Contactless Magnetic Brake for Automotive

Total Page:16

File Type:pdf, Size:1020Kb

Contactless Magnetic Brake for Automotive CONTACTLESS MAGNETIC BRAKE FOR AUTOMOTIVE APPLICATIONS A Dissertation by SEBASTIEN EMMANUEL GAY Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2005 Major Subject: Electrical Engineering CONTACTLESS MAGNETIC BRAKE FOR AUTOMOTIVE APPLICATIONS A Dissertation by SEBASTIEN EMMANUEL GAY Submitted to Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved as to style and content by: _____________________________ _____________________________ Mehrdad Ehsani Hamid Toliyat (Chair of Committee) (Member) _____________________________ _____________________________ Shankar Bhattacharyya Mark Holtzapple (Member) (Member) _____________________________ Chanan Singh (Head of Department) May 2005 Major Subject: Electrical Engineering iii ABSTRACT Contactless Magnetic Brake for Automotive Applications. (May 2005) Sebastien Emmanuel Gay, Dipl. of Eng., Institut National Polytechnique de Grenoble; M.S., Texas A&M University Chair of Advisory Committee: Dr. Mehrdad Ehsani Road and rail vehicles and aircraft rely mainly or solely on friction brakes. These brakes pose several problems, especially in hybrid vehicles: significant wear, fading, complex and slow actuation, lack of fail-safe features, increased fuel consumption due to power assistance, and requirement for anti-lock controls. To solve these problems, a contactless magnetic brake has been developed. This concept includes a novel flux-shunting structure to control the excitation flux generated by permanent magnets. This brake is wear-free, less-sensitive to temperature than friction brakes, has fast and simple actuation, and has a reduced sensitivity to wheel-lock. The present dissertation includes an introduction to friction braking, a theory of eddy- current braking, analytical and numerical models of the eddy-current brake, its excitation and power generation, record of experimental validation, investigation and simulation of the integration of the brake in conventional and hybrid vehicles. iv To my parents, my family, my friends, my many professors and my few mentors. v ACKNOWLEDGMENTS Thanks go to Mr. Philippe Wendling of Magsoft Corporation for his patience and diligence to answer my questions about Flux 3D. Many problems were solved and much time was saved thanks to his help. vi TABLE OF CONTENTS Page ABSTRACT.............................................................................................................. iii DEDICATION .......................................................................................................... iv ACKNOWLEDGMENTS......................................................................................... v TABLE OF CONTENTS.......................................................................................... vi LIST OF FIGURES................................................................................................... x LIST OF TABLES .................................................................................................... xx CHAPTER I INTRODUCTION................................................................................... 1 1 Friction braking of vehicles and its disadvantages............................... 1 2 The concept of an integrated brake ...................................................... 5 3 Fundamental physics of eddy-current braking ..................................... 8 4 Review of existing eddy-current brake concepts ................................. 9 5 Novel eddy-current brake concepts...................................................... 14 6 Research plan....................................................................................... 19 II THEORETICAL ANALYSIS OF EDDY-CURRENT BRAKING ....... 21 1 Method of theoretical analysis of the eddy-current brake.................... 21 2 Theoretical analysis derivations........................................................... 22 2.1 Modeling of the excitation field............................................ 25 2.2 Distribution of the excitation flux ......................................... 28 2.3 Distribution of eddy-currents and associated fields .............. 34 2.4 Computation of the braking force ......................................... 40 3 Investigation of eddy-current braking using the analytical model....... 43 3.1 Implementation of the analytical model................................ 43 3.2 Fundamental physics of eddy-current brakes........................ 45 3.2.1 Eddy-current brake torque-speed curve ................. 45 3.2.2 Distribution of the flux and current densities......... 47 3.3 Impact of design parameters on the brake’s performance..... 53 3.3.1 Impact of mean disc radius..................................... 53 vii CHAPTER Page 3.3.2 Impact of disc area ................................................. 57 3.3.3 Impact of disc thickness ......................................... 60 3.3.4 Impact of airgap width ........................................... 63 3.3.5 Impact of stator pole width..................................... 66 3.3.6 Impact of stator pole number ................................. 68 3.3.7 Impact of electrical conductivity............................ 71 3.3.8 Impact of magnetic permeability............................ 73 3.3.9 Impact of permanent magnet properties................. 75 4 Limitations of theoretical analysis ....................................................... 78 III FINITE ELEMENT ANALYSIS OF EDDY-CURRENT BRAKING .. 81 1 Fundamentals of finite element analysis .............................................. 81 2 Selection of finite-element analysis method ........................................ 82 3 Comparison of analytical and finite-element results............................ 90 4 Analysis of the impact of design parameters on performance ............. 95 4.1 Similarities with theoretical analysis..................................... 95 4.2 Impact of disc area ................................................................ 96 4.3 Impact of disc thickness ........................................................ 99 4.4 Impact of airgap width .......................................................... 103 4.5 Impact of electrical conductivity........................................... 106 4.6 Impact of ferromagnetic properties ....................................... 114 4.7 Impact of permanent magnet properties................................ 123 5 Conclusions on numerical analysis ...................................................... 124 IV EXPERIMENTAL VALIDATION........................................................ 125 1 Objective and experimental procedure................................................. 125 2 Test-bed design .................................................................................... 127 3 Measurement of the disc’s properties................................................... 140 4 Comparison of experimental and finite-element data .......................... 145 5 Conclusions on experimental validation .............................................. 150 V INTEGRATION OF THE BRAKE IN VEHICLE SYSTEMS.............. 152 1 Braking with eddy-current brakes........................................................ 152 1.1 Pure eddy-current braking with unlimited force ................... 154 1.1.1 Brake with constrained critical speed..................... 154 1.1.2 Brake with optimized critical speed....................... 160 1.2 Integrated braking with limited force.................................... 163 1.2.1 Brake with constrained critical speed..................... 164 viii CHAPTER Page 1.2.2 Brake with optimized critical speed....................... 167 2 Integrated braking of automobiles........................................................ 176 2.1 Braking performance requirements....................................... 176 2.2 Conceptual design of an automobile integrated brake .......... 179 2.3 Integrated braking in conventional drive trains..................... 193 2.3.1 Braking system control strategy............................. 193 2.3.2 Performance in the FTP 75 Urban drive cycle....... 194 2.3.3 Performance in the FTP 75 Highway drive cycle .. 198 2.4 Integrated braking of series hybrid drive trains .................... 203 2.4.1 Braking system control strategy............................. 204 2.4.2 Performance in the FTP 75 Urban drive cycle....... 210 2.4.3 Performance in the FTP 75 Highway drive cycle .. 213 2.4.4 Performance in the NREL drive cycle ................... 215 2.5 Impact of temperature on braking performance.................... 225 2.6 Impact of eddy-current braking on friction brake wear ........ 226 2.7 Power assistance energy consumption of integrated brake... 229 2.8 Anti-lock control of the integrated brake .............................. 230 2.9 Traction control with the integrated brake ............................ 235 2.10 Dynamic stability control with the integrated brake ........... 238 3 Integrated braking of heavy duty road vehicles ................................... 251 3.1 The integrated braking of commercial trucks and trailers..... 251 3.1.1 Braking system architecture................................... 252 3.1.2 Dynamic stability control of commercial trucks .... 260 3.1.3 Anti-lock control of commercial trucks ................. 262 3.1.4 The integrated brake as a backup brake ................. 263 3.2 Integrated braking of urban buses ........................................
Recommended publications
  • Eddy Current Braking in Automobiles Sarath G Nath1, Rohith Babu2, George Varghese Biju3, Ashin S4 , Dr
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 05 Issue: 04 | Apr-2018 www.irjet.net p-ISSN: 2395-0072 Eddy Current Braking In Automobiles Sarath G Nath1, Rohith Babu2, George Varghese Biju3, Ashin S4 , Dr. Cibu K Varghese5 1,2,3,4B Tech student, Mechanical Engineering Department Mar Athanasius college of Engineering, Kerala 5Professor, Mechanical Engineering Department, Mar Athanasius College of Engineering, Kerala ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - Eddy Current Braking slows a moving object by through a stationary magnetic field (Jou et al, 2006) [8]. The creating eddy currents through electromagnetic induction changing magnetic flux induces eddy currents in the which create resistance. In normal case if the speed of the conductor and these currents dissipate energy and generate vehicle is very high, the brake does not provide that amount of drag force (Jou et al, 2006) [8]. Therefore, there are no high braking force and it will leads to skidding and wear& tear contacting elements by using this electromagnetic braking of the vehicle. Because of this drawbacks of ordinary brakes, system which will lead to reduce the wear of brake pad. This arises a simple and effective mechanism of braking system situation will also reduce the wear debris pollution into our ‘The eddy current brake’. Eddy current is one of the most environment. outstanding of electromagnetic induction phenomena. Even though it appear many technical problems because dissipative 1.1 Conventional Braking System nature it has some valuable contributions. It is a frictionless method for braking of vehicles including trains. As it is a Braking forms an important part of motion of any frictionless brake, periodic change of braking components are automobile or locomotive.
    [Show full text]
  • EP / BP Compact Product Family
    EP / BP Compact Product Family Foto Siemens AG“ APPLICATIONS High-Speed Trains | Locomotives | Metros | Regional and Commuter Trains 2 EP / BP COMPACT PRODUCT FAMILY IS A FLEXIBLE AND POWERFUL BRAKE CONTROL SYSTEM providing not only brake cylinder pressure control for central and decentralized systems but also for brake pipe pressure control. Its modular design of electronic and pneumatic modules makes it configurable for all types of high-speed trains, multiple units and metros. With its variety of modules, EP / BP CUSTOMER BENEFITS DIVERSIFICATION Compact can be used for a wide n Lightweight and compact EP Compact offers control of various range of different applications of all n Flexible system layout functions of the braking systems: car builders across different markets. n Maximum economy thanks to n Service brake (direct and indirect) Every electropneumatic module standardized modules n Emergency brake (direct and controls either brake pipe n Discrete, highly integrable indirect) applications, single bogies components n Magnetic track brake separately or several bogies with n Straightforward service and n Parking brake identical braking requirements. maintenance concept n Wheel slide control Different electronic modules allow n For central or decentralized control n Continuous load correction and the use of different communication n Multifunctional for numerous load limitation interfaces: wheel slide protection, system configurations pressure regulation and diagnosis n Innovative use of proven Electronic control functions: functions. Anti-skid valves as well as technology n Blending / brake management different auxiliary control functions n Integrated electronics for n Diagnostics and monitoring can be integrated into the module underfloor or separate electronics n Sanding and other auxiliary systems as an option.
    [Show full text]
  • Szám Rendsz Teljes Név Épül Beszer Selejt Selejt Más
    Szám Rendsz Teljes név Épül Beszer Selejt Selejt Más 08 1808 VP 06 Renault PR180 1986 1992 ? PR 180.2 10 1810 VP 06 Renault PR180 1986 1992 ? PR 180.2 11 1811 VP 06 Renault PR180 1986 1992 ? PR 180.2 13 1813 VP 06 Renault PR180 1986 1992 ? PR 180.2 15 1810 VP 06 Renault PR180 1986 1992 2005 2005 PR 180.2 12 1812 VP 06 Renault PR180 1986 1992 2005 2005 PR 180.2 14 5914 VP 06 Renault PR180 1986 1992 ? PR 180.2 19 219 VQ 06 Renault PR100 1986 1992 ? PR 100.2 18 218 VQ 06 Renault PR100 1986 1992 ? PR 100.2 16 216 VQ 06 Renault PR100 1986 1992 ? PR 100.2 09 1809 VP 06 Renault PR180 1986 1992 2006 PR 180.2 17 217 VQ 06 Renault PR100 1986 1992 2000 PR 100.2 28 828 VY 06 Renault PR180 1987 1992 ? PR 180.2 27 827 VY 06 Renault PR180 1987 1992 ? PR 180.2 29 829 VY 06 Renault PR180 1987 1992 ? PR 180.2 33 833 VY 06 Renault PR180 1987 1992 ? PR 180.2 30 830 VY 06 Renault PR180 1987 1992 ? PR 180.2 31 831 VY 06 Renault PR180 1987 1992 ? PR 180.2 32 832 VY 06 Renault PR180 1987 1992 ? PR 180.2 58 4758 WN 06 Renault R312 1988 1992 ? 57 1257 WN 06 Renault R312 1988 1992 ? 51 6251 WL 06 Renault PR180 1988 1992 ? PR 180.2 50 6250 WL 06 Renault PR180 1988 1992 ? PR 180.2 52 6252 WL 06 Renault PR180 1988 1992 ? PR180.2 53 6253 WL 06 Renault PR180 1988 1992 ? PR180.2 54 6254 WL 06 Renault PR180 1988 1992 ? PR180.2 55 155 WN 06 Renault R312 1988 1992 ? 64 164 WN 06 Renault R312 1988 1992 ? 63 163 WN 06 Renault R312 1988 1992 ? 62 4762 WN 06 Renault R312 1988 1992 ? 61 4761 WN 06 Renault R312 1988 1992 ? 60 4760 WN 06 Renault R312 1988 1992 ? 59 1259 WN 06
    [Show full text]
  • Modeling and Design Optimization of Electromechanical Brake Actuator Using Eddy Currents
    Modeling and Design Optimization of Electromechanical Brake Actuator Using Eddy Currents by Kerem Karakoc MASc, University of Victoria, 2007 BSc, Bogazici University, 2005 A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY in the Department of Mechanical Engineering. Kerem Karakoc, 2012 University of Victoria All rights reserved. This dissertation may not be reproduced in whole or in part, by photocopy or other means, without the permission of the author. ii Modeling and Design Optimization of Electromechanical Brake Actuator Using Eddy Currents by Kerem Karakoc MASc, University of Victoria, 2007 BSc, Bogazici University, 2005 Supervisory Committee Dr. Afzal Suleman, Dept. of Mechanical Engineering, University of Victoria Co-Supervisor Dr. Edward Park, Dept. of Mechanical Engineering, University of Victoria Co-Supervisor Dr. Ned Djilali, Dept. of Mechanical Engineering, University of Victoria Departmental Member Dr. Issa Traore, Dept. of Electrical and Computer Engineering, University of Victoria Outside Member iii Supervisory Committee Dr. Afzal Suleman, Dept. of Mechanical Engineering, University of Victoria Co-Supervisor Dr. Edward Park, Dept. of Mechanical Engineering, University of Victoria Co-Supervisor Dr. Ned Djilali, Dept. of Mechanical Engineering, University of Victoria Departmental Member Dr. Issa Traore, Dept. of Electrical and Computer Engineering, University of Victoria Outside Member Abstract A novel electromechanical brake (EMB) based on the eddy current principle is proposed for application in electrical vehicles. The proposed solution is a feasible replacement for the current conventional hydraulic brake (CHB) systems. Unlike CHBs, eddy current brakes (ECBs) use eddy currents and their interaction with an externally applied magnetic field to generate braking torque.
    [Show full text]
  • Real-World Exhaust Emissions of Diesel Locomotives and Motorized Railcars During Scheduled Passenger Train Runs on Czech Railroads
    atmosphere Article Real-World Exhaust Emissions of Diesel Locomotives and Motorized Railcars during Scheduled Passenger Train Runs on Czech Railroads Michal Vojtisek-Lom 1,2,* , Jonáš Jirk ˚u 3 and Martin Pechout 4 1 Department of Automobile, Combustion Engine and Railway Engineering, Faculty of Mechanical Engineering, Czech Technical University of Prague, 160 00 Prague, Czech Republic 2 Department of Vehicles and Engines, Technical University of Liberec, 46117 Liberec, Czech Republic 3 Department of Vehicle Technology, Faculty of Transportation Sciences, Czech Technical University in Prague, 110 00 Prague, Czech Republic; [email protected] 4 Department of Vehicles and Ground Transport, Faculty of Engineering, Czech University of Life Sciences, 165 21 Prague, Czech Republic; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +420-774-262-854 Received: 17 April 2020; Accepted: 28 May 2020; Published: 2 June 2020 Abstract: The paper summarizes exhaust emissions measurements on two diesel-electric locomotives and one diesel-hydraulic railcar, each tested for several days during scheduled passenger service. While real driving emissions of buses decrease with fleet turnaround and have been assessed by many studies, there are virtually no realistic emissions data on diesel rail vehicles, many of which are decades old. The engines were fitted with low-power portable online monitoring instruments, including a portable Fourier Transform Infra Red (FTIR) spectrometer, online particle measurement, and in two cases with proportional particle sampling systems, all installed in engine compartments. Due to space constraints and overhead electric traction lines, exhaust flow was computed from engine operating data. Real-world operation was characterized by relatively fast power level transitions during accelerations and interleaved periods of high load and idle, and varied considerably among service type and routes.
    [Show full text]
  • TRANSPORTATION NOTICE #2018-045 Effective 0001, Friday, December 14, 2018
    THE BELT RAILWAY COMPANY OF CHICAGO TRANSPORTATION NOTICE #2018-045 Effective 0001, Friday, December 14, 2018 To: ALL CONCERNED Subject: Clearing Yard Transportation Work Instructions (Hump Notice) Transportation Notice 2018-034, effective August 21, 2018 is cancelled. The following changes are made to Clearing Yard Transportation Work Instructions (Hump) Addition: • CY 5.20 – Cars on Hump Needing Repairs (NEW) • CY 8.2.1 - Braking During Shove Over Movements (NEW) Transportation Notice 2018-045 Page 1 Clearing Yard Transportation Work Instructions (Hump) The instructions contained within this document are specifically intended for any Transportation Department employees working in Clearing Yard. These instructions provide specific instructions on the operation of the Clearing Yard. Where these instructions may differ from published rules, these instructions will govern operations as they relate to the operation of the Clearing Yard. Transportation Department Employees working in Train, Yard, and Engine Service; including Yardmasters (Humpmasters), Hump Conductors, and all crew members on BRC yard assignments, must have these instructions in their possession while on duty for reference while working in Clearing Yard. These instructions will be published quarterly, with additions made as needed using Transportation Notices, under the direction of the Superintendent-Transportation. CY 1 - Hump Operations: Hump Operations are under the direct control of the Trainmaster-Operations. Reporting to the Trainmaster- Operations are Yardmasters, Hump Conductors, Train Crews, and Transportation-Clerks. CY 2 - Hump Speeds: The Hump Conductor is responsible for regulating hump speeds and communicating this information to Hump Crews. Speed Settings: SPEED SETTING SPEED (MPH) HUMP SLOW 1.4 MPH HUMP 1.7 MPH HUMP FAST 2.2 MPH The default speed for hump operations is Hump.
    [Show full text]
  • © Norwich Bus Page 2013 Norfolk Green Fleet List – 1 St December
    © Norwich Bus Page 2013 Norfolk Green fleet List – 1st December 2013 Fleet No. Registration Chassis/Body Livery Name 1 YE52FHF DAF DB250LF Optare Spectra Norfolk Green Jamie Armstrong 2 YE52FHG DAF DB250LF Optare Spectra New Norfolk Green Reis L Leming 3 YG02FWE DAF DB250LF Optare Spectra Norfolk Green John Palmer 4 YG02FWB DAF DB250LF Optare Spectra Norfolk Green Horace The Tiger 5 YJ03UMK DAF DB250LF Optare Spectra Norfolk Green Frances Burney 6 YJ03UML DAF DB250LF Optare Spectra Norfolk Green Somerset Arthur Maxwell 7 YJ51ZVF DAF DB250LF Optare Spectra Norfolk Green George Vancouver 8 YJ51ZVG DAF DB250LF Optare Spectra New Norfolk Green Ted Martin 9 YG02FWD DAF DB250LF Optare Spectra New Norfolk Green Black Shuck 10 LV52HHP Alexander Dennis Trident ALX400 Norfolk Green John Colton 11 LV52HHR Alexander Dennis Trident ALX400 Norfolk Green Samuel Pepys 13 PX55AHF Dennis Trident East Lancs Myllenium Lolyne New Norfolk Green William D'Albini 14 PX55AHJ Dennis Trident East Lancs Myllenium Lolyne New Norfolk Green Jessie & George Ruhms 21 SN12EHM Alexander Dennis Enviro400 New Norfolk Green Johnny Douglas 22 SN12EHO Alexander Dennis Enviro400 New Norfolk Green William Henry Mann 23 SN13EEA Alexander Dennis Enviro400 New Norfolk Green -- 24 SN13EEB Alexander Dennis Enviro400 New Norfolk Green -- 101 YJ56WUG Optare X1200 Tempo New Norfolk Green Sir Peter Scott 102 YJ56WUH Optare X1200 Tempo Norfolk Green Frederick Savage 103 YJ57YCC Optare X1200 Tempo Norfolk Green Robert Stephenson 104 YJ57YCD Optare X1200 Tempo Norfolk Green Ruth, Lady Fermoy
    [Show full text]
  • Modèle De Rapport Commercial
    RAPPORT D’ÉTUDE 03/12/2009 N° DRC-09-104243-11651A INTER’MODAL Vers une meilleure maîtrise de l’exposition individuelle par inhalation des populations à la pollution atmosphérique lors de leurs déplacements urbains INTER’MODAL Vers une meilleure maîtrise de l’exposition individuelle par inhalation des populations à la pollution atmosphérique lors de leurs déplacements urbains Ministère de l’Ecologie, de l’Energie, du Développement Durable et de la Mer (MEEDDM) Bureau de l'Air & Bureau de la prospective et de l'évaluation des données Grande Arche de la Défense - Paris Nord 92055 PARIS LA DEFENSE CEDEX Liste des personnes ayant participé à l’étude : S.Fable, I.Fraboulet, F.Godefroy, G.Jantolek, J.Queron, B.Triart. DRC-09-104243-11651A - 1 / 117 - PRÉAMBULE Le présent rapport a été établi sur la base des informations fournies à l'INERIS, des données (scientifiques ou techniques) disponibles et objectives et de la réglementation en vigueur. La responsabilité de l'INERIS ne pourra être engagée si les informations qui lui ont été communiquées sont incomplètes ou erronées. Les avis, recommandations, préconisations ou équivalent qui seraient portés par l'INERIS dans le cadre des prestations qui lui sont confiées, peuvent aider à la prise de décision. Etant donné la mission qui incombe à l'INERIS de par son décret de création, l'INERIS n'intervient pas dans la prise de décision proprement dite. La responsabilité de l'INERIS ne peut donc se substituer à celle du décideur. Le destinataire utilisera les résultats inclus dans le présent rapport intégralement ou sinon de manière objective.
    [Show full text]
  • ABS 6 Standard Anti-Lock Braking System
    Systems for Commercial Vehicles Product Manual ABS 6 Standard Anti-lock Braking System • Basic Principles of Operation of the System • Component Descriptions • Troubleshooting and Fault-Finding • Service Guidance to ensure Safe and Efficient Operation Training Nutzfahrzeug Bremssysteme Contents Contents 3 Disclaimer 4 Safety Checks 5 1. General Information 6 1.1 Service Intervals 6 1.2 Principles of Anti-lock Braking System (ABS) Operation 7 1.2.1 Introduction 7 1.2.2 Operation 9 1.3 General Advice when working with ABS 14 1.3.1 Dos and Don’ts for Drivers / Operators 14 1.3.2 Dos and Don’ts for ABS electrical components and cabling 15 1.3.3 Dos and Don’ts for ABS pneumatic components and pipework 17 1.4 Troubleshooting and Fault-finding 18 1.4.1 Normal Operation 18 1.4.2 Start-up Check 18 1.4.3 Fault Detection 18 1.4.4 Using Blink Codes 18 1.4.5 Configuration Blink Codes 19 1.4.6 Fault Blink Codes 21 1.4.7 Erasing Fault Codes from the ECU memory 26 1.4.8 PC Diagnostics 27 2. System Components 28 2.1 Electronic Control Unit (ECU) 28 2.2 ABS Warning Lamp 29 2.3 Sensing Ring 30 2.4 Wheel Speed Sensor 31 2.5 Sensor Extension Cable 34 2.6 Pressure Modulator Valves 35 2.7 VOSS plug connection system 230 (assembly instructions) 41 3. Wiring Diagrams 43 3 3 Disclaimer The information contained in this document is intended for the exclusive use of trained persons within the commercial vehicle industry, and must not be passed on to any third party.
    [Show full text]
  • Environmental Product Portfolio 2 KNORR-BREMSE ENVIRONMENTAL PRODUCT PORTFOLIO
    1 Environmental product portfolio 2 KNORR-BREMSE ENVIRONMENTAL PRODUCT PORTFOLIO Our contribution towards making mobility more environmentally friendly and energy-efficient In recent years, climate change and environmental Our product portfolio offers solutions that protection have taken on greater relevance for >> minimize energy consumption and enhance the commercial vehicle and rail vehicle sectors. In fuel efficiency, response, Knorr-Bremse has for many years been >> reduce atmospheric emissions, giving top priority to developing fuel-saving, >> minimize noise emissions, emission-reducing technologies with solutions >> protect the environment by using eco-friendly tailored to market needs. materials and manufacturing processes. ENERGY EFFICIENCY PROTECTING RESOURCES AND REDUCING EMISSIONS • CFCB bogie-mounted block brakes • Oil-free compressor with sound insulation • Compact brake calipers • Flexpad Silent brake pad • Lightweight HVAC units, doors, brake discs • LL composite brake block • iCOM Assist (LEADER) driver assistance system • Sanding systems with reduced sand use DIVISION • Driving and training simulators • iCOM Energy Metering • HVAC systems • IFE Generation 4 entrance system RAIL VEHICLE RAIL • Isobar brake pads • Aluminum brake discs • Pneumatic disc brakes • Electronic braking system (EBS) • Electronic air treatment • Engine retarder DIVISION • Aluminum compressor casing • Genuine remanufactured products • Compressor with clutch • Electric screw compressor • Compressor with energy-saving system • Mechatronic transmission
    [Show full text]
  • Non-Propellant Eddy Current Brake and Traction in Space Using Magnetic Pulses
    aerospace Article Non-Propellant Eddy Current Brake and Traction in Space Using Magnetic Pulses Yi Zhang †, Qiang Shen †, Liqiang Hou † and Shufan Wu * School of Aeronautics and Astronautics, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Minhang District, Shanghai 200240, China; [email protected] (Y.Z.); [email protected] (Q.S.); [email protected] (L.H.) * Correspondence: [email protected]; Tel.: +86-34208597 † These authors contributed equally to this work. Abstract: The safety of on-orbit satellites is threatened by space debris with large residual angular velocity and the space debris removal is becoming more challenging than before. This paper explores the non-contact despinning and traction problem of high-speed rotating targets and proposes an eddy current brake and traction technology for space targets without any propellant consumption. The principle of the conventional eddy current brake is analyzed in this article and the concept of eddy current brake and traction without propellant is put forward for the first time. Secondly, according to the key technical requirements, a brand-new structure of a satellite generating artificial magnetic field is designed accordingly. Then the control mechanism of eddy current brake and traction without propellant is analyzed qualitatively by simplifying the model and conditions. Then, the magnetic pulse control method is proposed and analyzed quantitatively. Finally, the feasibility of the technology is verified by the numerical simulation method. According to the simulation results, the eddy current brake and traction technology based on magnetic pulses can make the angular speed of target decrease linearly without propellant during the process.
    [Show full text]
  • Effective Eddy Current Braking at Low and High Vehicular Speeds – a Simulation Study
    Archives of Current Research International 8(4): 1-11, 2017; Article no.ACRI.34042 ISSN: 2454-7077 Effective Eddy Current Braking at Low and High Vehicular Speeds – A Simulation Study Alumona Louis Olisaeloka 1* , Azaka Onyemazuwa Andrew 2 and Nwadike Emmauel Chinagorom 2 1Department of Electrical Engineering, Nnamdi Azikiwe University, Awka, Nigeria. 2Department of Mechanical Engineering, Nnamdi Azikiwe University, Awka, Nigeria. Author’s contributions This work was carried out in collaboration between all authors. Author ALO designed the study, performed the statistical analysis, wrote the protocol, and wrote the first draft of the manuscript. Authors AOA and NEC managed the analyses of the study. Author NEC managed the literature searches. All authors read and approved the final manuscript. Article Information DOI: 10.9734/ACRI/2017/34042 Editor(s): (1) Preecha Yupapin, Department of Physics, King Mongkut’s Institute of Technology Ladkrabang, Thailand. (2) M. A. Elbagermi, Chemistry Department, Misurata University, Libya. (3) Alexandre Gonçalves Pinheiro, Physics, Ceara State University, Brazil. Reviewers: (1) Meshack Hawi, Jomo Kenyatta University of Agriculture and Technology, Kenya. (2) Mohamed Zaher, University of Illinois at Chicago, USA. Complete Peer review History: http://www.sciencedomain.org/review-history/20351 Received 10 th May 2017 Accepted 16 th July 2017 Original Research Article th Published 4 August 2017 ABSTRACT Conventional eddy current braking is limited in effectiveness to only the high vehicular speed region. As the vehicle slows, the conventional eddy current brake loses effectiveness. This inherent drawback is due to the use of static/stationary magnetic field in the brake system. This study presents a solution - the use of rotating magnetic field in the brake system.
    [Show full text]