A Practical Implementation of Modular Algorithms for Frobenius Normal Forms of Rational Matrices

Total Page:16

File Type:pdf, Size:1020Kb

A Practical Implementation of Modular Algorithms for Frobenius Normal Forms of Rational Matrices Vol. 45 No. 6 IPSJ Journal June 2004 Regular Paper A Practical Implementation of Modular Algorithms for Frobenius Normal Forms of Rational Matrices Shuichi Moritsugu† Modular algorithms for computing the Frobenius normal forms of integer and rational ma- trices are presented and their implementation is reported. These methods compute Frobenius normal forms over Zpi , where pi’s are distinct primes, and then construct the normal forms over Z or Q by the Chinese remainder theorem. Our implementation includes: (1) detection of unlucky primes, (2) a new formula for the efficient computation of a transformation ma- trix, and (3) extension of our preceding algorithm over Z to one over Q. Through experiments using a number of test matrices, we confirm that our modular algorithm is more efficient in practical terms than the straightforward implementation of conventional methods. • the structure of eigenvectors or generalized 1. Introduction eigenvectors. In a previous paper19), we studied a mod- In addition, algorithms for symbolic computa- ular algorithm for the exact computation of tion of Jordan normal forms can be realized by Frobenius normal forms of integer matrices, and transforming the Frobenius normal forms9),20). substantiated its efficiency by computational Therefore, Frobenius normal forms are the most experiments. In this paper, we extend the suitable for constructing linear algebra algo- above algorithm to the case of rational matri- rithms by means of computer algebra systems. ces. We propose several algorithms and com- They also have important applications such as pare their efficiency and effectiveness through the eigenvalue method for solving systems of experiments. algebraic equations22),23),30). The motivation for these studies is the fact Algorithms for Frobenius normal forms have that computing various types of normal forms been discussed in a number of papers, but these of matrices is a very important subject in sym- have been concerned mainly with the theoreti- bolic linear algebra. In particular, the Jordan cal computational complexity. As an improve- normal form is theoretically fundamental, but it ment over the classical O(n4) algorithm16),26), requires an algebraic extension field to which all the O(n3) algorithm was proposed in Storjo- the eigenvalues belong. Hence, we have to han- hann 29), and a series of algorithms by Gies- dle algebraic numbers efficiently in computer brecht6)∼8) are known to give the best complex- algebra systems, but this is often so difficult ity. Nevertheless, implementations of such algo- that computing Jordan normal forms becomes rithms have rarely been reported, and Maple2) generally inefficient. is the only existing commercial computer alge- In contrast, the Frobenius normal form is bra system to provide a function for Frobenius computed only by rational operations of the normal forms. matrix elements without algebraic extensions, The purpose of this paper is to describe the and it is absolutely unique, while the Jordan implementation of computing normal forms and normal form is unique up to the permutation of transformation matrices, comparing algorithms Jordan blocks. Moreover, the Frobenius normal from a practical point of view. The algorithm form provides the same detailed information on adopted here belongs to the O(n3 log n) class1) the matrix as the Jordan normal form; for ex- and is not necessarily optimal. However, in- ample24): stead of precise analysis of the complexity, we • the characteristic polynomial, focus on the practical application of modular • the minimal polynomial, methods for the computation of normal forms. • the algebraic and geometric multiplicities The basic idea of the modular algorithm of the eigenvalues, and was first explained by Howell12), where only Frobenius normal forms are computed, with- † Institute of Library and Information Science, Uni- out transformation matrices. In Mathieu and versity of Tsukuba Ford18) and Mukhopadhyay25), p-adic methods 1630 Vol. 45 No. 6 Implementation of Modular Algorithms for Frobenius Normal Forms 1631 for the computation of characteristic polyno- 01 mials were proposed, in which only block di- .. agonalized forms or upper triangular forms are 00 . O computed. The latest paper by Giesbrecht and C = . (1) . .. .. Storjohann8) also describes a modular method 00··· 01 and an algorithm for a transformation ma- c c ··· c c trix. The detection of unlucky primes is treated 0 1 n−2 n−1 in both Howell12) and Giesbrecht and Storjo- is called the companion matrix associated with 8) n n−1 hann , but since the notions in those stud- the polynomial f(x)=x − cn−1x −···− ies are slightly different, the procedure is eluci- c1x − c0. In particular, the companion matrix dated in this paper from the viewpoint of actual associated with the polynomial of degree one implementation. f(x)=x − c0 is the 1 × 1 square matrix [c0]. As another approach for Frobenius normal Lemma 2. The characteristic polynomial forms, we previously proposed a fraction-free ϕC (x) and the minimal polynomial φC (x) of the algorithm21) for polynomial matrices. This al- companion matrix C are equal to the associated n n−1 gorithm is also applicable to integer matrices, polynomial f(x)=x −cn−1x −· · ·−c1x−c0. but it does not necessarily yield a dramatic im- provement in efficiency. In this paper, there- Theorem 3 (Frobenius Normal Form). fore, we apply modular methods to integer and (i) Using a suitable regular matrix S, every rational matrices, and focus particularly on the n × n square matrix A can be transformed following: into a block diagonal matrix as follows: −1 • detection of unlucky primes and its imple- F = S AS = C1 ⊕ C2 ⊕···⊕Ct. (2) mentation, This is called the Frobenius normal form (or • efficient computation of transformation rational normal form) of A. Each block ma- matrices with simple elements, and trix Ci (i =1, ···,t)isadi × di compan- • recovery of rational numbers and algo- ion matrix in the form of Eq.(1), and the rithms for rational matrices. associated polynomial ϕi+1(x)ofCi+1 di- The implementation for integer matrices was vides the associated polynomial ϕi(x)ofCi reported in our previous paper19). Theories (i =1,...,t− 1). necessary for both integer matrices and ratio- (ii) For every given matrix A, its Frobenius nal matrices are summarized here in sections 2 normal form F of Eq.(2) is uniquely deter- and 3. We show an extension of the method mined, while a transformation matrix S is to rational matrices in section 4, and discuss not unique. Furthermore, the minimal poly- its efficiency with reference to the experimental nomial of A is given by φA(x)=ϕ1(x), and results in section 5. Most other papers discuss the characteristic polynomial of A is given by only integer matrices, because it is theoretically ϕA(x)=ϕ1(x) · ϕ2(x) ···ϕt(x). sufficient to extract the common denominator For the computation of characteristic poly- of rational matrices. However, our results show nomials, there is a similar algorithm using ma- that such an approach is quite inefficient in ac- trix block diagonalization, as in Eq.(2), known tual implementation. as Danilevskii’s method3),4), where the condi- tion ϕt(x) | ϕt− (x) |···|ϕ (x) is not required. 2. Frobenius Normal Forms of Matri- 1 1 Hence, the result given by Danilevskii’s method ces is not unique and ϕ1(x) is not necessarily iden- In the following sections, we assume that the tical to the minimal polynomial of A. elements of a given matrix are rational num- The normal form in the strict sense of bers; that is, A =[aij] ,aij ∈ Q. Refer to text- Theorem 3 is deduced by the constructive books by Iri and Kan13) and Kan and Iri14) for proof of the “cyclic decomposition theorem details of the normal forms theory. of a finite-dimensional vector space”5),11),13). Definition 1 (Companion Matrix). The computational complexity is analyzed as The following n × n square matrix O(n3 log n)1), where O(n3) corresponds to basic matrix operations such as multiplication, and O(log n) is interpreted as the number of com- panion blocks t in the normal form of Eq.(2). However, instead of the “constructive proof” 1632 IPSJ Journal June 2004 above, this paper adopts the algorithm ex- adopt the form in Definition 1 for the symbolic pressed by the composition of elementary trans- formulation of eigenvectors. Let S−1AS = C formations14), which is the conversion by the in Eq.(1), and let λ be a root of the associated authors of 13) themselves. To our knowledge, polynomial f(x)ofC. If we put there is nothing in the English literature that n− T u := 1,λ,λ2,...,λ 1 , gives such an algorithm explicitly, even though the formulation in Iri and Kan13) is essentially then we have Cu = λu, A(Su)=λ(Su). identical to that in Hoffman and Kunze11). These relations give the symbolic expression of According to the formulation in Kan and an eigenvector of C and A with the eigenvalue Iri14), we eliminate the elements step by λ. (Hence, we do not compute S−1 in the actual step analogously to the Gaussian elimination implementation.) method, and finally obtain the normal form F Remark 2. If all the elements of A are in- as well as a transformation matrix S. The num- tegers, then its Frobenius normal form F con- ber of loop counts is not stable, but depends on sists only of integers. On the other hand, we can the arrangement of the elements in the original take the transformation matrices S and S−1 so matrix A. However, this algorithm, whose com- that only one of them is integral, even though plexity is also considered to be O(n3 log n), is A is rational. There exists no known algorithm certainly deterministic. In order to compute a that yields both S and S−1 as integer matrices.
Recommended publications
  • CONSTRUCTING INTEGER MATRICES with INTEGER EIGENVALUES CHRISTOPHER TOWSE,∗ Scripps College
    Applied Probability Trust (25 March 2016) CONSTRUCTING INTEGER MATRICES WITH INTEGER EIGENVALUES CHRISTOPHER TOWSE,∗ Scripps College ERIC CAMPBELL,∗∗ Pomona College Abstract In spite of the proveable rarity of integer matrices with integer eigenvalues, they are commonly used as examples in introductory courses. We present a quick method for constructing such matrices starting with a given set of eigenvectors. The main feature of the method is an added level of flexibility in the choice of allowable eigenvalues. The method is also applicable to non-diagonalizable matrices, when given a basis of generalized eigenvectors. We have produced an online web tool that implements these constructions. Keywords: Integer matrices, Integer eigenvalues 2010 Mathematics Subject Classification: Primary 15A36; 15A18 Secondary 11C20 In this paper we will look at the problem of constructing a good problem. Most linear algebra and introductory ordinary differential equations classes include the topic of diagonalizing matrices: given a square matrix, finding its eigenvalues and constructing a basis of eigenvectors. In the instructional setting of such classes, concrete “toy" examples are helpful and perhaps even necessary (at least for most students). The examples that are typically given to students are, of course, integer-entry matrices with integer eigenvalues. Sometimes the eigenvalues are repeated with multipicity, sometimes they are all distinct. Oftentimes, the number 0 is avoided as an eigenvalue due to the degenerate cases it produces, particularly when the matrix in question comes from a linear system of differential equations. Yet in [10], Martin and Wong show that “Almost all integer matrices have no integer eigenvalues," let alone all integer eigenvalues.
    [Show full text]
  • Fast Computation of the Rank Profile Matrix and the Generalized Bruhat Decomposition Jean-Guillaume Dumas, Clement Pernet, Ziad Sultan
    Fast Computation of the Rank Profile Matrix and the Generalized Bruhat Decomposition Jean-Guillaume Dumas, Clement Pernet, Ziad Sultan To cite this version: Jean-Guillaume Dumas, Clement Pernet, Ziad Sultan. Fast Computation of the Rank Profile Matrix and the Generalized Bruhat Decomposition. Journal of Symbolic Computation, Elsevier, 2017, Special issue on ISSAC’15, 83, pp.187-210. 10.1016/j.jsc.2016.11.011. hal-01251223v1 HAL Id: hal-01251223 https://hal.archives-ouvertes.fr/hal-01251223v1 Submitted on 5 Jan 2016 (v1), last revised 14 May 2018 (v2) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Fast Computation of the Rank Profile Matrix and the Generalized Bruhat Decomposition Jean-Guillaume Dumas Universit´eGrenoble Alpes, Laboratoire LJK, umr CNRS, BP53X, 51, av. des Math´ematiques, F38041 Grenoble, France Cl´ement Pernet Universit´eGrenoble Alpes, Laboratoire de l’Informatique du Parall´elisme, Universit´ede Lyon, France. Ziad Sultan Universit´eGrenoble Alpes, Laboratoire LJK and LIG, Inria, CNRS, Inovall´ee, 655, av. de l’Europe, F38334 St Ismier Cedex, France Abstract The row (resp. column) rank profile of a matrix describes the stair-case shape of its row (resp.
    [Show full text]
  • On Finding Multiplicities of Characteristic Polynomial Factors Of
    On finding multiplicities of characteristic polynomial factors of black-box matrices∗. Jean-Guillaume Dumas† Cl´ement Pernet‡ B. David Saunders§ November 2, 2018 Abstract We present algorithms and heuristics to compute the characteristic polynomial of a matrix given its minimal polynomial. The matrix is rep- resented as a black-box, i.e., by a function to compute its matrix-vector product. The methods apply to matrices either over the integers or over a large enough finite field. Experiments show that these methods perform efficiently in practice. Combined in an adaptive strategy, these algorithms reach significant speedups in practice for some integer matrices arising in an application from graph theory. Keywords: Characteristic polynomial ; black-box matrix ; finite field. 1 Introduction Computing the characteristic polynomial of an integer matrix is a classical math- ematical problem. It is closely related to the computation of the Frobenius nor- mal form which can be used to test two matrices for similarity, or computing invariant subspaces under the action of the matrix. Although the Frobenius normal form contains more information on the matrix than the characteristic arXiv:0901.4747v2 [cs.SC] 18 May 2009 polynomial, most algorithms to compute it are based on computations of char- acteristic polynomials (see for example [25, 9.7]). Several matrix representations are used in§ computational linear algebra. In the dense representation, a m n matrix is considered as the array of all the m n coefficients. The sparse representation× only considers non-zero coefficients using× different possible data structures. In the black-box representation, the matrix ∗Saunders supported by National Science Foundation Grants CCF-0515197, CCF-0830130.
    [Show full text]
  • Ratner's Work on Unipotent Flows and Impact
    Ratner’s Work on Unipotent Flows and Its Impact Elon Lindenstrauss, Peter Sarnak, and Amie Wilkinson Dani above. As the name suggests, these theorems assert that the closures, as well as related features, of the orbits of such flows are very restricted (rigid). As such they provide a fundamental and powerful tool for problems connected with these flows. The brilliant techniques that Ratner in- troduced and developed in establishing this rigidity have been the blueprint for similar rigidity theorems that have been proved more recently in other contexts. We begin by describing the setup for the group of 푑×푑 matrices with real entries and determinant equal to 1 — that is, SL(푑, ℝ). An element 푔 ∈ SL(푑, ℝ) is unipotent if 푔−1 is a nilpotent matrix (we use 1 to denote the identity element in 퐺), and we will say a group 푈 < 퐺 is unipotent if every element of 푈 is unipotent. Connected unipotent subgroups of SL(푑, ℝ), in particular one-parameter unipo- Ratner presenting her rigidity theorems in a plenary tent subgroups, are basic objects in Ratner’s work. A unipo- address to the 1994 ICM, Zurich. tent group is said to be a one-parameter unipotent group if there is a surjective homomorphism defined by polyno- In this note we delve a bit more into Ratner’s rigidity theo- mials from the additive group of real numbers onto the rems for unipotent flows and highlight some of their strik- group; for instance ing applications, expanding on the outline presented by Elon Lindenstrauss is Alice Kusiel and Kurt Vorreuter professor of mathemat- 1 푡 푡2/2 1 푡 ics at The Hebrew University of Jerusalem.
    [Show full text]
  • Integer Matrix Approximation and Data Mining
    Noname manuscript No. (will be inserted by the editor) Integer Matrix Approximation and Data Mining Bo Dong · Matthew M. Lin · Haesun Park Received: date / Accepted: date Abstract Integer datasets frequently appear in many applications in science and en- gineering. To analyze these datasets, we consider an integer matrix approximation technique that can preserve the original dataset characteristics. Because integers are discrete in nature, to the best of our knowledge, no previously proposed technique de- veloped for real numbers can be successfully applied. In this study, we first conduct a thorough review of current algorithms that can solve integer least squares problems, and then we develop an alternative least square method based on an integer least squares estimation to obtain the integer approximation of the integer matrices. We discuss numerical applications for the approximation of randomly generated integer matrices as well as studies of association rule mining, cluster analysis, and pattern extraction. Our computed results suggest that our proposed method can calculate a more accurate solution for discrete datasets than other existing methods. Keywords Data mining · Matrix factorization · Integer least squares problem · Clustering · Association rule · Pattern extraction The first author's research was supported in part by the National Natural Science Foundation of China under grant 11101067 and the Fundamental Research Funds for the Central Universities. The second author's research was supported in part by the National Center for Theoretical Sciences of Taiwan and by the Ministry of Science and Technology of Taiwan under grants 104-2115-M-006-017-MY3 and 105-2634-E-002-001. The third author's research was supported in part by the Defense Advanced Research Projects Agency (DARPA) XDATA program grant FA8750-12-2-0309 and NSF grants CCF-0808863, IIS-1242304, and IIS-1231742.
    [Show full text]
  • Alternating Sign Matrices, Extensions and Related Cones
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/311671190 Alternating sign matrices, extensions and related cones Article in Advances in Applied Mathematics · May 2017 DOI: 10.1016/j.aam.2016.12.001 CITATIONS READS 0 29 2 authors: Richard A. Brualdi Geir Dahl University of Wisconsin–Madison University of Oslo 252 PUBLICATIONS 3,815 CITATIONS 102 PUBLICATIONS 1,032 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Combinatorial matrix theory; alternating sign matrices View project All content following this page was uploaded by Geir Dahl on 16 December 2016. The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately. Alternating sign matrices, extensions and related cones Richard A. Brualdi∗ Geir Dahly December 1, 2016 Abstract An alternating sign matrix, or ASM, is a (0; ±1)-matrix where the nonzero entries in each row and column alternate in sign, and where each row and column sum is 1. We study the convex cone generated by ASMs of order n, called the ASM cone, as well as several related cones and polytopes. Some decomposition results are shown, and we find a minimal Hilbert basis of the ASM cone. The notion of (±1)-doubly stochastic matrices and a generalization of ASMs are introduced and various properties are shown. For instance, we give a new short proof of the linear characterization of the ASM polytope, in fact for a more general polytope.
    [Show full text]
  • K-Theory of Furstenberg Transformation Group C ∗-Algebras
    Canad. J. Math. Vol. 65 (6), 2013 pp. 1287–1319 http://dx.doi.org/10.4153/CJM-2013-022-x c Canadian Mathematical Society 2013 K-theory of Furstenberg Transformation Group C∗-algebras Kamran Reihani Abstract. This paper studies the K-theoretic invariants of the crossed product C∗-algebras associated n with an important family of homeomorphisms of the tori T called Furstenberg transformations. Using the Pimsner–Voiculescu theorem, we prove that given n, the K-groups of those crossed products whose corresponding n × n integer matrices are unipotent of maximal degree always have the same rank an. We show using the theory developed here that a claim made in the literature about the torsion subgroups of these K-groups is false. Using the representation theory of the simple Lie algebra sl(2; C), we show that, remarkably, an has a combinatorial significance. For example, every a2n+1 is just the number of ways that 0 can be represented as a sum of integers between −n and n (with no repetitions). By adapting an argument of van Lint (in which he answered a question of Erdos),˝ a simple explicit formula for the asymptotic behavior of the sequence fang is given. Finally, we describe the order structure of the K0-groups of an important class of Furstenberg crossed products, obtaining their complete Elliott invariant using classification results of H. Lin and N. C. Phillips. 1 Introduction Furstenberg transformations were introduced in [9] as the first examples of homeo- morphisms of the tori that under some necessary and sufficient conditions are mini- mal and uniquely ergodic.
    [Show full text]
  • Package 'Matrixcalc'
    Package ‘matrixcalc’ July 28, 2021 Version 1.0-5 Date 2021-07-27 Title Collection of Functions for Matrix Calculations Author Frederick Novomestky <[email protected]> Maintainer S. Thomas Kelly <[email protected]> Depends R (>= 2.0.1) Description A collection of functions to support matrix calculations for probability, econometric and numerical analysis. There are additional functions that are comparable to APL functions which are useful for actuarial models such as pension mathematics. This package is used for teaching and research purposes at the Department of Finance and Risk Engineering, New York University, Polytechnic Institute, Brooklyn, NY 11201. Horn, R.A. (1990) Matrix Analysis. ISBN 978-0521386326. Lancaster, P. (1969) Theory of Matrices. ISBN 978-0124355507. Lay, D.C. (1995) Linear Algebra: And Its Applications. ISBN 978-0201845563. License GPL (>= 2) Repository CRAN Date/Publication 2021-07-28 08:00:02 UTC NeedsCompilation no R topics documented: commutation.matrix . .3 creation.matrix . .4 D.matrix . .5 direct.prod . .6 direct.sum . .7 duplication.matrix . .8 E.matrices . .9 elimination.matrix . 10 entrywise.norm . 11 1 2 R topics documented: fibonacci.matrix . 12 frobenius.matrix . 13 frobenius.norm . 14 frobenius.prod . 15 H.matrices . 17 hadamard.prod . 18 hankel.matrix . 19 hilbert.matrix . 20 hilbert.schmidt.norm . 21 inf.norm . 22 is.diagonal.matrix . 23 is.idempotent.matrix . 24 is.indefinite . 25 is.negative.definite . 26 is.negative.semi.definite . 28 is.non.singular.matrix . 29 is.positive.definite . 31 is.positive.semi.definite . 32 is.singular.matrix . 34 is.skew.symmetric.matrix . 35 is.square.matrix . 36 is.symmetric.matrix .
    [Show full text]
  • Generalized Spectral Characterizations of Almost Controllable Graphs
    Generalized spectral characterizations of almost controllable graphs Wei Wanga Fenjin Liub∗ Wei Wangc aSchool of Mathematics, Physics and Finance, Anhui Polytechnic University, Wuhu 241000, P.R. China bSchool of Science, Chang’an University, Xi’an 710064, P.R. China bSchool of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an 710049, P.R. China Abstract Characterizing graphs by their spectra is an important topic in spectral graph theory, which has attracted a lot of attention of researchers in recent years. It is generally very hard and challenging to show a given graph to be determined by its spectrum. In Wang [J. Combin. Theory, Ser. B, 122 (2017): 438-451], the author gave a simple arithmetic condition for a family of graphs being determined by their generalized spectra. However, the method applies only to a family of the so called controllable graphs; it fails when the graphs are non-controllable. In this paper, we introduce a class of non-controllable graphs, called almost con- trollable graphs, and prove that, for any pair of almost controllable graphs G and H that are generalized cospectral, there exist exactly two rational orthogonal matrices Q with constant row sums such that QTA(G)Q = A(H), where A(G) and A(H) are the adjacency matrices of G and H, respectively. The main ingredient of the proof is a use of the Binet-Cauchy formula. As an application, we obtain a simple criterion for an almost controllable graph G to be determined by its generalized spectrum, which in some sense extends the corresponding result for controllable graphs.
    [Show full text]
  • Computing Rational Forms of Integer Matrices
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector J. Symbolic Computation (2002) 34, 157–172 doi:10.1006/jsco.2002.0554 Available online at http://www.idealibrary.com on Computing Rational Forms of Integer Matrices MARK GIESBRECHT† AND ARNE STORJOHANN‡ School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 n×n A new algorithm is presented for finding the Frobenius rational form F ∈ Z of any n×n 4 3 A ∈ Z which requires an expected number of O(n (log n + log kAk) + n (log n + log kAk)2) word operations using standard integer and matrix arithmetic (where kAk = maxij |Aij |). This substantially improves on the fastest previously known algorithms. The algorithm is probabilistic of the Las Vegas type: it assumes a source of random bits but always produces the correct answer. Las Vegas algorithms are also presented for computing a transformation matrix to the Frobenius form, and for computing the rational Jordan form of an integer matrix. c 2002 Elsevier Science Ltd. All rights reserved. 1. Introduction In this paper we present new algorithms for exactly computing the Frobenius and rational Jordan normal forms of an integer matrix which are substantially faster than those previously known. We show that the Frobenius form F ∈ Zn×n of any A ∈ Zn×n can be computed with an expected number of O(n4(log n+log kAk)+n3(log n+log kAk)2) word operations using standard integer and matrix arithmetic. Here and throughout this paper, kAk = maxij |Aij|.
    [Show full text]
  • Observavility Brunovsky Normal Form: Multi-Output Linear Dynamical Systems Driss Boutat, Frédéric Kratz, Jean-Pierre Barbot
    Observavility Brunovsky Normal Form: Multi-Output Linear Dynamical Systems Driss Boutat, Frédéric Kratz, Jean-Pierre Barbot To cite this version: Driss Boutat, Frédéric Kratz, Jean-Pierre Barbot. Observavility Brunovsky Normal Form: Multi- Output Linear Dynamical Systems. American Control Conference, ACC09, IEEE, Jun 2009, St. Louis, MO, United States. hal-00772281 HAL Id: hal-00772281 https://hal.inria.fr/hal-00772281 Submitted on 10 Jan 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Observavility Brunovsky Normal Form: Multi-Output Linear Dynamical Systems Driss Boutat, Fred´ eric´ Kratz and Jean-Pierre Barbot Abstract— This paper gives the sufficient and necessary II. NOTATION AND PROBLEM STATEMENT conditions to guarantee the existence of a linear change of co- ordinates to transform a multi-output linear dynamical system (modulo a nonlinear term depending on inputs and outputs) in the observability Brunovsky canonical form. Consider the following multi-output dynamical system: I. INTRODUCTION x˙ = Ax + γ(y, u) (1) y = Cx (2) For a single output dynamical linear system the observability rank condition is a necessary and sufficient condition to transform it into the Brunovsky observability where: normal form. In this last form, it is possible to use classical observer such that [8] observer and, [5] observer.
    [Show full text]
  • A Rough Guide to Linear Algebra
    A rough guide to linear algbera Dongryul Kim Version of April 18, 2020 ii Contents Preface v 1 Sets 1 1.1 Sets and maps . .1 1.2 Products, coproducts, and sets of maps . .4 1.3 Fun with diagrams . .7 1.4 Equivalence classes . .9 2 Vector spaces 13 2.1 Fields . 13 2.2 Vector spaces . 15 2.3 Matrices . 18 2.4 Products and direct sums . 21 2.5 Subspaces and quotients . 27 2.6 Vector spaces from linear maps . 29 2.7 Bases and dimension . 34 2.8 Dual spaces . 44 2.9 Linear algebra in combinatorics . 50 3 Multilinear algebra 55 3.1 Bilinear maps and tensor products . 55 3.2 Symmetric and exterior algebras . 62 3.3 The determinant . 68 3.4 Computing the inverse matrix . 72 4 Linear algebra without division 79 4.1 Commutative rings . 79 4.2 Modules . 82 4.3 Classification of finitely generated modules over a PID . 86 4.4 Frobenius and Jordan normal form . 97 4.5 Eigenvalues and eigenvectors . 103 iii iv CONTENTS 5 Linear algebra over R and C 109 5.1 A bit of analysis . 109 5.2 Inner products . 112 5.3 Operators on Hilbert spaces . 118 5.4 The spectral theorem . 121 5.5 Positivity of operators . 125 5.6 Duality in linear programming . 130 Epilogue 131 Preface At a certain point, one adopts a mode of learning mathematics. Then at a later point, after progressing through various styles of teaching and writing, one develops one's own point of view for how mathematics is to be taught.
    [Show full text]