Modeling Jellyfish Pelagia Noctiluca Transport and Stranding in The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
DOCTORAL THESIS a Physio-Ecological Study of Ephyrae
DOCTORAL THESIS A Physio-ecological Study of Ephyrae of the Common Jellyfish Aurelia aurita s.l. (Cnidaria: Scyphozoa), with Special Reference to their Survival Capability under Starvation Zhilu Fu Graduate School of Biosphere Science Hiroshima University September 2014 DOCTORAL THESIS A Physio-ecological Study of Ephyrae of the Common Jellyfish Aurelia aurita s.l. (Cnidaria: Scyphozoa), with Special Reference to their Survival Capability under Starvation Zhilu Fu Department of environmental Dynamics and Management Graduate School of Biosphere Science Hiroshima University September 2014 Abstract The moon jellyfish Aurelia aurita s.l. is the most common scyphozoan jellyfish in the coastal waters around the world, and the mass occurrences of this species have been reported from various regions. In recent decades, A. aurita blooms have become increasingly prominent in East Asian seas, causing serious problems to human sectors such as fisheries and coastal power plant operations. Therefore, it is important to identify causes for the enhancement of A. aurita populations to forecast likely outbreaks prior to the season of medusa blooms. In the population dynamics of scyphozoan jellyfish, the following two factors are important to determine the size of adult (medusa) population: (1) the abundance of benthic polyps, which reproduce asexually and undergo seasonal strobilation to release planktonic ephyrae, and (2) the mortality of ephyrae before recruitment to the medusa stage. Although much knowledge has been accumulated about physio-ecology of the polyp stage by previous studies, only few studies have been conducted for the ephyra stage. The success for survival through larval stage is basically affected by two factors, viz. food availability and predation. -
Towards Understanding the Phylogenetic History of Hydrozoa: Hypothesis Testing with 18S Gene Sequence Data*
SCI. MAR., 64 (Supl. 1): 5-22 SCIENTIA MARINA 2000 TRENDS IN HYDROZOAN BIOLOGY - IV. C.E. MILLS, F. BOERO, A. MIGOTTO and J.M. GILI (eds.) Towards understanding the phylogenetic history of Hydrozoa: Hypothesis testing with 18S gene sequence data* A. G. COLLINS Department of Integrative Biology and Museum of Paleontology, University of California, Berkeley, CA 94720, USA SUMMARY: Although systematic treatments of Hydrozoa have been notoriously difficult, a great deal of useful informa- tion on morphologies and life histories has steadily accumulated. From the assimilation of this information, numerous hypotheses of the phylogenetic relationships of the major groups of Hydrozoa have been offered. Here I evaluate these hypotheses using the complete sequence of the 18S gene for 35 hydrozoan species. New 18S sequences for 31 hydrozoans, 6 scyphozoans, one cubozoan, and one anthozoan are reported. Parsimony analyses of two datasets that include the new 18S sequences are used to assess the relative strengths and weaknesses of a list of phylogenetic hypotheses that deal with Hydro- zoa. Alternative measures of tree optimality, minimum evolution and maximum likelihood, are used to evaluate the relia- bility of the parsimony analyses. Hydrozoa appears to be composed of two clades, herein called Trachylina and Hydroidolina. Trachylina consists of Limnomedusae, Narcomedusae, and Trachymedusae. Narcomedusae is not likely to be the basal group of Trachylina, but is instead derived directly from within Trachymedusae. This implies the secondary gain of a polyp stage. Hydroidolina consists of Capitata, Filifera, Hydridae, Leptomedusae, and Siphonophora. “Anthomedusae” may not form a monophyletic grouping. However, the relationships among the hydroidolinan groups are difficult to resolve with the present set of data. -
Pelagia Benovici Sp. Nov. (Cnidaria, Scyphozoa): a New Jellyfish in the Mediterranean Sea
Zootaxa 3794 (3): 455–468 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3794.3.7 http://zoobank.org/urn:lsid:zoobank.org:pub:3DBA821B-D43C-43E3-9E5D-8060AC2150C7 Pelagia benovici sp. nov. (Cnidaria, Scyphozoa): a new jellyfish in the Mediterranean Sea STEFANO PIRAINO1,2,5, GIORGIO AGLIERI1,2,5, LUIS MARTELL1, CARLOTTA MAZZOLDI3, VALENTINA MELLI3, GIACOMO MILISENDA1,2, SIMONETTA SCORRANO1,2 & FERDINANDO BOERO1, 2, 4 1Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, 73100 Lecce, Italy 2CoNISMa, Consorzio Nazionale Interuniversitario per le Scienze del Mare, Roma 3Dipartimento di Biologia e Stazione Idrobiologica Umberto D’Ancona, Chioggia, Università di Padova. 4 CNR – Istituto di Scienze Marine, Genova 5Corresponding authors: [email protected], [email protected] Abstract A bloom of an unknown semaestome jellyfish species was recorded in the North Adriatic Sea from September 2013 to early 2014. Morphological analysis of several specimens showed distinct differences from other known semaestome spe- cies in the Mediterranean Sea and unquestionably identified them as belonging to a new pelagiid species within genus Pelagia. The new species is morphologically distinct from P. noctiluca, currently the only recognized valid species in the genus, and from other doubtful Pelagia species recorded from other areas of the world. Molecular analyses of mitochon- drial cytochrome c oxidase subunit I (COI) and nuclear 28S ribosomal DNA genes corroborate its specific distinction from P. noctiluca and other pelagiid taxa, supporting the monophyly of Pelagiidae. Thus, we describe Pelagia benovici sp. -
Biological Interactions Between Fish and Jellyfish in the Northwestern Mediterranean
Biological interactions between fish and jellyfish in the northwestern Mediterranean Uxue Tilves Barcelona 2018 Biological interactions between fish and jellyfish in the northwestern Mediterranean Interacciones biológicas entre meduas y peces y sus implicaciones ecológicas en el Mediterráneo Noroccidental Uxue Tilves Matheu Memoria presentada para optar al grado de Doctor por la Universitat Politècnica de Catalunya (UPC), Programa de doctorado en Ciencias del Mar (RD 99/2011). Tesis realizada en el Institut de Ciències del Mar (CSIC). Directora: Dra. Ana Maria Sabatés Freijó (ICM-CSIC) Co-directora: Dra. Verónica Lorena Fuentes (ICM-CSIC) Tutor/Ponente: Dr. Manuel Espino Infantes (UPC) Barcelona This student has been supported by a pre-doctoral fellowship of the FPI program (Spanish Ministry of Economy and Competitiveness). The research carried out in the present study has been developed in the frame of the FISHJELLY project, CTM2010-18874 and CTM2015- 68543-R. Cover design by Laura López. Visual design by Eduardo Gil. Thesis contents THESIS CONTENTS Summary 9 General Introduction 11 Objectives and thesis outline 30 Digestion times and predation potentials of Pelagia noctiluca eating CHAPTER1 fish larvae and copepods in the NW Mediterranean Sea 33 Natural diet and predation impacts of Pelagia noctiluca on fish CHAPTER2 eggs and larvae in the NW Mediterranean 57 Trophic interactions of the jellyfish Pelagia noctiluca in the NW Mediterranean: evidence from stable isotope signatures and fatty CHAPTER3 acid composition 79 Associations between fish and jellyfish in the NW CHAPTER4 Mediterranean 105 General Discussion 131 General Conclusion 141 Acknowledgements 145 Appendices 149 Summary 9 SUMMARY Jellyfish are important components of marine ecosystems, being a key link between lower and higher trophic levels. -
PICES-2012 Program and Abstracts
PICES-2012 Program & Abstracts Image: “The Itsukushima Shrine from the sea”, November 25, 2010, watercolour, by Satoshi Arima, retiree of the National Research Institute of Fisheries and Environment of Inland Sea, Hiroshima, Japan. Permission to reproduce this artwork was kindly granted by Mr. Arima. Prepared and published by: North Pacific Marine Science Organization PICES Secretariat P.O. Box 6000 Sidney, BC PICES-2012 V8L 4B2 Canada Tel: 1-250-363-6366 Fax: 1-250-363-6827 Program and Abstracts E-mail: [email protected] Website: www.pices.int October 12-21, 2012 Hiroshima, Japan PICES-2012 Effects of natural and anthropogenic stressors in the North Pacific ecosystems: Scientific challenges and possible solutions North Pacific Marine Science Organization October 12-21, 2012 Hiroshima, Japan Table of Contents Notes for Guidance � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �vi International Conference Center Floor Plan � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � vii Meeting Timetable � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �viii Map of the International Conference Center Area � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � xii Keynote Lecture � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 1 Schedules and Abstracts S1: Science Board Symposium Effects of natural and anthropogenic stressors in -
Long-Term Fluctuations of Pelagia Noctiluca (Cnidaria, Scyphomedusa) in the Western Mediterranean Sea
Deep-sea Research, Vol. 36, No. 2, pp. 269-279,1989. 0198-0149/89 $3.00 + 0.00 Printed in Great Britain. 0 1949 Pergamon Press plc. Long-term fluctuations of Pelagia noctiluca (Cnidaria, Scyphomedusa) in the western Mediterranean Sea. Prediction by climatic variables JACQUELINEGOY ,* t PIE ORAND?$ and MICHGLEETIENNE? (Received 9 March 1988; in revised form 21 September 1988; accepted 26 September 1988) - Abstract-The archives of the Station Zoologique at Villefranche-sur-Mer contain records of “years with Pelagia noctiluca” and “years without Pelagia”. These records, plus additional data, indicate that over the past 200 years (1785-1985) outbursts of Pelagia have occurred about every 12 years. Using a forecasting model, climatic variables, notably temperature, rainfall and atmospheric pressure, appear to predict “years with Pelagiá”. INTRODUCTION ’ POPULATIONdensities of marine planktonic species are known to fluctuate with time and place. Although at first annual variations monopolized the attention of biologists, interest currently is focused on longer term variations, generally within the context of hydrology and climatology: e.g. the Russell cycle (CUSHINGand DICKSON,1976), El Niño (Qu“ et al., 1978), and upwellings on the western coasts of continents (CUSHING,1971). We are concerned here with fluctuations in the population of the Scyphomedusa Pelagia noctiluca (Forsskål, 1775). Pelagia noctiluca can reach a diameter of 12 cm; with a carnivorous level. In contrast to the other Scyphomedusae, it completes its life-cycle without any fixed stage. In the western Mediterranean Sea, the records of the Station Zoologique at Ville- franche-sur-Mer (France), from 1898 to 1916 (GOY,1984; MORANDand DALLOT,1985) give evidence of the occurrence of “years with Pelagia noctiluca” and “years without Pelagia”. -
Impact of Scyphozoan Venoms on Human Health and Current First Aid Options for Stings
toxins Review Impact of Scyphozoan Venoms on Human Health and Current First Aid Options for Stings Alessia Remigante 1,2, Roberta Costa 1, Rossana Morabito 2 ID , Giuseppa La Spada 2, Angela Marino 2 ID and Silvia Dossena 1,* ID 1 Institute of Pharmacology and Toxicology, Paracelsus Medical University, Strubergasse 21, A-5020 Salzburg, Austria; [email protected] (A.R.); [email protected] (R.C.) 2 Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, I-98166 Messina, Italy; [email protected] (R.M.); [email protected] (G.L.S.); [email protected] (A.M.) * Correspondence: [email protected]; Tel.: +43-662-2420-80564 Received: 10 February 2018; Accepted: 21 March 2018; Published: 23 March 2018 Abstract: Cnidaria include the most venomous animals of the world. Among Cnidaria, Scyphozoa (true jellyfish) are ubiquitous, abundant, and often come into accidental contact with humans and, therefore, represent a threat for public health and safety. The venom of Scyphozoa is a complex mixture of bioactive substances—including thermolabile enzymes such as phospholipases, metalloproteinases, and, possibly, pore-forming proteins—and is only partially characterized. Scyphozoan stings may lead to local and systemic reactions via toxic and immunological mechanisms; some of these reactions may represent a medical emergency. However, the adoption of safe and efficacious first aid measures for jellyfish stings is hampered by the diffusion of folk remedies, anecdotal reports, and lack of consensus in the scientific literature. Species-specific differences may hinder the identification of treatments that work for all stings. -
Differing Effects of Vinegar on Pelagia Noctiluca (Cnidaria: Scyphozoa) and Carybdea Marsupialis (Cnidaria: Cubozoa) Stings—Implications for First Aid Protocols
toxins Article Differing Effects of Vinegar on Pelagia noctiluca (Cnidaria: Scyphozoa) and Carybdea marsupialis (Cnidaria: Cubozoa) Stings—Implications for First Aid Protocols Ainara Ballesteros 1,* , Macarena Marambio 1, Verónica Fuentes 1, Mridvika Narda 2, Andreu Santín 1 and Josep-Maria Gili 1 1 ICM-CSIC-Institute of Marine Sciences, Department of Marine Biology and Oceanography, Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain; [email protected] (M.M.); [email protected] (V.F.); [email protected] (A.S.); [email protected] (J.-M.G.) 2 ISDIN, Innovation and Development, C. Provençals 33, 08019 Barcelona, Spain; [email protected] * Correspondence: [email protected] Abstract: The jellyfish species that inhabit the Mediterranean coastal waters are not lethal, but their stings can cause severe pain and systemic effects that pose a health risk to humans. Despite the frequent occurrence of jellyfish stings, currently no consensus exists among the scientific community regarding the most appropriate first-aid protocol. Over the years, several different rinse solutions have been proposed. Vinegar, or acetic acid, is one of the most established of these solutions, with effi- cacy data published. We investigated the effect of vinegar and seawater on the nematocyst discharge process in two species representative of the Mediterranean region: Pelagia noctiluca (Scyphozoa) and Carybdea marsupialis (Cubozoa), by means of (1) direct observation of nematocyst discharge on light microscopy (tentacle solution assay) and (2) quantification of hemolytic area (tentacle skin blood Citation: Ballesteros, A.; agarose assay). In both species, nematocyst discharge was not stimulated by seawater, which was Marambio, M.; Fuentes, V.; Narda, M.; classified as a neutral solution. -
Jellyfish Stings Trigger Gill Disorders and Increased Mortality in Farmed Sparus Aurata (Linnaeus, 1758) in the Mediterranean Sea
RESEARCH ARTICLE Jellyfish Stings Trigger Gill Disorders and Increased Mortality in Farmed Sparus aurata (Linnaeus, 1758) in the Mediterranean Sea Mar Bosch-Belmar1,7☯*, Charaf M’Rabet2☯, Raouf Dhaouadi3, Mohamed Chalghaf4, Mohamed Néjib Daly Yahia5, Verónica Fuentes6, Stefano Piraino1,7‡*, Ons Kéfi-Daly Yahia2‡ 1 Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Lecce, Italy, 2 Research group of Oceanography and Plankton, National Agronomic Institute of Tunis, Tunis, Tunisia, a11111 3 Ecole Nationale de Médecine Vétérinaire, Sidi Thabet Ariana, Tunisia, 4 Institut Supérieur de Pêche et d’Aquaculture-Bizerte, Bizerte, Tunisia, 5 Faculté des Sciences de Bizerte, Jarzouna, Tunisia, 6 Institut de Ciències del Mar, ICM-CSIC, Barcelona, Spain, 7 CONISMA, Consorzio Nazionale Interuniversitario per le Scienze del Mare, Roma, Italy ☯ These authors contributed equally to this work. ‡ These authors are joint senior authors on this work. * [email protected] (MBB); [email protected] (SP) OPEN ACCESS Citation: Bosch-Belmar M, M’Rabet C, Dhaouadi R, Chalghaf M, Daly Yahia MN, Fuentes V, et al. (2016) Abstract Jellyfish Stings Trigger Gill Disorders and Increased Mortality in Farmed Sparus aurata (Linnaeus, 1758) Jellyfish are of particular concern for marine finfish aquaculture. In recent years repeated in the Mediterranean Sea. PLoS ONE 11(4): mass mortality episodes of farmed fish were caused by blooms of gelatinous cnidarian e0154239. doi:10.1371/journal.pone.0154239 stingers, as a consequence of a wide range of hemolytic, cytotoxic, and neurotoxic proper- Editor: Graeme Hays, Deakin University, ties of associated cnidocytes venoms. The mauve stinger jellyfish Pelagia noctiluca (Scy- AUSTRALIA phozoa) has been identified as direct causative agent for several documented fish mortality Received: December 21, 2015 events both in Northern Europe and the Mediterranean Sea aquaculture farms. -
Hermit Crabs - Paguridae and Diogenidae
Identification Guide to Marine Invertebrates of Texas by Brenda Bowling Texas Parks and Wildlife Department April 12, 2019 Version 4 Page 1 Marine Crabs of Texas Mole crab Yellow box crab Giant hermit Surf hermit Lepidopa benedicti Calappa sulcata Petrochirus diogenes Isocheles wurdemanni Family Albuneidae Family Calappidae Family Diogenidae Family Diogenidae Blue-spot hermit Thinstripe hermit Blue land crab Flecked box crab Paguristes hummi Clibanarius vittatus Cardisoma guanhumi Hepatus pudibundus Family Diogenidae Family Diogenidae Family Gecarcinidae Family Hepatidae Calico box crab Puerto Rican sand crab False arrow crab Pink purse crab Hepatus epheliticus Emerita portoricensis Metoporhaphis calcarata Persephona crinita Family Hepatidae Family Hippidae Family Inachidae Family Leucosiidae Mottled purse crab Stone crab Red-jointed fiddler crab Atlantic ghost crab Persephona mediterranea Menippe adina Uca minax Ocypode quadrata Family Leucosiidae Family Menippidae Family Ocypodidae Family Ocypodidae Mudflat fiddler crab Spined fiddler crab Longwrist hermit Flatclaw hermit Uca rapax Uca spinicarpa Pagurus longicarpus Pagurus pollicaris Family Ocypodidae Family Ocypodidae Family Paguridae Family Paguridae Dimpled hermit Brown banded hermit Flatback mud crab Estuarine mud crab Pagurus impressus Pagurus annulipes Eurypanopeus depressus Rithropanopeus harrisii Family Paguridae Family Paguridae Family Panopeidae Family Panopeidae Page 2 Smooth mud crab Gulf grassflat crab Oystershell mud crab Saltmarsh mud crab Hexapanopeus angustifrons Dyspanopeus -
Tuna Ocean Restocking (Tor) Pilot Study - Sea-Based Hatching and Release of Atlantic Bluefin Tuna Larvae Theory and Practice
SCRS/2019/172 Collect. Vol. Sci. Pap. ICCAT, 76(2): 408-420 (2020) TUNA OCEAN RESTOCKING (TOR) PILOT STUDY - SEA-BASED HATCHING AND RELEASE OF ATLANTIC BLUEFIN TUNA LARVAE THEORY AND PRACTICE C.R Bridges1,2*, D. Nousdili2, S. Kranz-Finger2, F. Borutta2, S. Schulz2, S. Na’amnieh2, R. Vassallo-Agius2,3 M. Psaila3 and S. Ellul 3 SUMMARY In April 2018 a pilot broodstock cage (30 m in diameter and 20 m deep) containing 48 adult Atlantic bluefin tuna (ABFT) was established 6 km off the coast of Malta. When sea water temperatures reached 22°C+, an egg collector net was attached to the downward current side of the cage. On the 21st June approximately 500,000 eggs were collected and on the following days approximately 1.7 million eggs were collected in total. Pilot experiments were carried out monitoring egg fertilisation, hatching rates and YSL survival after incubation both in the sea and in the laboratory. Eggs incubated in-situ sea incubator nets showed hatching rates between 80 and 90%; corresponding to the laboratory value. YSL survived up to 8 days in the laboratory. Molecular analysis of parental contribution of the egg batches indicated that at least 25 mothers had contributed towards egg production. Based on the figures obtained for egg numbers, hatching rates, the numbers of contributing mothers and the theoretical maximum fecundity approximately 75 million DNA-tagged larvae were released back into the sea. RÉSUMÉ En avril 2018, une cage pilote de géniteurs (30 m de diamètre et 20 m de profondeur) contenant 48 thons rouges de l'Atlantique (ABFT) adultes a été placée à 6 km au large de Malte. -
Digestion Times and Predation Potentials of Pelagia Noctiluca Eating Fish Larvae and Copepods in the NW Mediterranean Sea
Vol. 510: 201–213, 2014 MARINE ECOLOGY PROGRESS SERIES Published September 9 doi: 10.3354/meps10790 Mar Ecol Prog Ser Contribution to the Theme Section ‘Jellyfish blooms and ecological interactions’ FREEREE ACCESSCCESS Digestion times and predation potentials of Pelagia noctiluca eating fish larvae and copepods in the NW Mediterranean Sea Jennifer E. Purcell1,*, Uxue Tilves2, Verónica L. Fuentes2, Giacomo Milisenda3, Alejandro Olariaga2, Ana Sabatés2 1Western Washington University, Shannon Point Marine Center, 1900 Shannon Point Rd, Anacortes, WA 98221, USA 2Institut de Ciències del Mar, CSIC, P. Marítim 37–49, 08003 Barcelona, Spain 3Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, 73100 Lecce, Italy ABSTRACT: Predation is the principal direct cause of mortality of fish eggs and larvae (ichthyo- plankton). Pelagic cnidarians and ctenophores are consumers of ichthyoplankton and zooplankton foods of fish, yet few estimates exist of predation effects in situ. Microscopic analyses of the gastric ‘gut’ contents of gelatinous predators reveal the types and amounts of prey eaten and can be used with digestion time (DT) to estimate feeding rates (prey consumed predator−1 time−1). We meas- ured the DT and recognition time (RT) of prey for Pelagia noctiluca, an abundant jellyfish with increasing blooms in the Mediterranean Sea. DT of fish larvae averaged 2.5 to 3.0 h for P. noctiluca (4−110 mm diameter) and was significantly related to jellyfish and larval sizes. In contrast, DT of fish eggs ranged from 1.2 to 44.8 h for jellyfish ≤22 mm diameter (‘ephyrae’), but DT was not sig- nificantly related to ephyra or egg diameter.