The Nest Architecture of the Ant, Pheidole Oxyops Forel, 1908 (Hymenoptera: Formicidae)
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
March-April 2003
FOCUS ON RESEARCH E.O. Wilson’s view of life takes in all things small and great. by JOHN S. ROSENBERG ormal retirement hasn’t slowed E.O. Wilson down at all. Since assuming emeritus status as Pellegrino University Research Professor in 1997, Wilson— the father of sociobiology and biophilia, the most acute student of ants among contemporary scholars, perhaps the foremost scientific spokesman for the im- portance of biodiversity—has, if anything, stepped up the pace of his research and writing and of his advocacy for conservation, toward which his science Fhas impelled him. Last year, he published The Future of Life, the most accessible and impassioned of his appeals to humans to take heed of the millions of other species that make the planet habitable. This March, Harvard University Press delivers Pheidole in the New World, Wil- son’s enormous monograph on the “hyperdiverse” ant genus he has scrutinized for decades. The latter work is, first, a labor of love: Wilson took 16 years to complete it as an after-hours “hobby” at home, drawing all 5,000-plus illustrations himself. In schol- arly terms, it bridges the established science of biological systematics and its emerging future: a CD accompanies the printed book, and work underway at the Museum of Comparative Zoology and elsewhere assures that such painstaking research will henceforth be refined and accelerated using digital imaging and genomics techniques, and then promptly disseminated to users worldwide by the Internet. Further, the finished book makes a compelling case in Wilson’s larger argument about the daz- zling, barely understood, complexity of life: of the 624 known Pheidole species in the Western Hemisphere described here, he says, 337 are new to science. -
Ochraceus and Beauveria Bassiana
Hindawi Publishing Corporation Psyche Volume 2012, Article ID 389806, 6 pages doi:10.1155/2012/389806 Research Article Diversity of Fungi Associated with Atta bisphaerica (Hymenoptera: Formicidae): The Activity of Aspergillus ochraceus and Beauveria bassiana Myriam M. R. Ribeiro,1 Karina D. Amaral,1 Vanessa E. Seide,1 Bressane M. R. Souza,1 Terezinha M. C. Della Lucia,1 Maria Catarina M. Kasuya,2 and Danival J. de Souza3 1 Departamento de Biologia Animal, Universidade Federal de Vic¸osa, 36570-000 Vic¸osa, MG, Brazil 2 Departamento de Microbiologia, Universidade Federal de Vic¸osa, 36570-000 Vic¸osa, MG, Brazil 3 Curso de Engenharia Florestal, Universidade Federal do Tocantins, 77402-970 Gurupi, TO, Brazil Correspondence should be addressed to Danival J. de Souza, [email protected] Received 10 August 2011; Revised 15 October 2011; Accepted 24 October 2011 Academic Editor: Alain Lenoir Copyright © 2012 Myriam M. R. Ribeiro et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The grass-cutting ant Atta bisphaerica is one of the most serious pests in several pastures and crops in Brazil. Fungal diseases are a constant threat to these large societies composed of millions of closely related individuals. We investigated the occurrence of filamentous fungi associated with the ant A. bisphaerica in a pasture area of Vic¸osa, Minas Gerais State, Brazil. Several fungi species were isolated from forager ants, and two of them, known as entomopathogenic, Beauveria bassiana and Aspergillus ochraceus,were tested against worker ants in the laboratory. -
Hymenoptera: Formicidae) in Brazilian Forest Plantations
Forests 2014, 5, 439-454; doi:10.3390/f5030439 OPEN ACCESS forests ISSN 1999-4907 www.mdpi.com/journal/forests Review An Overview of Integrated Management of Leaf-Cutting Ants (Hymenoptera: Formicidae) in Brazilian Forest Plantations Ronald Zanetti 1, José Cola Zanuncio 2,*, Juliana Cristina Santos 1, Willian Lucas Paiva da Silva 1, Genésio Tamara Ribeiro 3 and Pedro Guilherme Lemes 2 1 Laboratório de Entomologia Florestal, Universidade Federal de Lavras, 37200-000, Lavras, Minas Gerais, Brazil; E-Mails: [email protected] (R.Z.); [email protected] (J.C.S.); [email protected] (W.L.P.S.) 2 Departamento de Entomologia, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil; E-Mail: [email protected] 3 Departamento de Ciências Florestais, Universidade Federal de Sergipe, 49100-000, São Cristóvão, Sergipe State, Brazil; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +55-31-389-925-34; Fax: +55-31-389-929-24. Received: 18 December 2013; in revised form: 19 February 2014 / Accepted: 19 February 2014 / Published: 20 March 2014 Abstract: Brazilian forest producers have developed integrated management programs to increase the effectiveness of the control of leaf-cutting ants of the genera Atta and Acromyrmex. These measures reduced the costs and quantity of insecticides used in the plantations. Such integrated management programs are based on monitoring the ant nests, as well as the need and timing of the control methods. Chemical control employing baits is the most commonly used method, however, biological, mechanical and cultural control methods, besides plant resistance, can reduce the quantity of chemicals applied in the plantations. -
Instituto Tecnológico De Costa Rica
INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE BIOLOGÍA INGENIERÍA EN BIOTECNOLOGÍA UNIVERSIDAD DE COSTA RICA Centro de Investigación en Biología Celular y Molecular (CIBCM) Centro de Investigación en Estructuras Microscópicas (CIEMic) Grupo Integrado Simbiosis – Hospedero – Microorganismo (GISHM, UCR) Evaluación de la actividad entomopatógena de diversos aislamientos de hongos y cepas de Bacillus thuringiensis para el potencial desarrollo de un bioformulado contra las hormigas cortadoras de hojas de la especie Atta cephalotes Informe presentado a la Escuela de Biología del Instituto Tecnológico de Costa Rica como requisito parcial para optar por el título de Licenciado en Ingeniería en Biotecnología Esteve Mesén Porras Cartago, Setiembre de 2015 Evaluación de la actividad entomopatógena de diversos aislamientos de hongos y cepas de Bacillus thuringiensis para el potencial desarrollo de un bioformulado contra las hormigas cortadoras de hojas de la especie Atta cephalotes Esteve Mesén Porras1 RESUMEN Las hormigas cortadoras de hojas (Atta y Acromyrmex) son una de las plagas más relevantes del Neotrópico debido a su compleja organización jerárquica en castas, la forma de vida claustral, el comportamiento eusocial para cuidar larvas y proteger su hongo simbionte, y la capacidad de forrajeo diurno y nocturno. Debido a estos aspectos y a su habilidad para reconocer y remover patículas dañinas de su jardín fúngico, el control con agroquímicos ha sido una tarea difícil. Por ello, el objetivo de este proyecto fue reconocer si aislamientos de Bacillus thuringiensis y hongos recuperados de colonias de zompopas podrían ser agentes de biocontrol de obreras de Atta cephalotes. El bioensayo de ingestión con Bt permitió reconocer 3 aislamientos que produjeron mortalidades de 45 a 54%, concentraciones subletales entre 9,97×101 y 5,86×107 µg mL-1 y tiempos de muerte de 5 y 6 días; valores que coincidieron con los reportes de algunos autores que han investigado la entomotoxidad de δ-endotoxinas sobre himenópteros. -
Isoenzymatic Polymorphism in the Leaf-Cutting Ant Atta Capiguara Gonçalves (Hymenoptera: Formicidae)
46 January - February 2010 SYSTEMATICS, MORPHOLOGY AND PHYSIOLOGY Isoenzymatic Polymorphism in the Leaf-Cutting Ant Atta capiguara Gonçalves (Hymenoptera: Formicidae) LIRIANA B CANTAGA ll I , CL AUDETE A MANGO L IN , MARIA C C RUVO L O -TAKASUSUKI Depto de Biologia Celular e Genética, Univ Estadual de Maringá, Avenida Colombo, 5790, 87020-900 Maringá, PR, Brasil; [email protected] Edited by Roberto A Zucchi – ESALQ/USP Neotropical Entomology 39(1):046-049 (2010) ABSTRACT - This study was carried out to analyze the genetic population structure of Atta capiguara from 12 nests collected in Tapejara in the state of Paraná, Brazil, using isoenzyme polymorphisms. The analyzed isoenzymes were esterases (EST – EC 3.1.1.1), acid phosphatase (ACP – EC 3.1.3.2) and carbonic anhydrase (CA – EC 4.2.1.1). Ten loci were found in A. capiguara and four polymorphic loci were detected. The observed heterozigosity (0.0296) was low when compared to the expected heterozigosity (0.1461). The high value of FIS (0.7954) shows an excess of homozygous genotypes probably caused by inbreeding. KEY WORDS: Isoenzyme, genetic variability, population genetics Leaf-cutting ants are widely distributed from southern Material and Methods United States to central Argentina, causing heavy damage in agriculture and attacking a wide range of vegetables, Ant samples. Workers from twelve nests of leaf-cutting ornamental plants, cultivated and reforested trees and ants A. capiguara were collected in Tapejara (23º 43’ 59” pastures. The two genera (Atta and Acromyrmex) of leaf- S; 52º 52’ 24” W) in the northwestern region of the state cutting ants found in Brazil are very diverse in species of Paraná, Brazil. -
Manipulating Tropical Fire Ants to Reduce the Coffee Berry Borer
Ecological Entomology (2014), DOI: 10.1111/een.12139 Manipulating tropical fire ants to reduce the coffee berry borer WARING TRIBLE1 and R O N C A R R O L L 2 1The Rockefeller University, New York , New York, U.S.A. and 2Odum School of Ecology, University of Georgia, Athens, Georgia, U.S.A. Abstract. 1. The coffee berry borer Hypothenemus hampei (Coleoptera, Curculion- idae) (Ferrari) is the most important pest of coffee production worldwide. 2. The hypothesis that the tropical !re ant, Solenopsis geminata Westwood, indirectly protects the coffee berry borer by suppressing other ant species that are the coffee berry borer’s primary predators was tested. 3. It was found that removing S. geminata from coffee plots signi!cantly increased the disappearance of adult coffee berry borer beetles from coffee berries compared with control plots. An average of 6% of beetles disappeared from plots with S. geminata whereas 23% of beetles disappeared from plots from which S. geminata was removed. This pattern was observed on two shade coffee farms with marked differences in ant species composition, one in the rainforest in central Costa Rica and one in the cloudforest in northwest Costa Rica. 4. If the results of this small-scale study can be replicated on the farm level, then S. geminata suppression may represent a new management technique for the coffee berry borer throughout Central and South America. Key words. Biological control, coffee berry borer, !re ant, Formicidae, Hypothenemus hampei, Solenopsis. Introduction coffee berries in the soil, and soil-dwelling ants may thus play an important role in reducing dry season coffee berry borer Coffee is the second most important commodity in the world by populations and minimising future outbreaks (Armbrecht & value, and the coffee berry borer is a beetle that constitutes the Gallego, 2007; Jaramillo et al.,2007;Chapmanet al.,2009; most important pest in coffee production worldwide (Damon, Vélez et al., 2006). -
Thievery in Rainforest Fungus-Growing Ants: Interspecific Assault on Culturing Material at Nest Entrance
Insectes Sociaux (2018) 65:507–510 https://doi.org/10.1007/s00040-018-0632-9 Insectes Sociaux SHORT COMMUNICATION Thievery in rainforest fungus-growing ants: interspecific assault on culturing material at nest entrance M. U. V. Ronque1 · G. H. Migliorini2 · P. S. Oliveira3 Received: 15 March 2018 / Revised: 21 May 2018 / Accepted: 22 May 2018 / Published online: 5 June 2018 © International Union for the Study of Social Insects (IUSSI) 2018 Abstract Cleptobiosis in social insects refers to a relationship in which members of a species rob food resources, or other valuable items, from members of the same or a different species. Here, we report and document in field videos the first case of clepto- biosis in fungus-growing ants (Atta group) from a coastal, Brazilian Atlantic rainforest. Workers of Mycetarotes parallelus roam near the nest and foraging paths of Mycetophylax morschi and attack loaded returning foragers of M. morschi, from which they rob cultivating material for the fungus garden. Typically, a robbing Mycetarotes stops a loaded returning Myce- tophylax, vigorously pulls away the fecal item from the forager’s mandibles, and brings the robbed item to its nearby nest. In our observations, all robbed items consisted of arthropod feces, the most common culturing material used by M. parallelus. Robbing behavior is considered a form of interference action to obtain essential resources needed by ant colonies to cultivate the symbiont fungus. Cleptobiosis between fungus-growing ants may increase colony contamination, affect foraging and intracolonial behavior, as well as associated microbiota, with possible effects on the symbiont fungus. The long-term effects of this unusual behavior, and associated costs and benefits for the species involved, clearly deserve further investigation. -
The Fungus-Growing Ant Genus Apterostigma in Dominican Amber, Pp
Schultz, T. R. 2007. The fungus-growing ant genus Apterostigma in Dominican amber, pp. 425- 436. In Snelling, R. R., B. L. Fisher, and P. S. Ward (eds). Advances in ant systematics (Hymenoptera: Formicidae): homage to E. O. Wilson – 50 years of contributions. Memoirs of the American Entomological Institute, 80. THE FUNGUS-GROWING ANT GENUS APTEROSTIGMA IN DOMINICAN AMBER Ted R. Schultz Department of Entomology, MRC 188, P.O. Box 37012 National Museum of Natural History Smithsonian Institution Washington, DC 20013-7012, U.S.A. [email protected] ABSTRACT The first fossil species of the fungus-growing ant genus Apterostigma (Myrmicinae: Attini) are described from Dominican amber. Two new species are described, and the likely placement of each within the genus is discussed. The phylogenetic position of Apterostigma within the Attini is summarized, as is the evolutionary history of the transition from the cultivation of leucocoprineaceous fungi (the ancestral condition) to the cultivation of pterulaceous fungi (the derived condition) by different lineages of Apterostigma species. I conclude by speculating on the possible implications of the fossil species for understanding this transition, which is unique within the fungus-growing ants. Key words: Hymenoptera, Formicidae, Attini, Apterostigma, fungus-growing ants, fossils, Dominican amber. 426 Memoirs of the American Entomological Institute, Volume 80 INTRODUCTION Fungus-growing ants in the tribe Attini are one of only a few animal groups that practice true agriculture. Because, so far as is known, this fungicultural life-history strategy is entirely unique in ants and, because it parallels human agriculture in many remarkable ways (Schultz et al., 2005), the origin and evolution of the fungus-growing behavior has been the subject of recent intensive study (e.g., Chapela et al., 1994; Hinkle et al., 1994; Schultz & Meier, 1995; Wetterer et al., 1998; Mueller et al., 1998; Mueller et al., 2001). -
DISTRIBUTION and FORAGING by the LEAF-CUTTING ANT, Atta
DISTRIBUTION AND FORAGING BY THE LEAF-CUTTING ANT, Atta cephalotes L., IN COFFEE PLANTATIONS WITH DIFFERENT TYPES OF MANAGEMENT AND LANDSCAPE CONTEXTS, AND ALTERNATIVES TO INSECTICIDES FOR ITS CONTROL A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy with a Major in Entomology in the College of Graduate Studies University of Idaho and with an Emphasis in Tropical Agriculture In the Graduate School Centro Agronómico Tropical de Investigación y Enseñanza by Edgar Herney Varón Devia June 2006 Major Professor: Sanford D. Eigenbrode, Ph.D. iii ABSTRACT Atta cephalotes L., the predominant leaf-cutting ant species found in coffee farms in the Turrialba region of Costa Rica, is considered a pest of the crop because it removes coffee foliage. I applied agroecosystem and landscape level perspectives to study A. cephalotes foraging, colony distribution and dynamics in coffee agroecosystems in the Turrialba region. I also conducted field assays to assess effects of control methods on colonies of different sizes and to examine the efficacy of alternatives to insecticides. Colony density (number of colonies/ha) and foraging of A. cephalotes were studied in different coffee agroecosystems, ranging from monoculture to highly diversified systems, and with either conventional or organic inputs. A. cephalotes colony density was higher in monocultures compared to more diversified coffee systems. The percentage of shade within the farm was directly related to A. cephalotes colony density. The proportion of coffee plant tissue being collected by A. cephalotes was highest in monocultures and lowest in farms with complex shade (more than three shade tree species present). -
Longitudinal Study of Foraging Networks in the Grass-Cutting Ant Atta Capiguara Gonçalves, 1944 N
Longitudinal Study of Foraging Networks in the Grass-Cutting Ant Atta capiguara Gonçalves, 1944 N. Caldato, R. Camargo, K. Sousa, L. Forti, J. Lopes, Vincent Fourcassié To cite this version: N. Caldato, R. Camargo, K. Sousa, L. Forti, J. Lopes, et al.. Longitudinal Study of Foraging Net- works in the Grass-Cutting Ant Atta capiguara Gonçalves, 1944. Neotropical entomology, Sociedade Entomológica do Brasil, 2020, 49 (5), pp.643-651. 10.1007/s13744-020-00776-9. hal-03097185 HAL Id: hal-03097185 https://hal.archives-ouvertes.fr/hal-03097185 Submitted on 6 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Title: Longitudinal study of foraging networks in the grass-cutting ant Atta capiguara Gonçalves, 2 1944 3 4 N Caldato1, R Camargo1, KK Sousa1, LC Forti1, JF Lopes2, V Fourcassié3* 5 6 1 Universidade Estadual Paulista, Brazil 7 2 Universidade Federal Juiz de Fora, Brazil 8 3 Université de Toulouse, CNRS, France 9 10 *Corresponding author : Vincent Fourcassié 11 Email: [email protected] 12 Tel: +33 (0)5 61 55 88 71 13 ORCID number: 0000-0002-3605-6351 14 15 Running title: Foraging networks of the ant Atta capiguara 16 1 17 Abstract 18 Colonies of leaf-cutting ants of the genus Atta need to collect large quantities of vegetal substrate 19 in their environment to ensure their growth. -
Bigheaded Ant, Pheidole Megacephala (Fabricius) (Insecta: Hymenoptera: Formicidae: Myrmicinae)1 John Warner and Rudolf H
EENY-369 Bigheaded Ant, Pheidole megacephala (Fabricius) (Insecta: Hymenoptera: Formicidae: Myrmicinae)1 John Warner and Rudolf H. Scheffrahn2 Introduction The bigheaded ant (BHA), Pheidole megacephala (Fabri- cius), is a very successful invasive species that is sometimes considered a danger to native ants and has been nominated as among 100 of the “World’s Worst” invaders (Hoffman 2006). The BHA has been a pest in southern Florida for many years, and according to reports by pest control operators, has become the most pervasive nuisance as it has replaced other ants such as the red imported fire ant (RIFA), Solenopsis invicta Buren, and the white-footed ant Tech- nomyrmex difficilis (Fr. Smith) in most areas. It is possible that the increase in BHA infestations was augmented by several years of excessive hurricane activity (2003 to 2005) Figure 1. Bigheaded ant, Pheidole megacephala (Fabricius), foraging tubes on a palm tree. Arrows indicate two of the foraging tubes. in Florida that damaged lawns and killed trees, which Credits: R. H. Scheffrahn, UF/IFAS necessitated the use of increased amounts of sod and other The BHA, a soil-nesting ant, is sometimes confused with replacement vegetation that may have been infested with subterranean termites because it may create debris-covered this ant (Warner, unpublished observation). In addition, it foraging tubes that are somewhat similar, albeit much more is thought that the BHA usually out-competes most other fragile, than termite tubes. More often these ants leave piles established ants, thereby dominating new areas. The BHA of loose sandy soil. Homeowners are annoyed by these “dirt does not sting or cause any structural damage and usually piles” and by ants foraging in bathrooms and kitchens and does not bite unless the nest is disturbed, and even then, around doors and windows, as well as on exterior paved or the bite is not painful. -
The Coexistence
Myrmecological News 13 37-55 2009, Online Earlier Natural history and phylogeny of the fungus-farming ants (Hymenoptera: Formicidae: Myrmicinae: Attini) Natasha J. MEHDIABADI & Ted R. SCHULTZ Abstract Ants of the tribe Attini comprise a monophyletic group of approximately 230 described and many more undescribed species that obligately depend on the cultivation of fungus for food. In return, the ants nourish, protect, and disperse their fungal cultivars. Although all members of this tribe cultivate fungi, attine ants are surprisingly heterogeneous with regard to symbiont associations and agricultural system, colony size and social structure, nesting behavior, and mating system. This variation is a key reason that the Attini have become a model system for understanding the evolution of complex symbioses. Here, we review the natural-history traits of fungus-growing ants in the context of a recently published phylo- geny, collating patterns of evolution and symbiotic coadaptation in a variety of colony and fungus-gardening traits in a number of major lineages. We discuss the implications of these patterns and suggest future research directions. Key words: Hymenoptera, Formicidae, fungus-growing ants, leafcutter ants, colony life, natural history, evolution, mating, agriculture, review. Myrmecol. News 13: 37-55 (online xxx 2008) ISSN 1994-4136 (print), ISSN 1997-3500 (online) Received 12 June 2009; revision received 24 September 2009; accepted 28 September 2009 Dr. Natasha J. Mehdiabadi* (contact author) & Dr. Ted R. Schultz* (contact author), Department of Entomology and Laboratories of Analytical Biology, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, NHB, CE518, MRC 188, Washington, DC 20013-7012, USA. E-mail: [email protected]; [email protected] * Both authors contributed equally to the work.