Design and Analysis of Data Structures for Dynamic Trees

Total Page:16

File Type:pdf, Size:1020Kb

Design and Analysis of Data Structures for Dynamic Trees Design and Analysis of Data Structures for Dynamic Trees Renato F. Werneck A Dissertation Presented to the Faculty of Princeton University in Candidacy for the Degree of Doctor of Philosophy Recommended for Acceptance by the Department of Computer Science June, 2006 c Copyright 2006 by Renato F. Werneck. All rights reserved. Abstract The dynamic trees problem is that of maintaining a forest that changes over time through edge insertions and deletions. We can associate data with vertices or edges and manip- ulate this data, individually or in bulk, with operations that deal with whole paths or trees. Efficient solutions to this problem have numerous applications, particularly in algo- rithms for network flows and dynamic graphs in general. Several data structures capable of logarithmic-time dynamic tree operations have been proposed. The first was Sleator and Tarjan's ST-tree, which represents a partition of the tree into paths. Although reasonably fast in practice, adapting ST-trees to different applications is nontrivial. Frederickson's topology trees, Alstrup et al.'s top trees, and Acar et al.'s RC-trees are based on tree contractions: they progressively combine vertices or edges to obtain a hierarchical represen- tation of the tree. This approach is more flexible in theory, but all known implementations assume the trees have bounded degree; arbitrary trees are supported only after ternar- ization. This thesis shows how these two approaches can be combined (with very little overhead) to produce a data structure that is at least as generic as any other, very easy to adapt, and as practical as ST-trees. It can be seen as a self-adjusting implementation of top trees and provides a logarithmic bound per operation in the amortized sense. We also discuss a pure contraction-based implementation of top trees, which is more involved but guarantees a logarithmic bound in the worst case. Finally, an experimental evaluation of these two data structures, including a comparison with previous methods, is presented. iii Acknowledgements I am deeply indebted to my advisor, Bob Tarjan, for his guidance and patience. I thought highly of him before I came to Princeton, but now I realize it was not nearly enough. Working with him was a privilege and, above all, a pleasure. I thank my readers, Adam Buchsbaum and Bernard Chazelle, for their numerous com- ments on this dissertation. I also thank Robert Sedgewick and Nicholas Pippenger for taking their time to participate in the thesis committee, and for their questions and suggestions during the presentation of the thesis proposal. I had important discussions about dynamic trees with Umut Acar, Guy Blelloch, Jorge Vittes, and Loukas Georgiadis. I thank Phil Klein for his many helpful comments on the self-adjusting data structure presented in Chapter 4. Mikkel Thorup and Jakob Holm are coauthors (with Bob Tarjan and I) of the worst-case data structure presented in Chapter 3. Diego Nehab has provided me with the computational resources for conducting the ex- periments described in Chapter 5 (i.e., he let me borrow his computer). Kevin Wayne generously taught me how to use the binding machine, all in exchange for a mere acknowl- edgement. I am eternally indebted to him. I thank everybody at Microsoft Research Silicon Valley for giving me the peace of mind to write this dissertation. There is nothing like having a job. I would also like to thank my coauthors in projects I worked on while at Princeton but that are not part of this dissertation. In particular, I thank Ricardo Fukasawa, Loukas Georgiadis, Andrew Goldberg, Haim Kaplan, Jens Lysgaard, Marcus Poggi de Arag~ao, Mauricio Resende, and Eduardo Uchoa. As great as dynamic trees are, it is always nice to iv work on other topics. I thank the administrative staff at the Computer Science department, in particular Melissa Lawson and Mitra Kelly, for shielding me from the bureaucracy of real life. During more than a decade as a Computer Science student, I was fortunate to have great mentors and advisors: Jo~ao Carlos Setubal at Unicamp, Marcus Poggi de Arag~ao at PUC-Rio, Mauricio Resende at AT&T Labs Research, Andrew Goldberg at Microsoft Research Silicon Valley, and, of course, Bob Tarjan at Princeton. I cannot thank them enough for their guidance. On a personal note, I thank my friends for making my years at Princeton unforgettable. This includes Adrian, Diego, Diogo, Loukas, Thomas, Tony, and especially anyone who is considering not talking to me anymore just because I did not mention you by name. Most importantly, I dedicate this dissertation to my parents, Dorothea and Rog´erio. Without them I would be nothing|literally. My work was funded by Princeton University and the Aladdin Project (National Science Foundation grant no. CCR-0122581). Additional summer funding (through internships) was provided by AT&T (in 2002 and 2003) and Microsoft (in 2004 and 2005). v Contents Abstract iii Acknowledgements iv Contents vi List of Figures x List of Tables xii 1 Introduction 1 2 Existing Data Structures 5 2.1 Path Decomposition . 6 2.1.1 Representation . 6 2.1.2 Updating the Tree . 8 2.1.3 Dealing with Values . 10 2.1.4 Undirected Trees . 11 2.1.5 Aggregating Information over Trees . 12 2.1.6 Other Extensions . 15 2.2 Tree Contraction . 16 2.2.1 The Parallel Setting . 16 2.2.2 Topology Trees . 18 vi 2.2.3 RC-Trees . 21 2.2.4 Top Trees . 23 2.3 Euler Tours . 34 3 Contraction-Based Top Trees 38 3.1 Number of Levels . 39 3.2 Updating the Contraction . 44 3.2.1 Updates: Basic Notions . 47 3.2.2 Proof Outline . 51 3.2.3 Replicated Moves . 53 3.2.4 Stable Subtours . 55 3.2.5 Unstable Subtours . 61 3.2.6 Running Time . 67 3.3 Implementation . 71 3.3.1 Representation . 71 3.3.2 Identifying Valid Moves . 72 3.3.3 Updating the Tree . 72 3.3.4 Other Details . 75 3.3.5 Implementing Expose . 76 3.4 Alternative Design Choices . 80 3.4.1 No Circular Order . 80 3.4.2 Back Rakes . 82 3.4.3 Alternating Rounds . 83 3.4.4 Randomization . 83 4 Self-Adjusting Top Trees 85 4.1 Representation . 85 4.1.1 Order within Binary Trees . 90 4.1.2 Handles . 90 vii 4.2 Updates . 91 4.2.1 Soft Expose . 91 4.2.2 Hard Expose . 97 4.2.3 Cuts . 98 4.2.4 Links . 99 4.2.5 Implementation Issues . 100 4.3 Analysis . 101 4.4 Alternative Representations . 105 4.4.1 Possible Simplifications . 105 4.4.2 Unit Trees . 106 4.5 Path Decomposition and Tree Contraction . 107 4.5.1 Contraction to Decomposition . 108 4.5.2 Decomposition to Contraction . 109 4.6 Final Remarks . 110 5 Experimental Analysis 111 5.1 Experimental Setup . 112 5.2 Data Structures . 112 5.2.1 ST-trees . 113 5.2.2 ET-trees . 115 5.2.3 Top Trees . 115 5.3 Maximum Flows . 117 5.3.1 Basics . 118 5.3.2 The Shortest Augmenting Path Algorithm . 119 5.3.3 Experimental Results . 124 5.4 Online Minimum Spanning Forests . 128 5.4.1 The Algorithm . 128 5.4.2 Experimental Setup . 130 5.4.3 Random Graphs . 131 viii 5.4.4 Circular Meshes . 135 5.4.5 High-Degree Vertices . 138 5.4.6 Memory Usage and Cache Effects . 141 5.5 Single-Source Shortest Paths . 143 5.5.1 Algorithm . 144 5.5.2 Experiments . 146 5.6 Random Operations . 148 5.7 Previous Work . 151 5.8 Final Remarks . 154 6 Final Remarks 156 References 160 ix List of Figures 2.1 Example of an ST-tree . 7 2.2 Ternarization . 13 2.3 Topology tree . 18 2.4 A free tree . 24 2.5 Top trees: Basic operations . 24 2.6 A contraction and the corresponding top tree . 26 2.7 A top tree without dummy nodes . 26 2.8 An Euler tour . 36 2.9 A binary tree representing an Euler tour . 36 3.1 Bad configurations . 41 3.2 Good configurations . ..
Recommended publications
  • Cache Oblivious Search Trees Via Binary Trees of Small Height
    Cache Oblivious Search Trees via Binary Trees of Small Height Gerth Stølting Brodal∗ Rolf Fagerberg∗ Riko Jacob∗ Abstract likely to increase in the future [13, pp. 7 and 429]. We propose a version of cache oblivious search trees As a consequence, the memory access pattern of an which is simpler than the previous proposal of Bender, algorithm has become a key component in determining Demaine and Farach-Colton and has the same complex- its running time in practice. Since classic asymptotical ity bounds. In particular, our data structure avoids the analysis of algorithms in the RAM model is unable to use of weight balanced B-trees, and can be implemented capture this, a number of more elaborate models for as just a single array of data elements, without the use of analysis have been proposed. The most widely used of pointers. The structure also improves space utilization. these is the I/O model of Aggarwal and Vitter [1], which For storing n elements, our proposal uses (1 + ε)n assumes a memory hierarchy containing two levels, the times the element size of memory, and performs searches lower level having size M and the transfer between the in worst case O(logB n) memory transfers, updates two levels taking place in blocks of B elements. The in amortized O((log2 n)/(εB)) memory transfers, and cost of the computation in the I/O model is the number range queries in worst case O(logB n + k/B) memory of blocks transferred. This model is adequate when transfers, where k is the size of the output.
    [Show full text]
  • The Euler Tour Technique: Evaluation of Tree Functions
    05‐09‐2015 PARALLEL AND DISTRIBUTED ALGORITHMS BY DEBDEEP MUKHOPADHYAY AND ABHISHEK SOMANI http://cse.iitkgp.ac.in/~debdeep/courses_iitkgp/PAlgo/index.htm THE EULER TOUR TECHNIQUE: EVALUATION OF TREE FUNCTIONS 2 1 05‐09‐2015 OVERVIEW Tree contraction Evaluation of arithmetic expressions 3 PROBLEMS IN PARALLEL COMPUTATIONS OF TREE FUNCTIONS Computations of tree functions are important for designing many algorithms for trees and graphs. Some of these computations include preorder, postorder, inorder numbering of the nodes of a tree, number of descendants of each vertex, level of each vertex etc. 4 2 05‐09‐2015 PROBLEMS IN PARALLEL COMPUTATIONS OF TREE FUNCTIONS Most sequential algorithms for these problems use depth-first search for solving these problems. However, depth-first search seems to be inherently sequential in some sense. 5 PARALLEL DEPTH-FIRST SEARCH It is difficult to do depth-first search in parallel. We cannot assign depth-first numbering to the node n unless we have assigned depth-first numbering to all the nodes in the subtree A. 6 3 05‐09‐2015 PARALLEL DEPTH-FIRST SEARCH There is a definite order of visiting the nodes in depth-first search. We can introduce additional edges to the tree to get this order. The Euler tour technique converts a tree into a list by adding additional edges. 7 PARALLEL DEPTH-FIRST SEARCH The red (or, magenta ) arrows are followed when we visit a node for the first (or, second) time. If the tree has n nodes, we can construct a list with 2n - 2 nodes, where each arrow (directed edge) is a node of the list.
    [Show full text]
  • Area-Efficient Algorithms for Straight-Line Tree Drawings
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Computational Geometry 15 (2000) 175–202 Area-efficient algorithms for straight-line tree drawings ✩ Chan-Su Shin a;∗, Sung Kwon Kim b;1, Kyung-Yong Chwa a a Department of Computer Science, Korea Advanced Institute of Science and Technology, Taejon 305-701, South Korea b Department of Computer Science and Engineering, Chung-Ang University, Seoul 156-756, South Korea Communicated by R. Tamassia; submitted 1 October 1996; received in revised form 1 November 1999; accepted 9 November 1999 Abstract We investigate several straight-line drawing problems for bounded-degree trees in the integer grid without edge crossings under various types of drawings: (1) upward drawings whose edges are drawn as vertically monotone chains, a sequence of line segments, from a parent to its children, (2) order-preserving drawings which preserve the left-to-right order of the children of each vertex, and (3) orthogonal straight-line drawings in which each edge is represented as a single vertical or horizontal segment. Main contribution of this paper is a unified framework to reduce the upper bound on area for the straight-line drawing problems from O.n logn/ (Crescenzi et al., 1992) to O.n log logn/. This is the first solution of an open problem stated by Garg et al. (1993). We also show that any binary tree admits a small area drawing satisfying any given aspect ratio in the orthogonal straight-line drawing type. Our results are briefly summarized as follows.
    [Show full text]
  • Lecture 04 Linear Structures Sort
    Algorithmics (6EAP) MTAT.03.238 Linear structures, sorting, searching, etc Jaak Vilo 2018 Fall Jaak Vilo 1 Big-Oh notation classes Class Informal Intuition Analogy f(n) ∈ ο ( g(n) ) f is dominated by g Strictly below < f(n) ∈ O( g(n) ) Bounded from above Upper bound ≤ f(n) ∈ Θ( g(n) ) Bounded from “equal to” = above and below f(n) ∈ Ω( g(n) ) Bounded from below Lower bound ≥ f(n) ∈ ω( g(n) ) f dominates g Strictly above > Conclusions • Algorithm complexity deals with the behavior in the long-term – worst case -- typical – average case -- quite hard – best case -- bogus, cheating • In practice, long-term sometimes not necessary – E.g. for sorting 20 elements, you dont need fancy algorithms… Linear, sequential, ordered, list … Memory, disk, tape etc – is an ordered sequentially addressed media. Physical ordered list ~ array • Memory /address/ – Garbage collection • Files (character/byte list/lines in text file,…) • Disk – Disk fragmentation Linear data structures: Arrays • Array • Hashed array tree • Bidirectional map • Heightmap • Bit array • Lookup table • Bit field • Matrix • Bitboard • Parallel array • Bitmap • Sorted array • Circular buffer • Sparse array • Control table • Sparse matrix • Image • Iliffe vector • Dynamic array • Variable-length array • Gap buffer Linear data structures: Lists • Doubly linked list • Array list • Xor linked list • Linked list • Zipper • Self-organizing list • Doubly connected edge • Skip list list • Unrolled linked list • Difference list • VList Lists: Array 0 1 size MAX_SIZE-1 3 6 7 5 2 L = int[MAX_SIZE]
    [Show full text]
  • [Type the Document Title]
    International Journal of Engineering Science Invention (IJESI) ISSN (Online): 2319 – 6734, ISSN (Print): 2319 – 6726 www.ijesi.org || PP. 31-35 Parallel and Nearest Neighbor Search for High-Dimensional Index Structure of Content-Based Data Using Dva-Tree A.RosiyaSusaiMary1, Dr.R.Suguna 2 1(Department of Computer Science, Theivanai Ammal College for Women, India) 2(Department of Computer Science, Theivanai Ammal College for Women, India) Abstract: We propose a parallel high-dimensional index structure for content-based information retrieval so as to cope with the linear decrease in retrieval performance. In addition, we devise data insertion, range query and k-NN query processing algorithms which are suitable for a cluster-based parallel architecture. Finally, we show that our parallel index structure achieves good retrieval performance in proportion to the number of servers in the cluster-based architecture and it outperforms a parallel version of the VA-File. To address the demanding search needs caused by large-scale image collections, speeding up the search by using distributed index structures, and a Vector Approximation-file (DVA-file) in parallel. Keywords: Distributed Indexing Structure, High Dimensionality, KNN- Search I. Introduction The need to manage various types of large scale data stored in web environments has drastically increased and resulted in the development of index mechanism for high dimensional feature vector data about such a kinds of multimedia data. Recent search engine for the multimedia data in web location may collect billions of images, text and video data, which makes the performance bottleneck to get a suitable web documents and contents. Given large image and video data collections, a basic problem is to find objects that cover given information need.
    [Show full text]
  • 15–210: Parallel and Sequential Data Structures and Algorithms
    Full Name: Andrew ID: Section: 15{210: Parallel and Sequential Data Structures and Algorithms Practice Final (Solutions) December 2016 • Verify: There are 22 pages in this examination, comprising 8 questions worth a total of 152 points. The last 2 pages are an appendix with costs of sequence, set and table operations. • Time: You have 180 minutes to complete this examination. • Goes without saying: Please answer all questions in the space provided with the question. Clearly indicate your answers. 1 • Beware: You may refer to your two< double-sided 8 2 × 11in sheet of paper with notes, but to no other person or source, during the examination. • Primitives: In your algorithms you can use any of the primitives that we have covered in the lecture. A reasonably comprehensive list is provided at the end. • Code: When writing your algorithms, you can use ML syntax but you don't have to. You can use the pseudocode notation used in the notes or in class. For example you can use the syntax that you have learned in class. In fact, in the questions, we use the pseudo rather than the ML notation. Sections A 9:30am - 10:20am Andra/Charlie B 10:30am - 11:20am Andres/Emma C 12:30pm - 1:20pm Anatol/John D 12:30pm - 1:20pm Aashir/Ashwin E 1:30pm - 2:20pm Nathaniel/Sonya F 3:30pm - 4:20pm Teddy/Vivek G 4:30pm - 5:20pm Alex/Patrick 15{210 Practice Final 1 of 22 December 2016 Full Name: Andrew ID: Question Points Score Binary Answers 30 Costs 12 Short Answers 26 Slightly Longer Answers 20 Neighborhoods 20 Median ADT 12 Geometric Coverage 12 Swap with Compare-and-Swap 20 Total: 152 15{210 Practice Final 2 of 22 December 2016 Question 1: Binary Answers (30 points) (a) (2 points) TRUE or FALSE: The expressions (Seq.reduce f I A) and (Seq.iterate f I A) always return the same result as long as f is commutative.
    [Show full text]
  • Parallel and Nearest Neighbor Search for High-Dimensional Index Structure of Content- Based Data Using DVA-Tree R
    International Journal of Scientific Research and Review ISSN NO: 2279-543X Parallel and Nearest Neighbor search for high-dimensional index structure of content- based data using DVA-tree R. ROSELINE1, Z.JOHN BERNARD2, V. SUGANTHI3 1’2Assistant Professor PG & Research Department of Computer Applications, St Joseph’s College Of Arts and Science, Cuddalore. 2 Research Scholar, PG & Research Department of Computer Science, St Joseph’s College Of Arts and Science, Cuddalore. Abstract We propose a parallel high-dimensional index structure for content-based information retrieval so as to cope with the linear decrease in retrieval performance. In addition, we devise data insertion, range query and k-NN query processing algorithms which are suitable for a cluster-based parallel architecture. Finally, we show that our parallel index structure achieves good retrieval performance in proportion to the number of servers in the cluster-based architecture and it outperforms a parallel version of the VA-File. To address the demanding search needs caused by large-scale image collections, speeding up the search by using distributed index structures, and a Vector Approximation-file (DVA-file) in parallel Keywords: KNN- search, distributed indexing structure, high Dimensionality 1. Introduction The need to manage various types of large scale data stored in web environments has drastically increased and resulted in the development of index mechanism for high dimensional feature vector data about such a kinds of multimedia data. Recent search engine for the multimedia data in web location may collect billions of images, text and video data, which makes the performance bottleneck to get a suitable web documents and contents.
    [Show full text]
  • Top Tree Compression of Tries∗
    Top Tree Compression of Tries∗ Philip Bille Pawe lGawrychowski Inge Li Gørtz [email protected] [email protected] [email protected] Gad M. Landau Oren Weimann [email protected] [email protected] Abstract We present a compressed representation of tries based on top tree compression [ICALP 2013] that works on a standard, comparison-based, pointer machine model of computation and supports efficient prefix search queries. Namely, we show how to preprocess a set of strings of total length n over an alphabet of size σ into a compressed data structure of worst-case optimal size O(n= logσ n) that given a pattern string P of length m determines if P is a prefix of one of the strings in time O(min(m log σ; m + log n)). We show that this query time is in fact optimal regardless of the size of the data structure. Existing solutions either use Ω(n) space or rely on word RAM techniques, such as tabulation, hashing, address arithmetic, or word-level parallelism, and hence do not work on a pointer machine. Our result is the first solution on a pointer machine that achieves worst-case o(n) space. Along the way, we develop several interesting data structures that work on a pointer machine and are of independent interest. These include an optimal data structures for random access to a grammar- compressed string and an optimal data structure for a variant of the level ancestor problem. 1 Introduction A string dictionary compactly represents a set of strings S = S1;:::;Sk to support efficient prefix queries, that is, given a pattern string P determine if P is a prefix of some string in S.
    [Show full text]
  • Dynamic Trees 2005; Werneck, Tarjan
    Dynamic Trees 2005; Werneck, Tarjan Renato F. Werneck, Microsoft Research Silicon Valley www.research.microsoft.com/˜renatow Entry editor: Giuseppe Italiano Index Terms: Dynamic trees, link-cut trees, top trees, topology trees, ST- trees, RC-trees, splay trees. Synonyms: Link-cut trees. 1 Problem Definition The dynamic tree problem is that of maintaining an arbitrary n-vertex for- est that changes over time through edge insertions (links) and deletions (cuts). Depending on the application, one associates information with ver- tices, edges, or both. Queries and updates can deal with individual vertices or edges, but more commonly they refer to entire paths or trees. Typical operations include finding the minimum-cost edge along a path, determining the minimum-cost vertex in a tree, or adding a constant value to the cost of each edge on a path (or of each vertex of a tree). Each of these operations, as well as links and cuts, can be performed in O(log n) time with appropriate data structures. 2 Key Results The obvious solution to the dynamic tree problem is to represent the forest explicitly. This, however, is inefficient for queries dealing with entire paths or trees, since it would require actually traversing them. Achieving O(log n) time per operation requires mapping each (possibly unbalanced) input tree into a balanced tree, which is better suited to maintaining information about paths or trees implicitly. There are three main approaches to perform the mapping: path decomposition, tree contraction, and linearization. 1 Path decomposition. The first efficient dynamic tree data structure was Sleator and Tarjan’s ST-trees [13, 14], also known as link-cut trees or simply dynamic trees.
    [Show full text]
  • List of Transparencies
    List of Transparencies Chapter 1 Primitive Java 1 A simple first program 2 The eight primitve types in Java 3 Program that illustrates operators 4 Result of logical operators 5 Examples of conditional and looping constructs 6 Layout of a switch statement 7 Illustration of method declaration and calls 8 Chapter 2 References 9 An illustration of a reference: The Point object stored at memory location 1000 is refer- enced by both point1 and point3. The Point object stored at memory location 1024 is referenced by point2. The memory locations where the variables are stored are arbitrary 10 The result of point3=point2: point3 now references the same object as point2 11 Simple demonstration of arrays 12 Array expansion: (a) starting point: a references 10 integers; (b) after step 1: original references the 10 integers; (c) after steps 2 and 3: a references 12 integers, the first 10 of which are copied from original; (d) after original exits scope, the orig- inal array is unreferenced and can be reclaimed 13 Common standard run-time exceptions 14 Common standard checked exceptions 15 Simple program to illustrate exceptions 16 Illustration of the throws clause 17 Program that demonstrates the string tokenizer 18 Program to list contents of a file 19 Chapter 3 Objects and Classes 20 Copyright 1998 by Addison-Wesley Publishing Company ii A complete declaration of an IntCell class 21 IntCell members: read and write are accessible, but storedValue is hidden 22 A simple test routine to show how IntCell objects are accessed 23 IntCell declaration with
    [Show full text]
  • Massively Parallel Dynamic Programming on Trees∗
    Massively Parallel Dynamic Programming on Trees∗ MohammadHossein Bateniy Soheil Behnezhadz Mahsa Derakhshanz MohammadTaghi Hajiaghayiz Vahab Mirrokniy Abstract Dynamic programming is a powerful technique that is, unfortunately, often inherently se- quential. That is, there exists no unified method to parallelize algorithms that use dynamic programming. In this paper, we attempt to address this issue in the Massively Parallel Compu- tations (MPC) model which is a popular abstraction of MapReduce-like paradigms. Our main result is an algorithmic framework to adapt a large family of dynamic programs defined over trees. We introduce two classes of graph problems that admit dynamic programming solutions on trees. We refer to them as \(poly log)-expressible" and \linear-expressible" problems. We show that both classes can be parallelized in O(log n) rounds using a sublinear number of machines and a sublinear memory per machine. To achieve this result, we introduce a series of techniques that can be plugged together. To illustrate the generality of our framework, we implement in O(log n) rounds of MPC, the dynamic programming solution of graph problems such as minimum bisection, k-spanning tree, maximum independent set, longest path, etc., when the input graph is a tree. arXiv:1809.03685v2 [cs.DS] 14 Sep 2018 ∗This is the full version of a paper [8] appeared at ICALP 2018. yGoogle Research, New York. Email: fbateni,[email protected]. zDepartment of Computer Science, University of Maryland. Email: fsoheil,mahsaa,[email protected]. Supported in part by NSF CAREER award CCF-1053605, NSF BIGDATA grant IIS-1546108, NSF AF:Medium grant CCF-1161365, DARPA GRAPHS/AFOSR grant FA9550-12-1-0423, and another DARPA SIMPLEX grant.
    [Show full text]
  • Funnel Heap - a Cache Oblivious Priority Queue
    Alcom-FT Technical Report Series ALCOMFT-TR-02-136 Funnel Heap - A Cache Oblivious Priority Queue Gerth Stølting Brodal∗,† Rolf Fagerberg∗ Abstract The cache oblivious model of computation is a two-level memory model with the assumption that the parameters of the model are un- known to the algorithms. A consequence of this assumption is that an algorithm efficient in the cache oblivious model is automatically effi- cient in a multi-level memory model. Arge et al. recently presented the first optimal cache oblivious priority queue, and demonstrated the im- portance of this result by providing the first cache oblivious algorithms for graph problems. Their structure uses cache oblivious sorting and selection as subroutines. In this paper, we devise an alternative opti- mal cache oblivious priority queue based only on binary merging. We also show that our structure can be made adaptive to different usage profiles. Keywords: Cache oblivious algorithms, priority queues, memory hierar- chies, merging ∗BRICS (Basic Research in Computer Science, www.brics.dk, funded by the Danish National Research Foundation), Department of Computer Science, University of Aarhus, Ny Munkegade, DK-8000 Arhus˚ C, Denmark. E-mail: {gerth,rolf}@brics.dk. Partially supported by the Future and Emerging Technologies programme of the EU under contract number IST-1999-14186 (ALCOM-FT). †Supported by the Carlsberg Foundation (contract number ANS-0257/20). 1 1 Introduction External memory models are formal models for analyzing the impact of the memory access patterns of algorithms in the presence of several levels of memory and caches on modern computer architectures. The cache oblivious model, recently introduced by Frigo et al.
    [Show full text]