Pre-And Post-Lie Algebras: the Algebro-Geometric View
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
On an Extension of Knuth's Rotation Correspondence to Reduced Planar Trees
ON AN EXTENSION OF KNUTH’S ROTATION CORRESPONDENCE TO REDUCED PLANAR TREES KURUSCH EBRAHIMI-FARD AND DOMINIQUE MANCHON Abstract. We present a bijection from planar reduced trees to planar rooted hypertrees, which extends Knuth’s rotation correspondence between planar binary trees and planar rooted trees. The operadic coun- terpart of the new bijection is explained. Related to this, the space of planar reduced forests is endowed with a combinatorial Hopf algebra structure. The corresponding structure on the space of planar rooted hyperforests is also described. Contents 1. Introduction 1 2. Planar rooted trees and hypertrees 2 2.1. Planar trees 2 2.2. The Butcher product 3 2.3. Knuth’s correspondence between planar binary and planar rooted trees 3 2.4. Reduced planar rooted trees and planar rooted hypertrees 4 2.5. Adding decorations 6 2.6. Operadic structure 6 3. Hopf algebra structures on trees 7 3.1. Connected filtered bialgebras 7 3.2. The Butcher–Connes–Kreimer Hopf algebra of rooted forests 8 3.3. Two isomorphic Hopf algebras of rooted trees 8 3.4. A Hopf algebra structure on reduced planar forests 9 3.5. The associated pre-Lie structure 10 3.6. A Hopf algebra structure on planar rooted hyperforests 11 References 12 arXiv:1203.0425v1 [math.CO] 2 Mar 2012 1. Introduction Rooted trees have been extensively used in many branches of pure and applied mathematics. Es- pecially in the latter case they gained particular prominence due to the pioneering work on numerical integration methods by John Butcher in the 1960s [3, 14, 20]. -
Global Theory: Chiral Homology
CHAPTER 4 Global Theory: Chiral Homology Qinovnik umiraet, i ordena ego ostats na lice zemli. Koz~ma Prutkov, “Mysli i Aforizmy”, 1860 † 4.1. The cookware This section collects some utensils and implements needed for the construction of chiral homology. A sensible reader should skip it, returning to the material when necessary. Here is the inventory together with a brief comment on the employment mode. (i) In 4.1.1–4.1.2 we consider homotopy direct limits of complexes and discuss their multiplicative properties. The material will be used in 4.2 where the de Rham complex of a D-module on Ran’s space R(X) is defined as the homotopy direct limit of de Rham complexes of the corresponding D-modules on all the Xn’s with respect to the family of all diagonal embeddings. See [BK], [Se]. (ii) In 4.1.3 and 4.1.4 we discuss the notion of the Dolbeault algebra which is an algebraic version of the ∂¯-resolution. Dolbeault resolutions are functorial and have nice multiplicative properties, so they are very convenient for computing the global de Rham cohomology of D-modules on R(X), in particular, the chiral homology of chiral algebras. An important example of Dolbeault algebras comes from the Thom-Sullivan construction; see [HS] §4. (iii) In 4.1.5 we recall the definitions of semi-free DG modules, semi-free com- mutative DG algebras, and the cotangent complex following [H] (see also [Dr1] and [KrM]). The original construction of the cotangent complex, due to Grothendieck [Gr1], [Il], was performed in the setting of simplicial algebras. -
A Model Structure for the Goldman-Millson Theorem
A MODEL STRUCTURE FOR THE GOLDMAN–MILLSON THEOREM DANIEL ROBERT-NICOUD ABSTRACT. By a result of Vallette [Val14], we put a sensible model structure on the category of conilpotent Lie coalgebras. This gives us a powerful tool to study the subcategory of Lie algebras obtained by linear dualization, also known as the category of pronilpotent Lie algebras. This way, we recover weaker versions of the celebrated Goldman–Millson theorem and Dolgushev–Rogers theorem by purely homotopical methods. We explore the relations of this procedure with the existent literature, namely the works of Lazarev–Markl and Buijs–F´elix–Murillo–Tanr´e. CONTENTS 1. Introduction 1 2. Some notions of category theory 2 3. The Goldman–Millson theorem and the Dolgushev–Rogers theorem 7 4. The Vallette model structure on conilpotent coalgebras over a cooperad 9 5. A model structure for the Goldman–Millson theorem 13 6. Framings and the Dolgushev–Rogers theorem 17 References 20 1. INTRODUCTION The celebrated Goldman–Millson theorem [GM88] in one of its more recent versions states that every filtered quasi-isomorphism of differential graded Lie algebras — i.e. quasi-isomorphisms that are com- patible with certain filtrations of the algebras — induces an isomorphism between the moduli spaces of Maurer–Cartan elements of the algebras. Recently, this theorem was extended by V. A. Dolgushev and C. L. Rogers [DR15], who proved that such a morphism induces a weak equivalence of simplicial sets between the whole deformation ∞-groupoids of the algebras, of which the moduli space of Maurer– Cartan elements is the zeroth homotopy group. These theorems have a distinct homotopical flavor — after all, they say that the class of filtered quasi-isomorphisms is sent into the classe of weak equiva- lences of simplicial sets under a certain functor. -
Algebraic Structures of B-Series Philippe Chartier, Ernst Hairer, Gilles Vilmart
Algebraic Structures of B-series Philippe Chartier, Ernst Hairer, Gilles Vilmart To cite this version: Philippe Chartier, Ernst Hairer, Gilles Vilmart. Algebraic Structures of B-series. Foundations of Computational Mathematics, Springer Verlag, 2010, 10 (4), pp.407-420. 10.1007/s10208-010-9065-1. inria-00598369 HAL Id: inria-00598369 https://hal.inria.fr/inria-00598369 Submitted on 6 Jun 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Found Comput Math (2010) 10: 407–427 DOI 10.1007/s10208-010-9065-1 Algebraic Structures of B-series Philippe Chartier · Ernst Hairer · Gilles Vilmart Received: 10 February 2009 / Revised: 10 November 2009 / Accepted: 16 February 2010 / Published online: 24 March 2010 © SFoCM 2010 Abstract B-series are a fundamental tool in practical and theoretical aspects of nu- merical integrators for ordinary differential equations. A composition law for B-series permits an elegant derivation of order conditions, and a substitution law gives much insight into modified differential equations of backward error analysis. These two laws give rise to algebraic structures (groups and Hopf algebras of trees) that have recently received much attention also in the non-numerical literature. -
Lie-Butcher Series, Geometry, Algebra and Computation
Lie–Butcher series, Geometry, Algebra and Computation Hans Z. Munthe-Kaas and Kristoffer K. Føllesdal Abstract Lie–Butcher (LB) series are formal power series expressed in terms of trees and forests. On the geometric side LB-series generalizes classical B-series from Euclidean spaces to Lie groups and homogeneous manifolds. On the algebraic side, B-series are based on pre-Lie algebras and the Butcher-Connes-Kreimer Hopf algebra. The LB-series are instead based on post-Lie algebras and their enveloping algebras. Over the last decade the algebraic theory of LB-series has matured. The purpose of this paper is twofold. First, we aim at presenting the algebraic structures underlying LB series in a concise and self contained manner. Secondly, we review a number of algebraic operations on LB-series found in the literature, and reformulate these as recursive formulae. This is part of an ongoing effort to create an extensive software library for computations in LB-series and B-series in the programming language Haskell. 1 Introduction Classical B-series are formal power series expressed in terms of rooted trees (con- nected graphs without any cycle and a designated node called the root). The theory has its origins back to the work of Arthur Cayley [5] in the 1850s, where he realized that trees could be used to encode information about differential operators. Being forgotten for a century, the theory was revived through the efforts of understanding numerical integration algorithms by John Butcher in the 1960s and ’70s [2, 3]. Ernst Hairer and Gerhard Wanner [15] coined the term B-series for an infinite formal se- arXiv:1701.03654v2 [math.NA] 27 Oct 2017 ries of the form H. -
The Lie Group Structure of the Butcher Group
The Lie group structure of the Butcher group Geir Bogfjellmo∗ and Alexander Schmeding† July 16, 2018 The Butcher group is a powerful tool to analyse integration methods for ordinary differential equations, in particular Runge–Kutta methods. In the present paper, we complement the algebraic treatment of the Butcher group with a natural infinite-dimensional Lie group structure. This structure turns the Butcher group into a real analytic Baker–Campbell–Hausdorff Lie group modelled on a Fréchet space. In addition, the Butcher group is a regular Lie group in the sense of Milnor and contains the subgroup of symplectic tree maps as a closed Lie subgroup. Finally, we also compute the Lie algebra of the Butcher group and discuss its relation to the Lie algebra associated to the Butcher group by Connes and Kreimer. Keywords: Butcher group, infinite-dimensional Lie group, Hopf algebra of rooted trees, regularity of Lie groups, symplectic methods MSC2010: 22E65 (primary); 65L06, 58A07, 16T05 (secondary) Contents 1 PreliminariesontheButchergroupandcalculus 5 2 AnaturalLiegroupstructurefortheButchergroup 13 3 The Lie algebra of the Butcher group 17 4 RegularitypropertiesoftheButchergroup 20 arXiv:1410.4761v3 [math.GR] 6 May 2015 5 TheButchergroupasanexponentialLiegroup 25 ∗NTNU Trondheim [email protected], Phone: +47 73591753, Fax: +47 73593524 (Corresponding author) †NTNU Trondheim [email protected] 1 6 The subgroup of symplectic tree maps 28 References 31 Introduction and statement of results In his seminal work [But72] J.C. Butcher introduced the Butcher group as a tool to study order conditions for a class of integration methods. Butcher’s idea was to build a group structure for mappings on rooted trees. -
Representation Theory in Complex Rank, II
Representation theory in complex rank, II The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Etingof, Pavel. “Representation Theory in Complex Rank, II.” Advances in Mathematics 300 (September 2016): 473–504 © 2016 Elsevier Inc As Published http://dx.doi.org/10.1016/J.AIM.2016.03.025 Publisher Elsevier BV Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/118626 Terms of Use Creative Commons Attribution-NonCommercial-NoDerivs License Detailed Terms http://creativecommons.org/licenses/by-nc-nd/4.0/ REPRESENTATION THEORY IN COMPLEX RANK, II PAVEL ETINGOF To the memory of Andrei Zelevinsky 1. Introduction Let Ct be one of the categories Rep(St), Rep(GLt), Rep(Ot), Rep(Sp2t), obtained by interpolating the classical representation categories Rep(Sn), Rep(GLn), Rep(On), Rep(Sp2n) to complex values of n, defined by Deligne-Milne and Deligne ([DM, De1, De2]).1 In [E1], by analogy with the representation theory of real reductive groups, we proposed to consider various categories of “Harish-Chandra modules” based on Ct, whose objects M are objects of Ct equipped with additional mor- phisms satisfying certain relations. In this situation, the structure of an object of Ct on M is analogous to the action of the “maximal com- pact subgroup”, while the additional morphisms play the role of the “noncompact part”. The papers [E1, EA, Ma] study examples of such categories based on the category Rep(St) (which could be viewed as do- ing “algebraic combinatorics in complex rank”). This paper is a sequel to these works, and its goal is to start developing “Lie theory in complex rank”, extending the constructions of [E1] to “Lie-theoretic” categories Rep(GLt), Rep(Ot), Rep(Sp2t) (based on the ideas outlined in [E2]). -
Local Commutative Algebra and Hochschild Cohomology Through the Lens of Koszul Duality
Local Commutative Algebra and Hochschild Cohomology Through the Lens of Koszul Duality by Benjamin Briggs A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Mathematics University of Toronto c Copyright 2018 by Benjamin Briggs Abstract Local Commutative Algebra and Hochschild Cohomology Through the Lens of Koszul Duality Benjamin Briggs Doctor of Philosophy Graduate Department of Mathematics University of Toronto 2018 This thesis splits into two halves, the connecting theme being Koszul duality. The first part concerns local commutative algebra. Koszul duality here manifests in the homotopy Lie algebra. In the second part, which is joint work with Vincent G´elinas,we study Hochschild cohomology and its characteristic action on the derived category. We begin by defining the homotopy Lie algebra π∗(φ) of a local homomorphism φ (or of a ring) in terms of minimal models, slightly generalising a classical theorem of Avramov. Then, starting with work of F´elixand Halperin, we introduce a notion of Lusternik-Schnirelmann category for local homomor- phisms (and rings). In fact, to φ we associate a sequence cat0(φ) ≥ cat1(φ) ≥ cat2(φ) ≥ · · · each cati(φ) being either a natural number or infinity. We prove that these numbers characterise weakly regular, com- plete intersection, and (generalised) Golod homomorphisms. We present examples which demonstrate how they can uncover interesting information about a homomorphism. We give methods for computing these numbers, and in particular prove a positive characteristic version of F´elixand Halperin's Mapping Theorem. A motivating interest in L.S. category is that finiteness of cat2(φ) implies the existence of certain six-term exact sequences of homotopy Lie algebras, following classical work of Avramov. -
Norges Teknisk-Naturvitenskapelige Universitet
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Algebraic Structures on Ordered Rooted Trees and Their Significance to Lie Group Integrators by H˚avard Berland and Brynjulf Owren PREPRINT NUMERICS NO. 3/2003 NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY TRONDHEIM, NORWAY This report has URL http://www.math.ntnu.no/preprint/numerics/2003/N3-2003.ps Address: Department of Mathematical Sciences, Norwegian University of Science and Technology, N-7491 Trondheim, Norway. Abstract Most Lie group integrators can be expanded in series indexed by the set of ordered rooted trees. To each tree one can associate two distinct higher order derivation operators, which we call frozen and unfrozen operators. Composition of frozen operators induces a concatenation product on the trees, whereas composition of unfrozen operators in- duces a somewhat more complicated product known as the Grossman{ Larson product. Both of these algebra structures can be supplemented by the same coalgebra structure and an antipode, the result being two distinct cocommutative graded Hopf algebras. We discuss the use of these structures and characterize subsets of the Hopf algebras corre- sponding to vector fields and mappings on manifolds. This is further relevant for deriving order conditions for a general class of Lie group integrators and for deriving the modified vector field in backward error analysis for these integrators. 1 Introduction The derivation of high order Runge{Kutta methods was revolutionized by Butcher's discovery of the beautiful connection between their series expan- sion in terms of the stepsize and the set T of rooted trees [2]. Virtually overnight, long and tedious calculations were replaced by elegant recursion formulas expressed in terms of trees. -
Noncommutative Differentials on Poisson-Lie Groups and Pre-Lie Algebras MAJID, SH; Tao, WQ
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Queen Mary Research Online Noncommutative differentials on Poisson-Lie groups and pre-Lie algebras MAJID, SH; Tao, WQ http://arxiv.org/abs/1412.2284 For additional information about this publication click this link. http://qmro.qmul.ac.uk/xmlui/handle/123456789/12484 Information about this research object was correct at the time of download; we occasionally make corrections to records, please therefore check the published record when citing. For more information contact [email protected] NONCOMMUTATIVE DIFFERENTIALS ON POISSON-LIE GROUPS AND PRE-LIE ALGEBRAS SHAHN MAJID AND WEN-QING TAO Abstract. We show that the quantisation of a connected simply-connected Poisson-Lie group admits a left-covariant noncommutative differential struc- ture at lowest deformation order if and only if the dual of its Lie algebra admits a pre-Lie algebra structure. As an example, we find a pre-Lie algebra structure underlying the standard 3D differential structure on Cq[SU2]. At the noncommutative geometry level we show that the enveloping algebra U(m) of a Lie algebra m, viewed as quantisation of m∗, admits a connected differen- tial exterior algebra of classical dimension if and only if m admits a pre-Lie algebra structure. We give an example where m is solvable and we extend the construction to tangent and cotangent spaces of Poisson-Lie groups by using bicross-sum and bosonisation of Lie bialgebras. As an example, we obtain 6D left-covariant differential structures on the bicrossproduct quantum group ∗ C[SU2]I/Uλ(su2). -
Lie Coalgebras*
ADVANCES IN MATHEMATICS 38, 1-54 (1980) Lie Coalgebras* WALTER MICHAELIS Department of Mathematics, The Univmity of Montana, Missoula, Montana 59812 DEDICATED TO SAUNDERS MAC LANE ON THE OCCASION OF HIS RECENT 70TH BIRTHDAY A Lie coalgebra is a coalgebra whose comultiplication d : M -, M @ M satisfies the Lie conditions. Just as any algebra A whose multiplication ‘p : A @ A + A is associative gives rise to an associated Lie algebra e(A), so any coalgebra C whose comultiplication A : C + C 0 C is associative gives rise to an associated Lie coalgcbra f?(C). The assignment C H O’(C) is func- torial. A universal coenveloping coalgebra UC(M) is defined for any Lie coalgebra M by asking for a right adjoint UC to Bc. This is analogous to defining a universal enveloping algebra U(L) for any Lie algebra L by asking for a left adjoint U to the functor f?. In the case of Lie algebras, the unit (i.e., front adjunction) 1 + 5? 0 U of the adjoint functor pair U + B is always injective. This follows from the PoincarC-Birkhoff-Witt theorem, and is equivalent to it in characteristic zero (x = 0). It is, therefore, natural to inquire about the counit (i.e., back adjunction) f!” 0 UC + 1 of the adjoint functor pair B” + UC. THEOREM. For any Lie coalgebra M, the natural map Be(UCM) + M is surjective if and only if M is locally finite, (i.e., each element of M lies in a finite dimensional sub Lie coalgebra of M). An example is given of a non locally finite Lie coalgebra. -
On the Hopf Algebraic Structure of Lie Group Integrators
Foundations of Computational Mathematics manuscript No. (will be inserted by the editor) H. Z. Munthe-Kaas · W. M. Wright On the Hopf Algebraic Structure of Lie Group Integrators Received: date / Accepted: date Abstract A commutative but not cocommutative graded Hopf algebra HN , based on ordered rooted trees, is studied. This Hopf algebra generalizes the Hopf algebraic structure of unordered rooted trees HC , developed by Butcher in his study of Runge–Kutta methods and later rediscovered by Connes and Moscovici in the context of non-commutative geometry and by Kreimer where it is used to describe renormalization in quantum field theory. It is shown that HN is naturally obtained from a universal object in a category of non- commutative derivations, and in particular, it forms a foundation for the study of numerical integrators based on non-commutative Lie group actions on a manifold. Recursive and non-recursive definitions of the coproduct and the antipode are derived. It is also shown that the dual of HN is a Hopf al- gebra of Grossman and Larson. HN contains two well-known Hopf algebras as special cases: The Hopf algebra HC of Butcher–Connes–Kreimer is identi- fied as a proper subalgebra of HN using the image of a tree symmetrization operator. The Hopf algebra HF of the Free Associative Algebra is obtained from HN by a quotient construction. Keywords Hopf algebra · ordered rooted trees · Lie group integrators · Lie–Butcher series · Butcher group · Connes–Kreimer Hopf algebra · Grossman–Larson Hopf algebra arXiv:math/0603023v1 [math.AC] 1 Mar 2006 Mathematics Subject Classification (2000) 16W25 · 16W30 · 22E60 · 37M99 · 65L05 · 65L06 · 81R60 · 81T15 H.