Decoding the Translation Initiation Mechanism of Maize Chlorotic Mottle Virus

Total Page:16

File Type:pdf, Size:1020Kb

Decoding the Translation Initiation Mechanism of Maize Chlorotic Mottle Virus Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2020 Decoding the translation initiation mechanism of maize chlorotic mottle virus Elizabeth Jacqueline Carino Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Recommended Citation Carino, Elizabeth Jacqueline, "Decoding the translation initiation mechanism of maize chlorotic mottle virus" (2020). Graduate Theses and Dissertations. 17962. https://lib.dr.iastate.edu/etd/17962 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Decoding the translation initiation mechanism of maize chlorotic mottle virus by Elizabeth Jacqueline Carino A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Genetics and Genomics Program of Study Committee: Wyatt A. Miller, Major Professor Steven Whitham Thomas Lubberstedt Walter Moss Bing Yang The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this dissertation. The Graduate College will ensure this dissertation is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2020 Copyright © Elizabeth Jacqueline Carino, 2020. All rights reserved. ii DEDICATION I want to dedicate this thesis to all I hold dear: friends, family, mentors, and colleagues. During my scientific journey at Iowa State University, I had the privilege to cultivate long- lasting friendships from diverse academic fields from bioinformatics, agronomy, business, electrical engineering, physics, chemistry, mechanical engineering, graphic design, genetics and genomics, plant pathology and microbiology, kinesiology, mathematics, chemical engineering, psychology, to the department of education and many others fields. Thank you! I am grateful for all your unwavering support through good times and rough times. Thank you all for being a marvelous council of friends. To my mom: thank you for supplying me with the building blocks I needed to build up my strength and resilience. Unfortunately, you didn’t have the chance to see the final product of this dissertation as your end arrived abruptly during the first stages of my dissertation journey. Nonetheless, I dedicate this thesis to you. I miss you. ¡Lo logramos! To my GMAP people: I would like to thank all of the graduate college staff and the graduate student volunteers who served with me in the GMAP research symposium committee during my four years of service. It was inspiring to be surrounded by brilliant minds who were willing to showcase and support the greatness of others. To all the unsung graduate student heroes with whom I have the opportunity to collaborate and work towards making a greater impact on the ISU campus and the Ames community, this dissertation also goes to you. I look forward to the contributions in your respective fields and society. iii TABLE OF CONTENTS Page LIST OF FIGURES ....................................................................................................................... vi LIST OF TABLES ......................................................................................................................... ix ACKNOWLEDGMENTS ...............................................................................................................x ABSTRACT ................................................................................................................................... xi CHAPTER 1: LITERATURE REVIEW .........................................................................................1 Preface ....................................................................................................................................... 1 Tombusviridae Family ............................................................................................................... 1 Tombusviridae Family- Brief History .................................................................................. 1 General Overview ................................................................................................................. 4 Virus Replication .................................................................................................................. 7 Cap-Independent Translation Elements (CITEs) .................................................................... 14 Cap-independent translation elements classification ......................................................... 15 Maize Lethal Necrosis (MLND) .............................................................................................. 19 What causes Maize Lethal Necrosis Disease? ................................................................... 19 From its origins until now .................................................................................................. 21 Economic Impact ................................................................................................................ 21 Detection and Prevention ................................................................................................... 22 Maize Chlorotic Mottle Virus .................................................................................................. 22 Overview ............................................................................................................................ 22 MCMV Symptoms ............................................................................................................. 23 MCMV transmission .......................................................................................................... 25 MCMV detection ................................................................................................................ 26 Molecular Information ....................................................................................................... 28 References ............................................................................................................................... 31 Figures ..................................................................................................................................... 44 Tables ....................................................................................................................................... 62 CHAPTER 2: THE RNA OF MAIZE CHLOROTIC MOTTLE VIRUS - THE ESSENTIAL VIRUS IN MAIZE LETHAL NECROSIS DISEASE - IS TRANSLATED VIA A PANICUM MOSAIC VIRUS-LIKE CAP-INDEPENDENT TRANSLATION ELEMENT ..........................67 Abstract .................................................................................................................................... 67 Author Summary ..................................................................................................................... 68 Introduction ............................................................................................................................. 69 Results ..................................................................................................................................... 71 Mapping the 3’-cap-independent translation element in MCMV ...................................... 71 Determining the secondary structure of MCMV 3’-CITE ................................................. 73 Comparison of the MTE to PTEs: role of the pseudoknot ................................................. 74 The MTE binds eIF4E ........................................................................................................ 77 Secondary structure of the MCMV 5’-UTR ....................................................................... 79 iv Long distance base pairing of the MTE to the 5’ UTR ...................................................... 79 Effects of mutations on the translation of full-length MCMV genomic RNA ................... 81 Replication of mutant MCMV RNA .................................................................................. 82 Discussion ................................................................................................................................ 84 Identification of the 3’CITE in MCMV genome ................................................................ 84 Long-distance kissing stem-loop interactions .................................................................... 86 Translation of sgRNA1 ...................................................................................................... 87 Efficient replication vs efficient translation? ..................................................................... 88 Toward host resistance to MCMV ..................................................................................... 89 Materials and methods ............................................................................................................. 90 Plasmids.............................................................................................................................. 90 In vitro Transcription.......................................................................................................... 90 In vitro
Recommended publications
  • Changes to Virus Taxonomy 2004
    Arch Virol (2005) 150: 189–198 DOI 10.1007/s00705-004-0429-1 Changes to virus taxonomy 2004 M. A. Mayo (ICTV Secretary) Scottish Crop Research Institute, Invergowrie, Dundee, U.K. Received July 30, 2004; accepted September 25, 2004 Published online November 10, 2004 c Springer-Verlag 2004 This note presents a compilation of recent changes to virus taxonomy decided by voting by the ICTV membership following recommendations from the ICTV Executive Committee. The changes are presented in the Table as decisions promoted by the Subcommittees of the EC and are grouped according to the major hosts of the viruses involved. These new taxa will be presented in more detail in the 8th ICTV Report scheduled to be published near the end of 2004 (Fauquet et al., 2004). Fauquet, C.M., Mayo, M.A., Maniloff, J., Desselberger, U., and Ball, L.A. (eds) (2004). Virus Taxonomy, VIIIth Report of the ICTV. Elsevier/Academic Press, London, pp. 1258. Recent changes to virus taxonomy Viruses of vertebrates Family Arenaviridae • Designate Cupixi virus as a species in the genus Arenavirus • Designate Bear Canyon virus as a species in the genus Arenavirus • Designate Allpahuayo virus as a species in the genus Arenavirus Family Birnaviridae • Assign Blotched snakehead virus as an unassigned species in family Birnaviridae Family Circoviridae • Create a new genus (Anellovirus) with Torque teno virus as type species Family Coronaviridae • Recognize a new species Severe acute respiratory syndrome coronavirus in the genus Coro- navirus, family Coronaviridae, order Nidovirales
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT (51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, C12Q 1/68 (2018.01) A61P 31/18 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, C12Q 1/70 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US2018/056167 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 16 October 2018 (16. 10.2018) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 62/573,025 16 October 2017 (16. 10.2017) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, ΓΕ , IS, IT, LT, LU, LV, (71) Applicant: MASSACHUSETTS INSTITUTE OF MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TECHNOLOGY [US/US]; 77 Massachusetts Avenue, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Cambridge, Massachusetts 02139 (US).
    [Show full text]
  • Comparative Sequence and Structure Analysis of Eif1a and Eif1ad Jielin Yu and Assen Marintchev*
    Yu and Marintchev BMC Structural Biology (2018) 18:11 https://doi.org/10.1186/s12900-018-0091-6 RESEARCHARTICLE Open Access Comparative sequence and structure analysis of eIF1A and eIF1AD Jielin Yu and Assen Marintchev* Abstract Background: Eukaryotic translation initiation factor 1A (eIF1A) is universally conserved in all organisms. It has multiple functions in translation initiation, including assembly of the ribosomal pre-initiation complexes, mRNA binding, scanning, and ribosomal subunit joining. eIF1A binds directly to the small ribosomal subunit, as well as to several other translation initiation factors. The structure of an eIF1A homolog, the eIF1A domain-containing protein (eIF1AD) was recently determined but its biological functions are unknown. Since eIF1AD has a known structure, as well as a homolog, whose structure and functions have been extensively studied, it is a very attractive target for sequence and structure analysis. Results: Structure/sequence analysis of eIF1AD found significant conservation in the surfaces corresponding to the ribosome-binding surfaces of its paralog eIF1A, including a nearly invariant surface-exposed tryptophan residue, which plays an important role in the interaction of eIF1A with the ribosome. These results indicate that eIF1AD may bind to the ribosome, similar to its paralog eIF1A, and could have roles in ribosome biogenenesis or regulation of translation. We identified conserved surfaces and sequence motifs in the folded domain as well as the C-terminal tail of eIF1AD, which are likely protein-protein interaction sites. The roles of these regions for eIF1AD function remain to be determined. We have also identified a set of trypanosomatid-specific surface determinants in eIF1A that could be a promising target for development of treatments against these parasites.
    [Show full text]
  • The Cucumber Leaf Spot Virus P25 Auxiliary Replicase Protein Binds and Modifies the Endoplasmic Reticulum Via N-Terminal Transmembrane Domains
    Virology 468-470 (2014) 36–46 Contents lists available at ScienceDirect Virology journal homepage: www.elsevier.com/locate/yviro The Cucumber leaf spot virus p25 auxiliary replicase protein binds and modifies the endoplasmic reticulum via N-terminal transmembrane domains Kankana Ghoshal a, Jane Theilmann b, Ron Reade b, Helene Sanfacon b,D’Ann Rochon a,b,n a University of British Columbia, Faculty of Land and Food Systems, Vancouver, British Columbia, Canada V6T 1Z4 b Agriculture and Agri-Food Canada Pacific Agri-Food Research Centre, 4200 Hwy 97, Summerland, British Columbia, Canada V0H 1Z0 article info abstract Article history: Cucumber leaf spot virus (CLSV) is a member of the Aureusvirus genus, family Tombusviridae. The auxiliary Received 10 June 2014 replicase of Tombusvirids has been found to localize to endoplasmic reticulum (ER), peroxisomes or Returned to author for revisions mitochondria; however, localization of the auxiliary replicase of aureusviruses has not been determined. 28 June 2014 We have found that the auxiliary replicase of CLSV (p25) fused to GFP colocalizes with ER and that three Accepted 13 July 2014 predicted transmembrane domains (TMDs) at the N-terminus of p25 are sufficient for targeting, Available online 16 August 2014 although the second and third TMDs play the most prominent roles. Confocal analysis of CLSV infected Keywords: 16C plants shows that the ER becomes modified including the formation of punctae at connections Aureusvirus between ER tubules and in association with the nucleus. Ultrastructural analysis shows that the Auxiliary replicase cytoplasm contains numerous vesicles which are also found between the perinuclear ER and nuclear Endoplasmic reticulum membrane.
    [Show full text]
  • Redheaded Flea Beetle Integrated Pest Management Andrew Kness and Brian A
    Redheaded Flea Beetle Integrated Pest Management Andrew Kness and Brian A. Kunkel, University of Delaware, Department of Entomology & Wildlife Ecology, Newark, DE ABSTRACT: Redheaded flea beetle (Systena frontalis) has become a serious pest insect of woody and herbaceous ornamental plants over the last several years. Our research focused on identifying when key life stages of the redheaded flea beetle were active and correlating these stages with growing degree day (GDD) data and plant phonological indicators (PPIs). Choice and no-choice feeding assays were conducted to determine host plant preferences. Entomopathogenic nematodes (epns) were applied to containers in field experiments at two locations to evaluate efficacy against the soil-dwelling larvae. Overwintering eggs hatch with larvae active between 257– 481 GDD50, and the corresponding PPIs were black locust and Chinese fringetree in full bloom. First adult emergence occurred between 590– 785 GDD50, and the PPIs were Magnolia grandiflora in flower bud swell to bloom. The second generation of larvae was found between 1818– 1860 GDD50 and the following plants were in the indicated phenological stage: 1) Hosta in full bloom, 2) Crape Myrtle ‘Hopi Pink’ bloom to full bloom, 3) Crape Myrtle ‘Siren Red’ flower bud swell, 4) Hibisucs in bloom and 5) Cerastigma plumbaginoides in bloom. Field observations and choice tests found S. frontalis feeds on many different hosts and exhibited little preference between host plants tested. Field trials with epns did not provide significant control of S. frontalis larvae in either experiment. Further work with potting media, soil temperatures and irrigation needs to continue in order to improve EPN efficacy.
    [Show full text]
  • Viruses Virus Diseases Poaceae(Gramineae)
    Viruses and virus diseases of Poaceae (Gramineae) Viruses The Poaceae are one of the most important plant families in terms of the number of species, worldwide distribution, ecosystems and as ingredients of human and animal food. It is not surprising that they support many parasites including and more than 100 severely pathogenic virus species, of which new ones are being virus diseases regularly described. This book results from the contributions of 150 well-known specialists and presents of for the first time an in-depth look at all the viruses (including the retrotransposons) Poaceae(Gramineae) infesting one plant family. Ta xonomic and agronomic descriptions of the Poaceae are presented, followed by data on molecular and biological characteristics of the viruses and descriptions up to species level. Virus diseases of field grasses (barley, maize, rice, rye, sorghum, sugarcane, triticale and wheats), forage, ornamental, aromatic, wild and lawn Gramineae are largely described and illustrated (32 colour plates). A detailed index Sciences de la vie e) of viruses and taxonomic lists will help readers in their search for information. Foreworded by Marc Van Regenmortel, this book is essential for anyone with an interest in plant pathology especially plant virology, entomology, breeding minea and forecasting. Agronomists will also find this book invaluable. ra The book was coordinated by Hervé Lapierre, previously a researcher at the Institut H. Lapierre, P.-A. Signoret, editors National de la Recherche Agronomique (Versailles-France) and Pierre A. Signoret emeritus eae (G professor and formerly head of the plant pathology department at Ecole Nationale Supérieure ac Agronomique (Montpellier-France). Both have worked from the late 1960’s on virus diseases Po of Poaceae .
    [Show full text]
  • The Dsrna Virus Papaya Meleira Virus and an Ssrna Virus Are Associated with Papaya Sticky Disease
    RESEARCH ARTICLE The dsRNA Virus Papaya Meleira Virus and an ssRNA Virus Are Associated with Papaya Sticky Disease Tathiana Ferreira Sá Antunes1, Raquel J. Vionette Amaral1, José Aires Ventura1,2, Marcio Tadeu Godinho3, Josiane G. Amaral3, Flávia O. Souza4, Poliane Alfenas Zerbini4, Francisco Murilo Zerbini3, Patricia Machado Bueno Fernandes1* 1 Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil, 2 Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural, Vitória, Espírito Santo, Brazil, 3 Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, 36570–900, Viçosa, Minas Gerais, Brazil, 4 Dep. a11111 de Microbiologia/BIOAGRO, Universidade Federal de Viçosa, 36570–900, Viçosa, Minas Gerais, Brazil * [email protected] Abstract OPEN ACCESS Papaya sticky disease, or “meleira”, is one of the major diseases of papaya in Brazil and Citation: Sá Antunes TF, Amaral RJV, Ventura JA, Mexico, capable of causing complete crop loss. The causal agent of sticky disease was Godinho MT, Amaral JG, Souza FO, et al. (2016) The identified as an isometric virus with a double stranded RNA (dsRNA) genome, named dsRNA Virus Papaya Meleira Virus and an ssRNA papaya meleira virus (PMeV). In the present study, PMeV dsRNA and a second RNA band Virus Are Associated with Papaya Sticky Disease. PLoS ONE 11(5): e0155240. doi:10.1371/journal. of approximately 4.5 kb, both isolated from latex of papaya plants with severe symptoms of pone.0155240 sticky disease, were deep-sequenced. The nearly complete sequence obtained for PMeV Editor: Rogerio Margis, Universidade Federal do Rio dsRNA is 8,814 nucleotides long and contains two putative ORFs; the predicted ORF1 and Grande do Sul, BRAZIL ORF2 display similarity to capsid proteins and RdRp's, respectively, from mycoviruses ten- Totiviridae Received: January 4, 2016 tatively classified in the family .
    [Show full text]
  • Diversity and Abundance of Pest Insects Associated with Solanum Tuberosum L
    American Journal of Entomology 2021; 5(3): 51-69 http://www.sciencepublishinggroup.com/j/aje doi: 10.11648/j.aje.20210503.13 ISSN: 2640-0529 (Print); ISSN: 2640-0537 (Online) Diversity and Abundance of Pest Insects Associated with Solanum tuberosum L. 1753 (Solanaceae) in Balessing (West-Cameroon) Babell Ngamaleu-Siewe, Boris Fouelifack-Nintidem, Jeanne Agrippine Yetchom-Fondjo, Basile Moumite Mohamed, Junior Tsekane Sedick, Edith Laure Kenne, Biawa-Miric Kagmegni, * Patrick Steve Tuekam Kowa, Romaine Magloire Fantio, Abdel Kayoum Yomon, Martin Kenne Department of the Biology and Physiology of Animal Organisms, University of Douala, Douala, Cameroon Email address: *Corresponding author To cite this article: Babell Ngamaleu-Siewe, Boris Fouelifack-Nintidem, Jeanne Agrippine Yetchom-Fondjo, Basile Moumite Mohamed, Junior Tsekane Sedick, Edith Laure Kenne, Biawa-Miric Kagmegni, Patrick Steve Tuekam Kowa, Romaine Magloire Fantio, Abdel Kayoum Yomon, Martin Kenne. Diversity and Abundance of Pest Insects Associated with Solanum tuberosum L. 1753 (Solanaceae) in Balessing (West-Cameroon). American Journal of Entomology . Vol. 5, No. 3, 2021, pp. 51-69. doi: 10.11648/j.aje.20210503.13 Received : July 14, 2021; Accepted : August 3, 2021; Published : August 11, 2021 Abstract: Solanum tuberosum L. 1753 (Solanaceae) is widely cultivated for its therapeutic and nutritional qualities. In Cameroon, the production is insufficient to meet the demand in the cities and there is no published data on the diversity of associated pest insects. Ecological surveys were conducted from July to September 2020 in 16 plots of five development stages in Balessing (West- Cameroon). Insects active on the plants were captured and identified and the community structure was characterized.
    [Show full text]
  • ICTV Code Assigned: 2011.001Ag Officers)
    This form should be used for all taxonomic proposals. Please complete all those modules that are applicable (and then delete the unwanted sections). For guidance, see the notes written in blue and the separate document “Help with completing a taxonomic proposal” Please try to keep related proposals within a single document; you can copy the modules to create more than one genus within a new family, for example. MODULE 1: TITLE, AUTHORS, etc (to be completed by ICTV Code assigned: 2011.001aG officers) Short title: Change existing virus species names to non-Latinized binomials (e.g. 6 new species in the genus Zetavirus) Modules attached 1 2 3 4 5 (modules 1 and 9 are required) 6 7 8 9 Author(s) with e-mail address(es) of the proposer: Van Regenmortel Marc, [email protected] Burke Donald, [email protected] Calisher Charles, [email protected] Dietzgen Ralf, [email protected] Fauquet Claude, [email protected] Ghabrial Said, [email protected] Jahrling Peter, [email protected] Johnson Karl, [email protected] Holbrook Michael, [email protected] Horzinek Marian, [email protected] Keil Guenther, [email protected] Kuhn Jens, [email protected] Mahy Brian, [email protected] Martelli Giovanni, [email protected] Pringle Craig, [email protected] Rybicki Ed, [email protected] Skern Tim, [email protected] Tesh Robert, [email protected] Wahl-Jensen Victoria, [email protected] Walker Peter, [email protected] Weaver Scott, [email protected] List the ICTV study group(s) that have seen this proposal: A list of study groups and contacts is provided at http://www.ictvonline.org/subcommittees.asp .
    [Show full text]
  • Flea Beetles
    E-74-W Vegetable Insects Department of Entomology FLEA BEETLES Rick E. Foster and John L. Obermeyer, Extension Entomologists Several species of fl ea beetles are common in Indiana, sometimes causing damage so severe that plants die. Flea beetles are small, hard-shelled insects, so named because their enlarged hind legs allow them to jump like fl eas from plants when disturbed. They usually move by walking or fl ying, but when alarmed they can jump a considerable distance. Most adult fl ea beetle damage is unique in appearance. They feed by chewing a small hole (often smaller than 1/8 inch) in a leaf, moving a short distance, then chewing another hole and so on. The result looks like a number of “shot holes” in the leaf. While some of the holes may meet, very often they do not. A major exception to this characteristic type of damage is that caused by the corn fl ea beetle, which eats the plant tissue forming narrow lines in the corn leaf surface. This damage gives plants a greyish appearance. Corn fl ea beetle damage on corn leaf (Photo Credit: John Obermeyer) extent of damage is realized. Therefore, it is very important to regularly check susceptible plants, especially when they are in the seedling stage. Most species of fl ea beetles emerge from hibernation in late May and feed on weeds and other plants, if hosts are not available. In Indiana, some species have multiple generations per year, and some have only one. Keeping fi elds free of weed hosts will help reduce fl ea beetle populations.
    [Show full text]
  • Key Plant, Key Pests: Baldcypress (Taxodium Distichum)1 Juanita Popenoe, Caroline R
    ENH1293 Key Plant, Key Pests: Baldcypress (Taxodium distichum)1 Juanita Popenoe, Caroline R. Warwick, and Roger Kjelgren2 “knees,” a distinct structure that forms above the roots. They will also grow well in upland sites with few to no “knees” (Gilman and Watson 2014). Key Pests: Baldcypress This series of Key Plant, Key Pests publications is designed for Florida gardeners, horticulturalists, and landscape professionals to help identify common pests associated with common Florida flora. This publication, the first in the Key Plant, Key Pests series, helps identify the most common pests found on the Baldcypress (Taxodium distichum). This publication provides information and general Figure 1. Baldcypress trees can often be seen on lake and river shores management recommendations for the cypress leaf beetle, throughout Florida. Credits: Tyler Jones, UF/IFAS fall webworm, cypress twig gall midge, mealybugs, rust mites, and needle blights. For a more comprehensive guide Key Plant: Baldcypress (Taxodium of woody ornamental insect management, download the current Professional Disease Management Guide for Orna- distichum) mental Plants here or the Integrated Pest Management in the Baldcypress (Taxodium distichum (L.) Rich.) are deciduous- Commercial Ornamental Nursery Guide here. needled pyramidal trees that can reach 100 to 150 feet in height. They grow at a moderately fast rate, reaching 40 to Cypress Leaf Beetle: Systena marginalis 50 feet in the first 15 to 25 years. They are commonly found Recognition: Foliage will appear discolored, turning into throughout the state of Florida, particularly near lakes a bright to dark red with small, linear gouges (approx. and rivers (as they are native to wetlands along running 1/10-inch long) in the needles.
    [Show full text]