Course Notes: Convex Analysis and Optimization
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1 Overview 2 Elements of Convex Analysis
AM 221: Advanced Optimization Spring 2016 Prof. Yaron Singer Lecture 2 | Wednesday, January 27th 1 Overview In our previous lecture we discussed several applications of optimization, introduced basic terminol- ogy, and proved Weierstass' theorem (circa 1830) which gives a sufficient condition for existence of an optimal solution to an optimization problem. Today we will discuss basic definitions and prop- erties of convex sets and convex functions. We will then prove the separating hyperplane theorem and see an application of separating hyperplanes in machine learning. We'll conclude by describing the seminal perceptron algorithm (1957) which is designed to find separating hyperplanes. 2 Elements of Convex Analysis We will primarily consider optimization problems over convex sets { sets for which any two points are connected by a line. We illustrate some convex and non-convex sets in Figure 1. Definition. A set S is called a convex set if any two points in S contain their line, i.e. for any x1; x2 2 S we have that λx1 + (1 − λ)x2 2 S for any λ 2 [0; 1]. In the previous lecture we saw linear regression an example of an optimization problem, and men- tioned that the RSS function has a convex shape. We can now define this concept formally. n Definition. For a convex set S ⊆ R , we say that a function f : S ! R is: • convex on S if for any two points x1; x2 2 S and any λ 2 [0; 1] we have that: f (λx1 + (1 − λ)x2) ≤ λf(x1) + 1 − λ f(x2): • strictly convex on S if for any two points x1; x2 2 S and any λ 2 [0; 1] we have that: f (λx1 + (1 − λ)x2) < λf(x1) + (1 − λ) f(x2): We illustrate a convex function in Figure 2. -
CORE View Metadata, Citation and Similar Papers at Core.Ac.Uk
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Bulgarian Digital Mathematics Library at IMI-BAS Serdica Math. J. 27 (2001), 203-218 FIRST ORDER CHARACTERIZATIONS OF PSEUDOCONVEX FUNCTIONS Vsevolod Ivanov Ivanov Communicated by A. L. Dontchev Abstract. First order characterizations of pseudoconvex functions are investigated in terms of generalized directional derivatives. A connection with the invexity is analysed. Well-known first order characterizations of the solution sets of pseudolinear programs are generalized to the case of pseudoconvex programs. The concepts of pseudoconvexity and invexity do not depend on a single definition of the generalized directional derivative. 1. Introduction. Three characterizations of pseudoconvex functions are considered in this paper. The first is new. It is well-known that each pseudo- convex function is invex. Then the following question arises: what is the type of 2000 Mathematics Subject Classification: 26B25, 90C26, 26E15. Key words: Generalized convexity, nonsmooth function, generalized directional derivative, pseudoconvex function, quasiconvex function, invex function, nonsmooth optimization, solution sets, pseudomonotone generalized directional derivative. 204 Vsevolod Ivanov Ivanov the function η from the definition of invexity, when the invex function is pseudo- convex. This question is considered in Section 3, and a first order necessary and sufficient condition for pseudoconvexity of a function is given there. It is shown that the class of strongly pseudoconvex functions, considered by Weir [25], coin- cides with pseudoconvex ones. The main result of Section 3 is applied to characterize the solution set of a nonlinear programming problem in Section 4. The base results of Jeyakumar and Yang in the paper [13] are generalized there to the case, when the function is pseudoconvex. -
Applications of Convex Analysis Within Mathematics
Noname manuscript No. (will be inserted by the editor) Applications of Convex Analysis within Mathematics Francisco J. Arag´onArtacho · Jonathan M. Borwein · Victoria Mart´ın-M´arquez · Liangjin Yao July 19, 2013 Abstract In this paper, we study convex analysis and its theoretical applications. We first apply important tools of convex analysis to Optimization and to Analysis. We then show various deep applications of convex analysis and especially infimal convolution in Monotone Operator Theory. Among other things, we recapture the Minty surjectivity theorem in Hilbert space, and present a new proof of the sum theorem in reflexive spaces. More technically, we also discuss autoconjugate representers for maximally monotone operators. Finally, we consider various other applications in mathematical analysis. Keywords Adjoint · Asplund averaging · autoconjugate representer · Banach limit · Chebyshev set · convex functions · Fenchel duality · Fenchel conjugate · Fitzpatrick function · Hahn{Banach extension theorem · infimal convolution · linear relation · Minty surjectivity theorem · maximally monotone operator · monotone operator · Moreau's decomposition · Moreau envelope · Moreau's max formula · Moreau{Rockafellar duality · normal cone operator · renorming · resolvent · Sandwich theorem · subdifferential operator · sum theorem · Yosida approximation Mathematics Subject Classification (2000) Primary 47N10 · 90C25; Secondary 47H05 · 47A06 · 47B65 Francisco J. Arag´onArtacho Centre for Computer Assisted Research Mathematics and its Applications (CARMA), -
Convex) Level Sets Integration
Journal of Optimization Theory and Applications manuscript No. (will be inserted by the editor) (Convex) Level Sets Integration Jean-Pierre Crouzeix · Andrew Eberhard · Daniel Ralph Dedicated to Vladimir Demjanov Received: date / Accepted: date Abstract The paper addresses the problem of recovering a pseudoconvex function from the normal cones to its level sets that we call the convex level sets integration problem. An important application is the revealed preference problem. Our main result can be described as integrating a maximally cycli- cally pseudoconvex multivalued map that sends vectors or \bundles" of a Eu- clidean space to convex sets in that space. That is, we are seeking a pseudo convex (real) function such that the normal cone at each boundary point of each of its lower level sets contains the set value of the multivalued map at the same point. This raises the question of uniqueness of that function up to rescaling. Even after normalising the function long an orienting direction, we give a counterexample to its uniqueness. We are, however, able to show uniqueness under a condition motivated by the classical theory of ordinary differential equations. Keywords Convexity and Pseudoconvexity · Monotonicity and Pseudomono- tonicity · Maximality · Revealed Preferences. Mathematics Subject Classification (2000) 26B25 · 91B42 · 91B16 Jean-Pierre Crouzeix, Corresponding Author, LIMOS, Campus Scientifique des C´ezeaux,Universit´eBlaise Pascal, 63170 Aubi`ere,France, E-mail: [email protected] Andrew Eberhard School of Mathematical & Geospatial Sciences, RMIT University, Melbourne, VIC., Aus- tralia, E-mail: [email protected] Daniel Ralph University of Cambridge, Judge Business School, UK, E-mail: [email protected] 2 Jean-Pierre Crouzeix et al. -
Ce Document Est Le Fruit D'un Long Travail Approuvé Par Le Jury De Soutenance Et Mis À Disposition De L'ensemble De La Communauté Universitaire Élargie
AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il est soumis à la propriété intellectuelle de l'auteur. Ceci implique une obligation de citation et de référencement lors de l’utilisation de ce document. D'autre part, toute contrefaçon, plagiat, reproduction illicite encourt une poursuite pénale. Contact : [email protected] LIENS Code de la Propriété Intellectuelle. articles L 122. 4 Code de la Propriété Intellectuelle. articles L 335.2- L 335.10 http://www.cfcopies.com/V2/leg/leg_droi.php http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm THESE` pr´esent´eepar NGUYEN Manh Cuong en vue de l'obtention du grade de DOCTEUR DE L'UNIVERSITE´ DE LORRAINE (arr^et´eminist´eriel du 7 Ao^ut 2006) Sp´ecialit´e: INFORMATIQUE LA PROGRAMMATION DC ET DCA POUR CERTAINES CLASSES DE PROBLEMES` EN APPRENTISSAGE ET FOUILLE DE DONEES.´ Soutenue le 19 mai 2014 devant le jury compos´ede Rapporteur BENNANI Youn`es Professeur, Universit´eParis 13 Rapporteur RAKOTOMAMONJY Alain Professeur, Universit´ede Rouen Examinateur GUERMEUR Yann Directeur de recherche, LORIA-Nancy Examinateur HEIN Matthias Professeur, Universit´eSaarland Examinateur PHAM DINH Tao Professeur ´em´erite, INSA-Rouen Directrice de th`ese LE THI Hoai An Professeur, Universit´ede Lorraine Co-encadrant CONAN-GUEZ Brieuc MCF, Universit´ede Lorraine These` prepar´ ee´ a` l'Universite´ de Lorraine, Metz, France au sein de laboratoire LITA Remerciements Cette th`ese a ´et´epr´epar´ee au sein du Laboratoire d'Informatique Th´eorique et Appliqu´ee (LITA) de l'Universit´ede Lorraine - France, sous la co-direction du Madame le Professeur LE THI Hoai An, Directrice du laboratoire Laboratoire d'Informatique Th´eorique et Ap- pliqu´ee(LITA), Universit´ede Lorraine et Ma^ıtre de conf´erence CONAN-GUEZ Brieuc, Institut Universitaire de Technologie (IUT), Universit´ede Lorraine, Metz. -
Lipschitz Continuity of Convex Functions
Lipschitz Continuity of Convex Functions Bao Tran Nguyen∗ Pham Duy Khanh† November 13, 2019 Abstract We provide some necessary and sufficient conditions for a proper lower semi- continuous convex function, defined on a real Banach space, to be locally or globally Lipschitz continuous. Our criteria rely on the existence of a bounded selection of the subdifferential mapping and the intersections of the subdifferential mapping and the normal cone operator to the domain of the given function. Moreover, we also point out that the Lipschitz continuity of the given function on an open and bounded (not necessarily convex) set can be characterized via the existence of a bounded selection of the subdifferential mapping on the boundary of the given set and as a consequence it is equivalent to the local Lipschitz continuity at every point on the boundary of that set. Our results are applied to extend a Lipschitz and convex function to the whole space and to study the Lipschitz continuity of its Moreau envelope functions. Keywords Convex function, Lipschitz continuity, Calmness, Subdifferential, Normal cone, Moreau envelope function. Mathematics Subject Classification (2010) 26A16, 46N10, 52A41 1 Introduction arXiv:1911.04886v1 [math.FA] 12 Nov 2019 Lipschitz continuous and convex functions play a significant role in convex and nonsmooth analysis. It is well-known that if the domain of a proper lower semicontinuous convex function defined on a real Banach space has a nonempty interior then the function is continuous over the interior of its domain [3, Proposition 2.111] and as a consequence, it is subdifferentiable (its subdifferential is a nonempty set) and locally Lipschitz continuous at every point in the interior of its domain [3, Proposition 2.107]. -
On the Ekeland Variational Principle with Applications and Detours
Lectures on The Ekeland Variational Principle with Applications and Detours By D. G. De Figueiredo Tata Institute of Fundamental Research, Bombay 1989 Author D. G. De Figueiredo Departmento de Mathematica Universidade de Brasilia 70.910 – Brasilia-DF BRAZIL c Tata Institute of Fundamental Research, 1989 ISBN 3-540- 51179-2-Springer-Verlag, Berlin, Heidelberg. New York. Tokyo ISBN 0-387- 51179-2-Springer-Verlag, New York. Heidelberg. Berlin. Tokyo No part of this book may be reproduced in any form by print, microfilm or any other means with- out written permission from the Tata Institute of Fundamental Research, Colaba, Bombay 400 005 Printed by INSDOC Regional Centre, Indian Institute of Science Campus, Bangalore 560012 and published by H. Goetze, Springer-Verlag, Heidelberg, West Germany PRINTED IN INDIA Preface Since its appearance in 1972 the variational principle of Ekeland has found many applications in different fields in Analysis. The best refer- ences for those are by Ekeland himself: his survey article [23] and his book with J.-P. Aubin [2]. Not all material presented here appears in those places. Some are scattered around and there lies my motivation in writing these notes. Since they are intended to students I included a lot of related material. Those are the detours. A chapter on Nemyt- skii mappings may sound strange. However I believe it is useful, since their properties so often used are seldom proved. We always say to the students: go and look in Krasnoselskii or Vainberg! I think some of the proofs presented here are more straightforward. There are two chapters on applications to PDE. -
NOTE on the CONTINUITY of M-CONVEX and L-CONVEX FUNCTIONS in CONTINUOUS VARIABLES 1. Introduction Two Kinds of Convexity Concept
Journal of the Operations Research Society of Japan 2008, Vol. 51, No. 4, 265-273 NOTE ON THE CONTINUITY OF M-CONVEX AND L-CONVEX FUNCTIONS IN CONTINUOUS VARIABLES Kazuo Murota Akiyoshi Shioura University of Tokyo Tohoku University (Received March 27, 2008) Abstract M-convex and L-convex functions in continuous variables constitute subclasses of convex func- tions with nice combinatorial properties. In this note we give proofs of the fundamental facts that closed proper M-convex and L-convex functions are continuous on their effective domains. Keywords: Combinatorial optimization, convex function, continuity, submodular func- tion, matroid. 1. Introduction Two kinds of convexity concepts, called M-convexity and L-convexity, play primary roles in the theory of discrete convex analysis [6]. They are originally introduced for functions in integer variables by Murota [4, 5], and then for functions in continuous variables by Murota{ Shioura [8, 10]. M-convex and L-convex functions in continuous variables constitute subclasses of convex functions with additional combinatorial properties such as submodularity and diagonal dom- inance (see, e.g., [6{11]). Fundamental properties of M-convex and L-convex functions are investigated in [9], such as equivalent axioms, subgradients, directional derivatives, etc. Con- jugacy relationship between M-convex and L-convex functions under the Legendre-Fenchel transformation is shown in [10]. Subclasses of M-convex and L-convex functions are investi- gated in [8] (polyhedral M-convex and L-convex functions) and in [11] (quadratic M-convex and L-convex functions). As variants of M-convex and L-convex functions, the concepts of M\-convex and L\-convex functions are also introduced by Murota{Shioura [8, 10], where \M\" and \L\" should be read \M-natural" and \L-natural," respectively. -
Optimization Over Nonnegative and Convex Polynomials with and Without Semidefinite Programming
OPTIMIZATION OVER NONNEGATIVE AND CONVEX POLYNOMIALS WITH AND WITHOUT SEMIDEFINITE PROGRAMMING GEORGINA HALL ADISSERTATION PRESENTED TO THE FACULTY OF PRINCETON UNIVERSITY IN CANDIDACY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY RECOMMENDED FOR ACCEPTANCE BY THE DEPARTMENT OF OPERATIONS RESEARCH AND FINANCIAL ENGINEERING ADVISER:PROFESSOR AMIR ALI AHMADI JUNE 2018 c Copyright by Georgina Hall, 2018. All rights reserved. Abstract The problem of optimizing over the cone of nonnegative polynomials is a fundamental problem in computational mathematics, with applications to polynomial optimization, con- trol, machine learning, game theory, and combinatorics, among others. A number of break- through papers in the early 2000s showed that this problem, long thought to be out of reach, could be tackled by using sum of squares programming. This technique however has proved to be expensive for large-scale problems, as it involves solving large semidefinite programs (SDPs). In the first part of this thesis, we present two methods for approximately solving large- scale sum of squares programs that dispense altogether with semidefinite programming and only involve solving a sequence of linear or second order cone programs generated in an adaptive fashion. We then focus on the problem of finding tight lower bounds on polyno- mial optimization problems (POPs), a fundamental task in this area that is most commonly handled through the use of SDP-based sum of squares hierarchies (e.g., due to Lasserre and Parrilo). In contrast to previous approaches, we provide the first theoretical framework for constructing converging hierarchies of lower bounds on POPs whose computation simply requires the ability to multiply certain fixed polynomials together and to check nonnegativ- ity of the coefficients of their product. -
Sum of Squares and Polynomial Convexity
CONFIDENTIAL. Limited circulation. For review only. Sum of Squares and Polynomial Convexity Amir Ali Ahmadi and Pablo A. Parrilo Abstract— The notion of sos-convexity has recently been semidefiniteness of the Hessian matrix is replaced with proposed as a tractable sufficient condition for convexity of the existence of an appropriately defined sum of squares polynomials based on sum of squares decomposition. A multi- decomposition. As we will briefly review in this paper, by variate polynomial p(x) = p(x1; : : : ; xn) is said to be sos-convex if its Hessian H(x) can be factored as H(x) = M T (x) M (x) drawing some appealing connections between real algebra with a possibly nonsquare polynomial matrix M(x). It turns and numerical optimization, the latter problem can be re- out that one can reduce the problem of deciding sos-convexity duced to the feasibility of a semidefinite program. of a polynomial to the feasibility of a semidefinite program, Despite the relative recency of the concept of sos- which can be checked efficiently. Motivated by this computa- convexity, it has already appeared in a number of theo- tional tractability, it has been speculated whether every convex polynomial must necessarily be sos-convex. In this paper, we retical and practical settings. In [6], Helton and Nie use answer this question in the negative by presenting an explicit sos-convexity to give sufficient conditions for semidefinite example of a trivariate homogeneous polynomial of degree eight representability of semialgebraic sets. In [7], Lasserre uses that is convex but not sos-convex. sos-convexity to extend Jensen’s inequality in convex anal- ysis to linear functionals that are not necessarily probability I. -
Subdifferential Properties of Quasiconvex and Pseudoconvex Functions: Unified Approach1
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS: Vol. 97, No. I, pp. 29-45, APRIL 1998 Subdifferential Properties of Quasiconvex and Pseudoconvex Functions: Unified Approach1 D. AUSSEL2 Communicated by M. Avriel Abstract. In this paper, we are mainly concerned with the characteriza- tion of quasiconvex or pseudoconvex nondifferentiable functions and the relationship between those two concepts. In particular, we charac- terize the quasiconvexity and pseudoconvexity of a function by mixed properties combining properties of the function and properties of its subdifferential. We also prove that a lower semicontinuous and radially continuous function is pseudoconvex if it is quasiconvex and satisfies the following optimality condition: 0sdf(x) =f has a global minimum at x. The results are proved using the abstract subdifferential introduced in Ref. 1, a concept which allows one to recover almost all the subdiffer- entials used in nonsmooth analysis. Key Words. Nonsmooth analysis, abstract subdifferential, quasicon- vexity, pseudoconvexity, mixed property. 1. Preliminaries Throughout this paper, we use the concept of abstract subdifferential introduced in Aussel et al. (Ref. 1). This definition allows one to recover almost all classical notions of nonsmooth analysis. The aim of such an approach is to show that a lot of results concerning the subdifferential prop- erties of quasiconvex and pseudoconvex functions can be proved in a unified way, and hence for a large class of subdifferentials. We are interested here in two aspects of convex analysis: the charac- terization of quasiconvex and pseudoconvex lower semicontinuous functions and the relationship between these two concepts. 1The author is indebted to Prof. M. Lassonde for many helpful discussions leading to a signifi- cant improvement in the presentation of the results. -
Chapter 5 Convex Optimization in Function Space 5.1 Foundations of Convex Analysis
Chapter 5 Convex Optimization in Function Space 5.1 Foundations of Convex Analysis Let V be a vector space over lR and k ¢ k : V ! lR be a norm on V . We recall that (V; k ¢ k) is called a Banach space, if it is complete, i.e., if any Cauchy sequence fvkglN of elements vk 2 V; k 2 lN; converges to an element v 2 V (kvk ¡ vk ! 0 as k ! 1). Examples: Let be a domain in lRd; d 2 lN. Then, the space C() of continuous functions on is a Banach space with the norm kukC() := sup ju(x)j : x2 The spaces Lp(); 1 · p < 1; of (in the Lebesgue sense) p-integrable functions are Banach spaces with the norms Z ³ ´1=p p kukLp() := ju(x)j dx : The space L1() of essentially bounded functions on is a Banach space with the norm kukL1() := ess sup ju(x)j : x2 The (topologically and algebraically) dual space V ¤ is the space of all bounded linear functionals ¹ : V ! lR. Given ¹ 2 V ¤, for ¹(v) we often write h¹; vi with h¢; ¢i denoting the dual product between V ¤ and V . We note that V ¤ is a Banach space equipped with the norm j h¹; vi j k¹k := sup : v2V nf0g kvk Examples: The dual of C() is the space M() of Radon measures ¹ with Z h¹; vi := v d¹ ; v 2 C() : The dual of L1() is the space L1(). The dual of Lp(); 1 < p < 1; is the space Lq() with q being conjugate to p, i.e., 1=p + 1=q = 1.