic and Probabilistic Models in Countably Additive Effectus Theory
Dichotomy between deterministic and probabilistic models in countably additive effectus theory Kenta Cho National Institute of Informatics, Japan Bas Westerbaan University College London John van de Wetering Radboud University Nijmegen June 6, 2020 such that § hom-sets tf : A Ñ Bu are convex sets, § and the scalars ts : I Ñ I u are the real unit interval r0; 1s Special operations: § States StpAq :“ t! : I Ñ Au § Effects EffpAq :“ tp : A Ñ I u § p ˝ ! is probability that p holds on state ! Generalized Probabilistic Theories GPTs are generalisations of quantum theory. They consist of § systems A; B; C;:::, § the `empty system' I , § operations f : A Ñ B, Special operations: § States StpAq :“ t! : I Ñ Au § Effects EffpAq :“ tp : A Ñ I u § p ˝ ! is probability that p holds on state ! Generalized Probabilistic Theories GPTs are generalisations of quantum theory. They consist of § systems A; B; C;:::, § the `empty system' I , § operations f : A Ñ B, such that § hom-sets tf : A Ñ Bu are convex sets, § and the scalars ts : I Ñ I u are the real unit interval r0; 1s Generalized Probabilistic Theories GPTs are generalisations of quantum theory. They consist of § systems A; B; C;:::, § the `empty system' I , § operations f : A Ñ B, such that § hom-sets tf : A Ñ Bu are convex sets, § and the scalars ts : I Ñ I u are the real unit interval r0; 1s Special operations: § States StpAq :“ t! : I Ñ Au § Effects EffpAq :“ tp : A Ñ I u § p ˝ ! is probability that p holds on state ! Solution: allow more general sets of scalars ts : I Ñ I u. -
Probability Theory Review for Machine Learning
Probability Theory Review for Machine Learning Samuel Ieong November 6, 2006 1 Basic Concepts Broadly speaking, probability theory is the mathematical study of uncertainty. It plays a central role in machine learning, as the design of learning algorithms often relies on proba- bilistic assumption of the data. This set of notes attempts to cover some basic probability theory that serves as a background for the class. 1.1 Probability Space When we speak about probability, we often refer to the probability of an event of uncertain nature taking place. For example, we speak about the probability of rain next Tuesday. Therefore, in order to discuss probability theory formally, we must first clarify what the possible events are to which we would like to attach probability. Formally, a probability space is defined by the triple (Ω, F,P ), where • Ω is the space of possible outcomes (or outcome space), • F ⊆ 2Ω (the power set of Ω) is the space of (measurable) events (or event space), • P is the probability measure (or probability distribution) that maps an event E ∈ F to a real value between 0 and 1 (think of P as a function). Given the outcome space Ω, there is some restrictions as to what subset of 2Ω can be considered an event space F: • The trivial event Ω and the empty event ∅ is in F. • The event space F is closed under (countable) union, i.e., if α, β ∈ F, then α ∪ β ∈ F. • The even space F is closed under complement, i.e., if α ∈ F, then (Ω \ α) ∈ F. -
Asymptotic Spectral Measures: Between Quantum Theory and E
Asymptotic Spectral Measures: Between Quantum Theory and E-theory Jody Trout Department of Mathematics Dartmouth College Hanover, NH 03755 Email: [email protected] Abstract— We review the relationship between positive of classical observables to the C∗-algebra of quantum operator-valued measures (POVMs) in quantum measurement observables. See the papers [12]–[14] and theB books [15], C∗ E theory and asymptotic morphisms in the -algebra -theory of [16] for more on the connections between operator algebra Connes and Higson. The theory of asymptotic spectral measures, as introduced by Martinez and Trout [1], is integrally related K-theory, E-theory, and quantization. to positive asymptotic morphisms on locally compact spaces In [1], Martinez and Trout showed that there is a fundamen- via an asymptotic Riesz Representation Theorem. Examples tal quantum-E-theory relationship by introducing the concept and applications to quantum physics, including quantum noise of an asymptotic spectral measure (ASM or asymptotic PVM) models, semiclassical limits, pure spin one-half systems and quantum information processing will also be discussed. A~ ~ :Σ ( ) { } ∈(0,1] →B H I. INTRODUCTION associated to a measurable space (X, Σ). (See Definition 4.1.) In the von Neumann Hilbert space model [2] of quantum Roughly, this is a continuous family of POV-measures which mechanics, quantum observables are modeled as self-adjoint are “asymptotically” projective (or quasiprojective) as ~ 0: → operators on the Hilbert space of states of the quantum system. ′ ′ A~(∆ ∆ ) A~(∆)A~(∆ ) 0 as ~ 0 The Spectral Theorem relates this theoretical view of a quan- ∩ − → → tum observable to the more operational one of a projection- for certain measurable sets ∆, ∆′ Σ. -
Effective Theory of Levy and Feller Processes
The Pennsylvania State University The Graduate School Eberly College of Science EFFECTIVE THEORY OF LEVY AND FELLER PROCESSES A Dissertation in Mathematics by Adrian Maler © 2015 Adrian Maler Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2015 The dissertation of Adrian Maler was reviewed and approved* by the following: Stephen G. Simpson Professor of Mathematics Dissertation Adviser Chair of Committee Jan Reimann Assistant Professor of Mathematics Manfred Denker Visiting Professor of Mathematics Bharath Sriperumbudur Assistant Professor of Statistics Yuxi Zheng Francis R. Pentz and Helen M. Pentz Professor of Science Head of the Department of Mathematics *Signatures are on file in the Graduate School. ii ABSTRACT We develop a computational framework for the study of continuous-time stochastic processes with c`adl`agsample paths, then effectivize important results from the classical theory of L´evyand Feller processes. Probability theory (including stochastic processes) is based on measure. In Chapter 2, we review computable measure theory, and, as an application to probability, effectivize the Skorokhod representation theorem. C`adl`ag(right-continuous, left-limited) functions, representing possible sample paths of a stochastic process, form a metric space called Skorokhod space. In Chapter 3, we show that Skorokhod space is a computable metric space, and establish fundamental computable properties of this space. In Chapter 4, we develop an effective theory of L´evyprocesses. L´evy processes are known to have c`adl`agmodifications, and we show that such a modification is computable from a suitable representation of the process. We also show that the L´evy-It^odecomposition is computable. -
Curriculum Vitae
Curriculum Vitae General First name: Khudoyberdiyev Surname: Abror Sex: Male Date of birth: 1985, September 19 Place of birth: Tashkent, Uzbekistan Nationality: Uzbek Citizenship: Uzbekistan Marital status: married, two children. Official address: Department of Algebra and Functional Analysis, National University of Uzbekistan, 4, Talabalar Street, Tashkent, 100174, Uzbekistan. Phone: 998-71-227-12-24, Fax: 998-71-246-02-24 Private address: 5-14, Lutfiy Street, Tashkent city, Uzbekistan, Phone: 998-97-422-00-89 (mobile), E-mail: [email protected] Education: 2008-2010 Institute of Mathematics and Information Technologies of Uzbek Academy of Sciences, Uzbekistan, PHD student; 2005-2007 National University of Uzbekistan, master student; 2001-2005 National University of Uzbekistan, bachelor student. Languages: English (good), Russian (good), Uzbek (native), 1 Academic Degrees: Doctor of Sciences in physics and mathematics 28.04.2016, Tashkent, Uzbekistan, Dissertation title: Structural theory of finite - dimensional complex Leibniz algebras and classification of nilpotent Leibniz superalgebras. Scientific adviser: Prof. Sh.A. Ayupov; Doctor of Philosophy in physics and mathematics (PhD) 28.10.2010, Tashkent, Uzbekistan, Dissertation title: The classification some nilpotent finite dimensional graded complex Leibniz algebras. Supervisor: Prof. Sh.A. Ayupov; Master of Science, National University of Uzbekistan, 05.06.2007, Tashkent, Uzbekistan, Dissertation title: The classification filiform Leibniz superalgebras with nilindex n+m. Supervisor: Prof. Sh.A. Ayupov; Bachelor in Mathematics, National University of Uzbekistan, 20.06.2005, Tashkent, Uzbekistan, Dissertation title: On the classification of low dimensional Zinbiel algebras. Supervisor: Prof. I.S. Rakhimov. Professional occupation: June of 2017 - up to Professor, department Algebra and Functional Analysis, present time National University of Uzbekistan. -
Discrete Mathematics Discrete Probability
Introduction Probability Theory Discrete Mathematics Discrete Probability Prof. Steven Evans Prof. Steven Evans Discrete Mathematics Introduction Probability Theory 7.1: An Introduction to Discrete Probability Prof. Steven Evans Discrete Mathematics Introduction Probability Theory Finite probability Definition An experiment is a procedure that yields one of a given set os possible outcomes. The sample space of the experiment is the set of possible outcomes. An event is a subset of the sample space. Laplace's definition of the probability p(E) of an event E in a sample space S with finitely many equally possible outcomes is jEj p(E) = : jSj Prof. Steven Evans Discrete Mathematics By the product rule, the number of hands containing a full house is the product of the number of ways to pick two kinds in order, the number of ways to pick three out of four for the first kind, and the number of ways to pick two out of the four for the second kind. We see that the number of hands containing a full house is P(13; 2) · C(4; 3) · C(4; 2) = 13 · 12 · 4 · 6 = 3744: Because there are C(52; 5) = 2; 598; 960 poker hands, the probability of a full house is 3744 ≈ 0:0014: 2598960 Introduction Probability Theory Finite probability Example What is the probability that a poker hand contains a full house, that is, three of one kind and two of another kind? Prof. Steven Evans Discrete Mathematics Introduction Probability Theory Finite probability Example What is the probability that a poker hand contains a full house, that is, three of one kind and two of another kind? By the product rule, the number of hands containing a full house is the product of the number of ways to pick two kinds in order, the number of ways to pick three out of four for the first kind, and the number of ways to pick two out of the four for the second kind. -
Quantum Minimax Theorem
Quantum Minimax Theorem Fuyuhiko TANAKA July 18, 2018 Abstract Recently, many fundamental and important results in statistical decision the- ory have been extended to the quantum system. Quantum Hunt-Stein theorem and quantum locally asymptotic normality are typical successful examples. In the present paper, we show quantum minimax theorem, which is also an extension of a well-known result, minimax theorem in statistical decision theory, first shown by Wald and generalized by Le Cam. Our assertions hold for every closed convex set of measurements and for general parametric models of density operator. On the other hand, Bayesian analysis based on least favorable priors has been widely used in classical statistics and is expected to play a crucial role in quantum statistics. According to this trend, we also show the existence of least favorable priors, which seems to be new even in classical statistics. 1 Introduction Quantum statistical inference is the inference on a quantum system from relatively small amount of measurement data. It covers also precise analysis of statistical error [34], ex- ploration of optimal measurements to extract information [27], development of efficient arXiv:1410.3639v1 [quant-ph] 14 Oct 2014 numerical computation [10]. With the rapid development of experimental techniques, there has been much work on quantum statistical inference [31], which is now applied to quantum tomography [1, 9], validation of entanglement [17], and quantum bench- marks [18, 28]. In particular, many fundamental and important results in statistical deci- sion theory [38] have been extended to the quantum system. Theoretical framework was originally established by Holevo [20, 21, 22]. -
Arxiv:Quant-Ph/0611110 V1 10 Nov 2006
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server COORDINATING QUANTUM AGENTS’ PERSPECTIVES: CONVEX OPERATIONAL THEORIES, QUANTUM INFORMATION, AND QUANTUM FOUNDATIONS H. BARNUM1 1Computer and Computational Sciences Division CCS-3, MS B256, Los Alamos National Laboratory, Los Alamos 87545, USA E-mail: [email protected] In this paper, I propose a project of enlisting quantum information science as a source of task- oriented axioms for use in the investigation of operational theories in a general framework capable of encompassing quantum mechanics, classical theory, and more. Whatever else they may be, quantum states of systems are compendia of probabilities for the outcomes of possible operations we may perform on the systems: “operational theories.” I discuss appropriate general frameworks for such theories, in which convexity plays a key role. Such frameworks are appropriate for investigating what things look like from an “inside view,” i.e. for describing perspectival information that one subsystem of the world can have about another. Understanding how such views can combine, and whether an overall “geometric” picture (“outside view”) coordinating them all can be had, even if this picture is very different in nature from the structure of the perspectives within it, is the key to understanding whether we may be able to achieve a unified, “objective” physical view in which quantum mechanics is the appropriate description for certain perspectives, or whether quantum mechanics is truly telling us we must go beyond this “geometric” conception of physics. The nature of information, its flow and processing, as seen from various operational persepectives, is likely to be key to understanding whether and how such coordination and unification can be achieved. -
Arxiv:1606.08229V1 [Math-Ph] 27 Jun 2016 States and Synaptic Algebras
States and synaptic algebras David J. Foulis∗ Anna Jenˇcov´aand Sylvia Pulmannov´a† Abstract Different versions of the notion of a state have been formulated for var- ious so-called quantum structures. In this paper, we investigate the interplay among states on synaptic algebras and on its sub-structures. A synaptic algebra is a generalization of the partially ordered Jor- dan algebra of all bounded self-adjoint operators on a Hilbert space. The paper culminates with a characterization of extremal states on a commutative generalized Hermitian algebra, a special kind of synaptic algebra. Key Words: synaptic algebra, GH-algebra, Jordan algebra, convex effect algebra, MV-algebra, ℓ-group, order unit normed space, state, extremal state. AMS Classification 81P10, 81Q10 (46B40) 1 Introduction Synaptic algebras, featured in this paper, incorporate several so-called “quan- tum structures.” Quantum structures were originally understood to be math- arXiv:1606.08229v1 [math-ph] 27 Jun 2016 ematical systems that permit a perspicuous representation for at least one of the key ingredients of quantum-mechanical theory, e.g., states, observables, symmetries, properties, and experimentally testable propositions [11, 13, 40]. ∗Emeritus Professor, Department of Mathematics and Statistics, University of Mas- sachusetts, Amherst, MA; Postal Address: 1 Sutton Court, Amherst, MA 01002, USA; [email protected]. †Mathematical Institute, Slovak Academy of Sciences, Stef´anikovaˇ 49, SK-814 73 Bratislava, Slovakia; [email protected]. The second and third authors were sup- ported by grant VEGA No.2/0069/16. 1 In spite of the adjective ‘quantum,’ a variety of mathematical structures aris- ing in classical physics, computer science, psychology, neuroscience, fuzzy logic, fuzzy set theory, and automata theory are now regarded as quantum structures.