1 Introduction Some Ecological Properties of Pistacia Atlanticadesf

Total Page:16

File Type:pdf, Size:1020Kb

1 Introduction Some Ecological Properties of Pistacia Atlanticadesf 2013-06-25 DOI: 10.3724/SP.J.1145.2013.00415 http://www.cibj.com/ 应用与环境生物学报 Chin J Appl Environ Biol 2013,19 ( 3 ) : 415-420 Some Ecological Properties of Pistacia atlantica Desf. in Khojir National Park of Iran Kambiz Taheri Abkenar1**, Ali Salehi1, Jalal Bagheri2, Hooman Ravanbakhsh2 (1Natural Resources Faculty, University of Guilan, Rasht 41625, Iran) (2Silviculture and Forest Ecology, University of Guilan, Rasht 41625, Iran) Abstract Khojir national park is one of the oldest protected areas in Iran that is greatly considerable in terms of biodiversity and ecological values. Pistachio (Pistacia atlantica Desf.) communities, which create some woodland in this park, are unique because they grow tolerantly in a dry land, in the vicinity of Tehran capital. This research is about some ecological properties of Pistachio woodlands. The dominant community of the area is Pistacia-Amygdalus lycioides. The density of Pistacia is 86 per hectare. The density of Pistachio trees was greater in the higher elevation than in the lower one. In addition, the collar diameter and the height of trees in the higher class were less. The average density of Pistacia in plots in northern slopes was significantly more than southern slopes (at 5% level), but the average collar diameter of them were more on the southern aspect. The distribution, diameter and height of pistachio trees were not significantly related to the percentage of slope. Among the soil variables, the saturated water percentage (SP), N (total nitrogen) and texture of soil were effective factors which played significant role in ordination of plots containing pistachio. Considering the important role of P. atlantica forest stands in soil and water conservation in Iran, we should attach more importance to their protection and conservation, as well as activities such as road and dam construction, and garden establishment in such unique ecosystems. Fig 3, Tab 4, Ref 22 Keywords Pistacia atlantica; Khojir National Park; site property CLC Q948.1 (373) 1 Introduction different land forms and they stated that Pistacia atlantica prefer southern and western aspects more than the others and its highest Pistacia atlantica belongs to the Anacardiaceae family, and it is distributed from Canary Islands and Mediterranean coastal density were seen in valleys. [6] states to Asia Minor, Syria, Caucasus, Iran, Afghanistan and Salehi and Hoveyzeh studied the Pistacia atlantica’s site Pakistan [1]. Pistacia atlantica is common across Iran in areas properties in Zagros range and introduced it as an aridity-tolerant with arid, semi-arid and semi-humid climates. Iran’s arid and species. They also stated that its distribution and density were [7] semi-arid forests are resources with national importance that play mainly in 700-2 500 m above sea level (a.s.l). Rostami Kia et al. a critical role in soil and water conservation as development base delineated forest types including Pistacia atlantica - Amygdalus of the country. However, due to some careless practices, a large lycioides and studied some of the site requirements along with area of those resources has been shrunk. In order to terminate the qualitative and quantitative characteristics of Pistacia atlantica depletion of country’s forest resources in terms of quantitative forests. Ravanbakhsh et al. [8] studied the forest sites of southern and qualitative point of view, studying the vegetative areas and slopes of Central Alborz in terms of forest type delineation introducing their values and functions is very important. In this and forest profiles and they identified Pistacia atlantica type in regards, Pistacia atlantica’s forest stands with an area of 2.4 southern slopes up to the elevation of 2 550 m a.s.l. Agnew [9] did [2-3] million hectares are among the important forest resources, and an ecological study on trees, shrubs and vegetation communities their conservation and restoration requires holistic identification in northern slopes of Iraq’s mountains and concluded that and study. Pistacia khinjuk were available in ridges and Pistacia atlantica Different researches in Iran and the other countries in in plateaus. Moslimany [10] conducted a research on forests Southeast Asia and south Europe have been done to study of western Iran and concluded that Pistacia atlantica was an Pistacia atlantica and its sites. Negahdar Saber and Fattahi [4] aridity-tolerant species but vulnerable to severe cold and in studied the Pistacia atlantica forests’ condition in Southwest of general its viability depended on dry days during summer time. Iran and they concluded that Pistacia atlantica was accompanied by Amygdalus lycioides and Rhamnus pallasii in southern and Based on a conducted study in south Chihuhuan, Ozden-Tokatli [11] eastern slopes but by Acer monspessulanum and Amygdalus et al. compared Pistacia spp. in current and protected status in scopria in northern and western slopes and by Ephedra sp. and Diyarbakr and concluded that the best way for the protection of Lonicera nummulariifolia in high elevations. Beiranvand et al. [5] Pistacia spp. was long term protection against cold. studied Pistacia atlantica’s site requirements in west of Iran in Although the above mentioned studies were in relation to ecological behavior of Pistacia atlantica, they have been less Received: 2012-10-18 Accepted: 2012-12-17 focused on soil properties of Pistacia’s sites. On the other hand ** Corresponding author (E-mail: [email protected]) the majority of these studies were in unprotected areas, where 416 Some Ecological Properties of Pistacia atlantica Desf. in ...... 3期 human activities can influence on Pistacia’s ecological behavior. of 1 400-1 500 and 1 500-1 600 a.s.l., geographical aspects We did this research in order to study Pistacia atlantica’s site in in 4 main aspects of northern, eastern, southern and western Khojir National Park and also identify the relationships between associated with slope map on 3 slope classes namely: 0-20%, its distribution and characteristics with topography and soil 20%-40% and 40%-60%. physical and chemical properties. The area of study site is around 93 hectares. The systematic random sampling was by a 100 m × 150 m grid [14] . As Zobeiri[14] 2 Material & Methods suggested, the area of plots should be selected in a way that at 2.1 Material and sites least 10-15 trees should be within the plots, so we decided the The study area was part of Khojir National Park forest with area of each plot was 1 200 square meter. low interventions in Tehran (capital of Iran). Khojir National Park In each sample plot, all tree and shrub species were counted, is a protected area and its protection goes back to 1795. Its natural and then the quantitative data of each tree recorded, including environment has not suffered much interventions. The land area collar diameter, (trees and shrubs of coppice stands with DBH), of this National Park is about 11 570 hectares and locates in east average canopy cover diameter, and height. The number along of Tehran and within the Jajroud protected area. The park consists with quality of each regeneration for Pistacia atlantica was of high mountains and undulating hills from 1 200 m to more determined. than 2 000 m a.s.l. The slopes also range from 0 to greater than For soil sampling, by considering elevation, aspect and 70%. The climate of the national park is affected by the elevation, slope, we determined 17 representative plots out of 61. In each with the average rainfall at the elevation of 1 400 m about 294 soil sampling plot, we provided 4 random soil samples at the mm and that at the elevation of 2 000 m about 439 mm. Water depth of 0-20 cm, and mixed them into one soil sample. All soil resources in the park include Jajroud River, springs and underground samples were taken to the lab and soil physical and chemical water. Soils of the national park are often immature and not very properties were analyzed, including N (total nitrogen), P (available [11-12] diverse . In general, there are 35 vegetation communities phosphorus), K (absorbable potassium), C (Organic carbon including natural and semi-natural, cultural and agronomic percentage), pH, BD (bulk density), PD (particle density), lime (anthropogenic, some of them are degraded due to overgrazing content, SP (saturation water percentage), EC and soil texture. and severe human activities). There are over 400 plant species For all data, Kolmogorov–Smirnov test (K–S test) was including several rare and threatened species in the national park. used to test normality of the data [15]. One-way analysis of Despite the vicinity of park to Tehran, it enjoys a conside- variance (ANOVA) and Least Significant Difference (LSD) test rable wildlife diversity including wild sheep, wild goat, panther, were used to compare the mean of one group with another. In wild pig, wolf, hyena, red fox, wild cat, badger, porcupine, jackal order to analyze the relationship between sampling plots and [13] and rabbit . environmental variables, we applied PCA, an effective method Unfortunately like many other areas of the country, this for environmental analysis which transforms the data to a new valuable ecosystem has suffered from unsustainable development coordinate system by environmental variables. For statistical during recent years. Human activities including road construction analysis SPSS version 18 and PC-ORD version 4.3 were used. has caused irreparable damages to Pistacia atlantica’s sites and wildlife of the park. 3 Results 2.2 Methodology 3.1 Tree and shrub cover at the study area We visited almost all parts of the park in order to have a List of observed tree and shrub species in sampling plots general reconnaissance of the park. Then, we selected the study is presented in Table 1. The number of Pistacia atlantica trees area of typical Pistacia atlantica site where deteriorating factors was 86 per hectare and 10.3 per sampling plots.
Recommended publications
  • Review Article Five Pistacia Species (P. Vera, P. Atlantica, P. Terebinthus, P
    Hindawi Publishing Corporation The Scientific World Journal Volume 2013, Article ID 219815, 33 pages http://dx.doi.org/10.1155/2013/219815 Review Article Five Pistacia species (P. vera, P. atlantica, P. terebinthus, P. khinjuk,andP. lentiscus): A Review of Their Traditional Uses, Phytochemistry, and Pharmacology Mahbubeh Bozorgi,1 Zahra Memariani,1 Masumeh Mobli,1 Mohammad Hossein Salehi Surmaghi,1,2 Mohammad Reza Shams-Ardekani,1,2 and Roja Rahimi1 1 Department of Traditional Pharmacy, Faculty of Traditional Medicine, Tehran University of Medical Sciences, Tehran 1417653761, Iran 2 Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran Correspondence should be addressed to Roja Rahimi; [email protected] Received 1 August 2013; Accepted 21 August 2013 Academic Editors: U. Feller and T. Hatano Copyright © 2013 Mahbubeh Bozorgi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Pistacia, a genus of flowering plants from the family Anacardiaceae, contains about twenty species, among them five are more popular including P. vera, P. atlantica, P. terebinthus, P. khinjuk, and P. l e nti s c u s . Different parts of these species have been used in traditional medicine for various purposes like tonic, aphrodisiac, antiseptic, antihypertensive and management of dental, gastrointestinal, liver, urinary tract, and respiratory tract disorders. Scientific findings also revealed the wide pharmacological activities from various parts of these species, such as antioxidant, antimicrobial, antiviral, anticholinesterase, anti-inflammatory, antinociceptive, antidiabetic, antitumor, antihyperlipidemic, antiatherosclerotic, and hepatoprotective activities and also their beneficial effects in gastrointestinal disorders.
    [Show full text]
  • Ethnobotanical Study of Medicinal Flora in the North East of Algeria - an Empirical Knowledge in Djebel Zdimm (Setif)
    Journal of Materials Science and Engineering A 5 (1-2) (2015) 50-59 doi: 10.17265/2161-6213/2015.1-2.007 D DAVID PUBLISHING Ethnobotanical Study of Medicinal Flora in the North East of Algeria - An Empirical Knowledge in Djebel Zdimm (Setif) Sabah Chermat1* and Rachid Gharzouli2 1. Department of Pharmacy, Faculty of Medicine, University of Setif, Setif 19000, Algeria 2. Department of Plant Ecology, Faculty of Natural Sciences and Life, University of Sétif, Setif 19000, Algeria Abstract: On the high plains of Setif, the old inhabitants have built a real knowledge of medicinal plants properties. Traditional knowledge about plants and their properties are still fairly common. Our scientific motivation stems from the absence of any flora and ethnobotanical study in this area. During different field campaigns, we identified 93 medicinal species belonging to 32 botanical families. This number reflects the wealth of medicinal plants that are still traditionally used. To gather as much information on the use of plants, a series of ethnobotanical surveys were conducted in the field during periods of picking from villagers, herbalists and traditional healers. According to those surveyed, the fresh leaves and seeds are considered the most popular and common parts that can address several diseases where oral and dermal administration are recommended. The most used plants are: Artemisia herba-alba, Argyrolobium saharae, Gymnosporia senegalensis, Ormenis africana, Pallenis spinosa, Thymus ciliatus, Pistacia atlantica, Paronychia arabica, Globularia alypum, Ajuga iva, Peganum harmala, Ruta chalepensis, Tapsia garganica, Pituranthos scoparius. Djebel Zdimm offers floristic diversity and a sizeable traditional therapeutic knowledge. The safeguarding and preservation of this ancestral heritage is one of our objectives in this semi-arid steppe.
    [Show full text]
  • Molecular and Serological Survey of Selected Viruses in Free-Ranging Wild Ruminants in Iran
    RESEARCH ARTICLE Molecular and Serological Survey of Selected Viruses in Free-Ranging Wild Ruminants in Iran Farhid Hemmatzadeh1*, Wayne Boardman1,2, Arezo Alinejad3, Azar Hematzade4, Majid Kharazian Moghadam5 1 School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, Australia, 2 School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia, 3 DVM graduate, Faculty a1111111111 of Veterinary Medicine, The University of Tehran, Tehran, Iran, 4 Faculty of Agriculture, Islamic Azad a1111111111 University, Shahrekord branch, Shahrekord, Iran, 5 Iran Department of Environment, Tehran, Iran a1111111111 a1111111111 * [email protected] a1111111111 Abstract A molecular and serological survey of selected viruses in free-ranging wild ruminants was OPEN ACCESS conducted in 13 different districts in Iran. Samples were collected from 64 small wild rumi- Citation: Hemmatzadeh F, Boardman W, Alinejad nants belonging to four different species including 25 Mouflon (Ovis orientalis), 22 wild goat A, Hematzade A, Moghadam MK (2016) Molecular (Capra aegagrus), nine Indian gazelle (Gazella bennettii) and eight Goitered gazelle and Serological Survey of Selected Viruses in Free- (Gazella subgutturosa) during the national survey for wildlife diseases in Iran. Serum sam- Ranging Wild Ruminants in Iran. PLoS ONE 11 (12): e0168756. doi:10.1371/journal. ples were evaluated using serologic antibody tests for Peste de petits ruminants virus pone.0168756 (PPRV), Pestiviruses [Border Disease virus (BVD) and Bovine Viral Diarrhoea virus Editor: Graciela Andrei, Katholieke Universiteit (BVDV)], Bluetongue virus (BTV), Bovine herpesvirus type 1 (BHV-1), and Parainfluenza Leuven Rega Institute for Medical Research, type 3 (PI3). Sera were also ELISA tested for Pestivirus antigen.
    [Show full text]
  • Phoenix Active Management Area Low-Water-Use/Drought-Tolerant Plant List
    Arizona Department of Water Resources Phoenix Active Management Area Low-Water-Use/Drought-Tolerant Plant List Official Regulatory List for the Phoenix Active Management Area Fourth Management Plan Arizona Department of Water Resources 1110 West Washington St. Ste. 310 Phoenix, AZ 85007 www.azwater.gov 602-771-8585 Phoenix Active Management Area Low-Water-Use/Drought-Tolerant Plant List Acknowledgements The Phoenix AMA list was prepared in 2004 by the Arizona Department of Water Resources (ADWR) in cooperation with the Landscape Technical Advisory Committee of the Arizona Municipal Water Users Association, comprised of experts from the Desert Botanical Garden, the Arizona Department of Transporation and various municipal, nursery and landscape specialists. ADWR extends its gratitude to the following members of the Plant List Advisory Committee for their generous contribution of time and expertise: Rita Jo Anthony, Wild Seed Judy Mielke, Logan Simpson Design John Augustine, Desert Tree Farm Terry Mikel, U of A Cooperative Extension Robyn Baker, City of Scottsdale Jo Miller, City of Glendale Louisa Ballard, ASU Arboritum Ron Moody, Dixileta Gardens Mike Barry, City of Chandler Ed Mulrean, Arid Zone Trees Richard Bond, City of Tempe Kent Newland, City of Phoenix Donna Difrancesco, City of Mesa Steve Priebe, City of Phornix Joe Ewan, Arizona State University Janet Rademacher, Mountain States Nursery Judy Gausman, AZ Landscape Contractors Assn. Rick Templeton, City of Phoenix Glenn Fahringer, Earth Care Cathy Rymer, Town of Gilbert Cheryl Goar, Arizona Nurssery Assn. Jeff Sargent, City of Peoria Mary Irish, Garden writer Mark Schalliol, ADOT Matt Johnson, U of A Desert Legum Christy Ten Eyck, Ten Eyck Landscape Architects Jeff Lee, City of Mesa Gordon Wahl, ADWR Kirti Mathura, Desert Botanical Garden Karen Young, Town of Gilbert Cover Photo: Blooming Teddy bear cholla (Cylindropuntia bigelovii) at Organ Pipe Cactus National Monutment.
    [Show full text]
  • 469-476, 2011 Issn 1995-0756
    469 Advances in Environmental Biology, 5(2): 469-476, 2011 ISSN 1995-0756 This is a refereed journal and all articles are professionally screened and reviewed ORIGINAL ARTICLE Study of Antimicrobial Activity of Secondary Metabolites Extracted Fromspontaneous Plants from the Area of Laghouat, Algeria 1D., Takhi, 1M. Ouinten and 2M., Yousfi 1Laboratoire Génie des Procédés, Amar Telidji University, Laghouat, Algeria 2Laboratoire des Sciences Fondamentales, Amar Telidji University, Laghouat, Algeria D., Takhi, M. Ouinten and M., Yousfi: Study of Antimicrobial Activity of Secondary Metabolites Extracted Fromspontaneous Plants from the Area of Laghouat, Algeria ABSTRACT In the present study, we attempted to evaluate the antibacterial and antifungal potential of plant secondary metabolites: phenolic compounds, alkaloids and essential oils. These metabolites were extracted from eight spontaneous plants collected in the area of Laghouat, in the north of the Algerian desert. Material and methodsThe investigated plants are: Datura stramonium, Peganum harmala, Ricinus communis, Nerium oleander, Citrullus colocynthis, Cleome arabica, Pistacia atlantica andPistacia lentiscus.The total phenolic compounds were extracted and quantified by UV-Visible Spectrophotometry. The essential oils of Pistacia atlantica and Pistacia lentiscus were obtained by hydrodistillation and analysed by GS/MS.The alkaloids were extracted from Datura stramonium, Peganum harmala, Ricinus communis, Nerium oleander, Citrullus colocynthis and Cleome arabica. The concentrations of the alkaloidic extracts were evaluated by UV-Visible. The antimicrobial activity of the extracts was assessed by the agar disc diffusion method on three bacteria and three fungi strains. The MIC evaluation of the active extracts was performed by the broth dilution method. Results and conclusion: The phenolic compounds obtained from the investigated plants did not exhibit any antimicrobial activity against the tested strains.
    [Show full text]
  • Tree of the Year 2005
    General Distribution - Habitat The terebinth tree (Pistacia atlantica) belongs to the cashew family In Cyprus, the terebinth tree is distributed from sea level up to an altitude of 1500 (Anacardiaceae), which comprises about 60 genera. The genus Pistacia, which m. Usually, it occurs in abandoned fields, field margins and rocky slopes; it is also includes the terebinth tree, comprises about eleven species, mainly distributed in frequent in oak woodlands and maquis vegetation. Very often it is found in yards the Mediterranean area and Asia, but also in Mexico and southern USA, Atlantic of old houses, especially villages of the Pafos district, and near chapels. Single Islands and East Tropical Africa. In Cyprus, the species Pistacia atlantica (terebinth trees or groups of trees occur in the Akamas peninsula, in Pafos and Lemesos tree), P. terebinthus (terebinth) districts, at Kiti village and elsewhere. Furthermore, it can be found as a cultivated and P. lentiscus (mastic tree, tree in parks and roadside lentisk) are indigenous, whe- plantations, such as along reas P. vera (pistachio) is Lefkosia-Lemesos highway. cultivated for its edible fruits, The terebinth tree is found the well known pistachios. throughout the East Medi- terranean and eastwards to Nomenclature: The genus Caucasus and western name, Pistacia, derives from Pakistan, also in North the ancient Greek pistaki, Africa and the Atlantic which was used for pistachio islands. (Pistacia vera). The specific epithet, atlantica, derives from The terebinth tree thrives in the Atlas mountains in Algeria. Characteristic terebinth tree all types of soils and it is easily propagated by seed. Distribution map Description The terebinth tree is a robust deciduous tree with a broad crown, which can reach History - Uses a height of 15 m.
    [Show full text]
  • Sex Determination During Inflorescence Bud Differentiation In
    Article Sex Determination During Inflorescence Bud Differentiation in Monoecious Pistacia chinensis Bunge Qian Bai 1,2, Chenyi Zhu 1, Xia Lei 1, Tao Cao 1, Shuchai Su 1,2,* and Pingsheng Leng 3 1 Ministry of Education Key Laboratory of Silviculture and Conservation, College of Forestry, Beijing Forestry University, 35 East Qinghua Road, 100083 Beijing, China; [email protected] (Q.B.); [email protected] (C.Z.); [email protected] (X.L.); [email protected] (T.C.) 2 National Energy R&D Center for Non-food Biomass, Beijing Forestry University, 35 East Qinghua Road, 100083 Beijing, China 3 College of Landscape Architecture, Beijing University of Agriculture, 102206 Beijing, China; [email protected] * Correspondence: [email protected]; Tel.: +86-135-5283-1600 Received: 11 January 2019; Accepted: 25 February 2019; Published: 26 February 2019 Abstract: Pistacia chinensis Bunge is widely acknowledged to be dioecious, but rare monoecious individuals have been found. However, the origin of monoecism and the sex differentiation of different sex types remain intriguing questions. Here, sex expressions were explored by identification of sex-associated DNA markers, determination of the sex stability after grafting, and histological characterization of inflorescence bud development using anatomical analysis. The results showed that (1) although polymorphisms among individuals existed, the banding patterns of Polymerase Chain Reaction (PCR) products for different sex types on the same monoecious tree were consistent; (2) the sex expressions of grafted trees were not consistent with those of scions, indicating that monoecism probably did not originate from a stable bud mutation; and (3) both males and females underwent a bisexual period, then the stamen primordia in female buds degenerated into the second round tepals, while the pistil primordia in male buds gradually disappeared.
    [Show full text]
  • Pistachio Pistacia Vera L
    Pistachio Pistacia vera L. Anacardiaceae Species description Pistachio trees are medium sized deciduous trees pinnate oblong, pale to bright green leaves. The tree produces its nut-bearing branchlets on one-year old wood. Pistachio flowers are dioecious— individual flowers are either male or female, but only one sex is to be found on a tree. The fruit is technically a drupe fruit, containing one elongated seed. Splitting of the seed coat (hard outer shell) begins a month before fruit maturity, usually in July, and extends until September. The interior seed is pale green with a distinctive flavor. Natural and cultural history Pistachios are native to western Asia, Asia Minor and North Africa, and they have a long history of human distribution across the Old World. Wild populations of pistachios can be found in the desert regions of Lebanon, Palestine, Syria, Iran, Iraq, and India. Planting considerations and propagation techniques Pistachio trees can reach 20 feet in height with a canopy diameter of 15 feet. They take up to ten years to reach fruit-bearing age, though they can live for 150 or more years. Long, hot, dry summers and moderately cool or cold winters with low humidity characterize the native range of pistachios, and the tree produce best with 1,000 chill hours. Young trees however, are sensitive to freezing temperatures, and late spring frosts can kill flowers. Cold hardiness ranges from 5ºF-15ºF, though reportedly down to 0ºF in Iran. In Arizona, they should be planted below 4,500 feet in elevation. Since, pistachio trees are dioecious, both male and female plants must be grown for pollination; the trees are not self-fertile.
    [Show full text]
  • Geographical Patterns of Morphological Variation in Pistacia Lentiscus L
    Journal(of(Materials(and(( J. Mater. Environ. Sci., 2021, Volume 12, Issue 7, Page 912-918 Environmental(Science( ISSN(:(2028;2508( CODEN(:(JMESCN( http://www.jmaterenvironsci.com! Copyright(©(2021,( University(of(Mohammed(Premier(((((( Oujda(Morocco( Geographical patterns of morphological variation in Pistacia lentiscus L. F. Mezni*, M.L. Khouja, A. Khaldi National Institute for Research on Rural Engineering, Water and Forests, INRGREF, Laboratory of management and valorization of forests resources, BP.10 Ariana 2080, Tunisia *FatenMezni, Email address: [email protected] Received 02 March 2021, Abstract Revised 22 June 2021, Accepted 24 June 2021 To study the morphological variability within and among Pistacia lentiscus L. Keywords populations, a comparative analysis was undertaken in twelve wild populations ! Leaves, grown under different climatic conditions in Tunisia. This study addresses the ! Fruits, morphological aspect of the leaves and the fruits. The morphological variability of ! Pistacia lentiscus, leaves and fruits of P. lentiscus was studied based on the Pistacia descriptor ! Morphology, ! Variability. developed by the International Plant Genetic Resources Institute. Statistical analysis of the morphological traits revealed a significant diversity within and among the populations. Samples from Chehid showed the longest leaves (7.92 cm) while those taken from Sidi Zid were shown the shortest with an average length of [email protected] around 5.25 cm. The widest leaves are those from Azib (5.02 cm) and Tabouba Phone: +21696794872; (5.03 cm). Leaves from Jbel Orbata and Sidi Zid are the narrowest with an average ! of 3.85 and 3.88 cm, respectively.Tabouba provenance showed the most developed leaves and fruits and Feija site was characterized by small fruit size and low viability rate.
    [Show full text]
  • Pistacia Atlantica Rhizosphere Characterization Under Arid Climate
    Pistacia atlantica rhizosphere characterization under arid climate Lahoual M., Belhadj S., Nait Kaci Boudiaf M. in Kodad O. (ed.), López-Francos A. (ed.), Rovira M. (ed.), Socias i Company R. (ed.). XVI GREMPA Meeting on Almonds and Pistachios Zaragoza : CIHEAM Options Méditerranéennes : Série A. Séminaires Méditerranéens; n. 119 2016 pages 187-191 Article available on line / Article disponible en ligne à l’adresse : -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- http://om.ciheam.org/article.php?IDPDF=00007389 -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- To cite this article / Pour citer cet article -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Lahoual M., Belhadj S., Nait Kaci Boudiaf M. Pistacia atlantica rhizosphere characterization under arid climate. In : Kodad O. (ed.), López-Francos A. (ed.), Rovira M. (ed.), Socias i Company R. (ed.). XVI GREMPA Meeting on Almonds and Pistachios. Zaragoza : CIHEAM, 2016. p. 187-191 (Options Méditerranéennes : Série A. Séminaires Méditerranéens; n. 119) -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- http://www.ciheam.org/
    [Show full text]
  • Odonata Compiled By
    ...... .. .. .. .Zygoptera .. .Zygoptera .. .. .. ************** Anisoptera Zygoptera Pterostigma Nymph Erich Schmidt Zygoptera Calopterygidae Calopteryx splendens Calopteryx splendens orientalis Calopteryx splendens intermedia Euphaeidae Epallage fatime Lestidae Lestes virens Lestes barbarus Lestes sponsa Lestes concinnus Lestes viridiens Sympecma fusca Sympecma paedisca annulata Platycnemididae Tibia Platycnemis dealbata Platycnemis pennipes Coenagrionidae Pyrrhosoma nymphula Ischnura aurora Ischnura forcipata Ischnura intermedia Ischnura pumilio Ischnura evansi Ischnura fountaineae Ischnura senegalensis Ischnura elegans Ischnura elegans ebneri Ischnura elegans pontica Coenagrion australocaspicum Coenagrion persicum Coenagrion vanbrinckae Coenagrion lindeni Coenagrion scitulum Agriocnemis pygmaea Enallagma cyathigerum Erythromma viridulum orientale Erythromma najas Pseudagrion decorum Pseudagrion laidlawi Anisoptera Gomphidae archaic Lindenia tetraphylla Gomphus flavipes lineatus Gomphus schneideri Ghomphus kinzebachi Anormogomphus kiritchenkoi Paragomphus lineatus Onychogomphus lefebvrei Onychogomphus forcipatus lucidostriatus Onychogomphus flexuosus Onychogomphus macrodon Onychogomphus assimilis Cordulegastridae golden rings . Cordulegaster insignis nobilis Cordulegaster insignis coronatus Cordulegaster vanbrinckae Aeschnidae Anax imperator Anax parthenope Anax immaculifrons Hemianax ephippiger Anaciaaeschna isosceles antohumeralis Aeshna mixta Aeshna affinis Aeshna cyanea Caliaeshna microstigma Brachytron pretense Libellulidae Orthetrum
    [Show full text]
  • Sustainability of Wild Pistachio (Pistacia Atlantica Desf.) in Zagros Forests, Iran Morteza Pourreza A, John D
    Available online at www.sciencedirect.com Forest Ecology and Management 255 (2008) 3667–3671 www.elsevier.com/locate/foreco Sustainability of wild pistachio (Pistacia atlantica Desf.) in Zagros forests, Iran Morteza Pourreza a, John D. Shaw b,*, Hoshang Zangeneh a a Research Center of Agriculture and Natural Resources, Kermanshah Province, Iran b USDA Forest Service, Rocky Mountain Research Station, Forest Inventory and Analysis, 507 25th Street, Ogden, UT 84401, United States Received 9 August 2007; received in revised form 25 January 2008; accepted 26 January 2008 Abstract Wild pistachio (Pistacia atlantica Desf.) is the most economically important tree species in many rural areas in the west of Iran. The species produces resin used for a wide variety of traditional uses. Because the resin can be harvested non-destructively, the trees are maintained until mortality occurs from natural causes. The result is that natural, managed stands include a variety of age classes. In recent years, a lack of smaller size classes has been observed in the Qalajeh forest, which is located in the Zagros Mountain region of western Iran. We established a series of plots in an area typical of Qalajeh forest to characterize the diameter distribution of the wild pistachio component. We confirmed a deficit of stems <30 cm dbh, based in the expectation that the landscape-level diameter distribution should be characterized by a negative exponential curve. For trees 30 cm dbh, de Liocourt’s equation closely fit the diameter distribution (r2 = 0.93), translating to a q-factor of 1.34. We used this curve to estimate the deficit number of stems in diameter classes <30 cm.
    [Show full text]