Enzymes in Tissues Responsive to Corticosteroids*

Total Page:16

File Type:pdf, Size:1020Kb

Enzymes in Tissues Responsive to Corticosteroids* Enzymes in Tissues Responsive to Corticosteroids* FRED ROSEN (Departmeni of Experimental Therapeuiies, Roawell Park Memorial institute. New York State Departmentof Health, Buffalo, New York) SUMMARY The biochemical reactions which mediate the physiological effects exerted by the adrenal cortical hormones remain to be determined. It has been euggested that the @ hormonal control of cellular functions is accomplished by altering the activity of specific enzymes. This report concerns the induction of several enzymes by cortisol in tissues (liver, thymus, transplantable tumors) which are responsive to the glucocorti coids. Also, some factors involved in studies on the actions of hormones are considered. The problem of resistance to comtisol and the technics being used to evaluate the physiological significance of enzyme induction by cortisol in target tissues is dis cussed. The various dietary and physiological conditions which influence the level of the inducible enzymes are considered in regard to an explanation of the manner in which glucocorticoids alter the activity of the adaptive enzymes. Several recent articles on the adrenal corticoids action of the adrenal corticoids. This is a relative have emphasized the disparity between the de ly new area of investigation that has revealed tailed knowledge available on the chemistry and interesting facts concerning glucocorticoid action the biosynthesis or degradation of these hormones at the biochemical level. and the relative lack of information about bio The difficulties in determining the biochemical chemical events which underlie their modes of basis for certain physiological effects exerted by action (15, 925,46). Although the physiological ef the adrenal cortical hormones are apparent from fects elicited by large doses of the glucocorticoids the many different methods which have been used are well known, it is not yet clear whether such to study this subject in recent years (7, 41). Most effects are related to the major role these hormones of the studies are predicated on the basis that the fulfill under normal physiological conditions. hormonal control of cellular functions is mediated These gaps in our knowledge are not limited to the by altering the activity of specific enzymes (920, glucocorticoids. The same difficulty has been en 31). Attractive as this concept may be, it has not countered in elucidating the action at the molecu yet provided us with a clear-cut relationship be lam level of many other hormones (60). tween a biochemical event and a physiological ef Clinically the glucocorticoids have been shown feet produced by the glucocorticoids. There has to be of value in the treatment of leukemias and been renewed interest in the possibility that lymphomas (492). In this regard, the comticosteroids hormones, in general, may act to facilitate the deserve study with respect to the changes they entry of metabolites into cells, mainly because of produce in the metabolism of responsive tumors. the recent work on insulin (59) and antidiuretic In keeping with the objectives of this symposium, hormone(1,9). I do not intend to review in this paper the various Although much of the content of this paper is an mechanisms which have been proposed to explain account of studies on the action of corticosteroids the action of the glucocorticoids. Emphasis will be on intracellular enzymes, there is at present no placed almost entirely on the effects of the definitive evidence that this type of effect will glucocorticoids on the induction of certain en turn out to be the basis of their cellular actions. zymes in those tissues which are targets of the More important at this time is that such studies S This investigation was supported in part by research grants (AM-04389 and CA-05671) from the U.S. Public Health reveal the need for new information and indicate Service. areas of investigation that deserve attention. 1447 Downloaded from cancerres.aacrjournals.org on September 30, 2021. © 1963 American Association for Cancer Research. 1448 Cancer Research Vol. 923, September 1968 SoME FA@rORS To BE CONSIDERED IN STUDIES glucocorticoids has not been cleanly demonstrated ON THE Ac'nIoNS OF Hoit@&o@zs in liver slices (19) but does occur in liver perfused Target tiastses.—Mostof the experiments under with cortisol (3, 19). taken to gain information concerning metabolic Amount of hormone and it. specr@ficttyof action.— changes which underlie the physiological effects Bush (7) has recently commented in detail on one of the glucocorticoids have been carried out in of the difficulties encountered in studies in vitro liver. There are only a few reports on changes in namely, the choice of a reasonable concentration adaptive enzymes produced by adrenal corticoids of adrenal hormone. Frequently, in such studies, in lymphoid tissues and certain neoplasms that are amounts of the steroid far in excess of a reasonable so remarkably responsive to these steroids. How physiological concentration are required to pro ever, there are many studies on the metabolism of duce a significant effect. For the same reason, the glucocorticoids by target cells (11). Tissues of this high dosage used in many in vivo studies has been type which show such a rapid and demonstrable subject to criticism. Probably undue criticism has response to corticosteroid therapy are capable of been given to the use of large amounts of a hom yielding important biochemical information re mone in these different systems. Many examples lated to the effects exerted by these hormones. A can be cited in which the use of “unphysiological― major objective of our work is to determine the amounts of a compound has contributed sig basis for the selective action of glucocorticoids on nificantly to an understanding of its mechanism of lymphoid neoplasms. The manner whereby ad action and pathways of metabolism. renal corticoids impair the growth of lymphoid Other criteria must also be kept in mind when tumors may bear certain similarities to the assessing hormone experiments. The intenpreta processes underlying thymic involution or the tion of the data is difficult when the effect pro catabolism of protein. duced is not specific for a given class of hormones In vitro vs. in vivo 8tUdies.—The choice be or when an effect is obtained with an analog that tween in vitro and in vivo experiments is often is inactive in the animal. Numerous studies can determined by the problem under investigation be cited in which a variety of hormones with dif and by the technics familiar to the investigatOr. ferent structures and physiological properties act Engel (15), Villee (63), and Bush (7) have recently. similarly in their effect on a biochemical reaction emphasized the importance of the in vitro expeni (5, 14, 923, 68). Also, to be of significance in an ment to obtain unequivocal evidence for a hor in vitro system, the effects observed should bear monal effect. This approach is often justified on some discernible relationship to the effects of the the basis that it permits adequate control of many hormone in vivo, with allowances being made for of the variables that make it difficult to interpret differences in metabolism in the two systems. studies in the whole animal. However, it is not yet ENZYMES RESPONSIVE TO GLUCOCORTICOIDS clear whether the physiological or pharmacological effects of a hormone are entirely mediated by a di It is probable that alterations in the activity of certain enzymes underlie the pronounced effects rect effect of the hormone on responsive tissues. In view of our limited knowledge about hor of glucocorticoids on carbohydrate and protein mone action, it would seem that the experiment in metabolism. In this regard, it is of interest that which the test substance is administered to the most enzymes which show an increase in activity animal and the tissues subsequently examined for after glucocorticoid treatment are involved in the certain biochemical changes be given preference metabolism of glucose or amino acids (592). at this time oven the experiments involving addi Enzyme studies in different tissues of adrenal tion of the hormone to an in vitro system. The in ectomized animals have been carried out in an effort to reveal metabolic functions which are in vivo experiment is likely to provide us initially fluenced, at least in part, by adrenal hormones with the important leads concerning metabolic (30). A drop in enzyme activity following adrenal changes related to glucocorticoid action. There ap ectomy has in many instances provided cimcum pear to be few examples of any substantial effect of stantial evidence that the enzyme is under the glucocorticoids in low concentration on slices or control of the adrenal hormones. Whereas many homogenates of liver. The findings of Chiu and of the adaptive enzymes involved in amino acid Needham (8) that adrenal cortical extract in metabolism show a decrease in level after adrenal creased liver glycogen of surviving liver slices in ectomy, a number of the carbohydnate-metaboliz vitro have only recently been confirmed (924). The ing enzymes that respond to glucocorticoids do not induction of certain enzymes that can be readily undergo any significant change in activity (65). shown to occur in the liver of rats treated with The factor(s) which maintain normal hepatic Downloaded from cancerres.aacrjournals.org on September 30, 2021. © 1963 American Association for Cancer Research. ROSEN—Tissue Enzymes Responsive to Corticosteroids 1449 levels of certain glucocorticoid-inducible enzymes those previously noted for tryptophan pyrrolase, in the liver of adrenalectomized animals are not there were also certain notable differences. Ad known. renalectomy alone did not lower the level of this Carbohydrate-metabolizing enzymes.—The ad enzyme in liven, and when tyrosine was ad ministration of cortisol to rats for 5—7days in ministered to adrenalectomized rats, the activity creased the hepatic activity of glucose-6-phos of the enzyme was not increased.
Recommended publications
  • Salivary 17 Α-Hydroxyprogesterone Enzyme Immunoassay Kit
    SALIVARY 17 α-HYDROXYPROGESTERONE ENZYME IMMUNOASSAY KIT For Research Use Only Not for use in Diagnostic Procedures Item No. 1-2602, (Single) 96-Well Kit; 1-2602-5, (5-Pack) 480 Wells Page | 1 TABLE OF CONTENTS Intended Use ................................................................................................. 3 Introduction ................................................................................................... 3 Test Principle ................................................................................................. 4 Safety Precautions ......................................................................................... 4 General Kit Use Advice .................................................................................... 5 Storage ......................................................................................................... 5 pH Indicator .................................................................................................. 5 Specimen Collection ....................................................................................... 6 Sample Handling and Preparation ................................................................... 6 Materials Supplied with Single Kit .................................................................... 7 Materials Needed But Not Supplied .................................................................. 8 Reagent Preparation ....................................................................................... 9 Procedure ...................................................................................................
    [Show full text]
  • Cortisol Deficiency and Steroid Replacement Therapy
    Great Ormond Street Hospital for Children NHS Foundation Trust: Information for Families Cortisol deficiency and steroid replacement therapy This leaflet explains about cortisol deficiency and how it is treated. It also contains information about how to deal with illnesses, accidents and other stressful events in children on cortisol replacement. Where are the The two most important ones are: adrenal glands and • Aldosterone – this helps regulate what do they do? the blood pressure by controlling how much salt is retained in the The adrenal glands rest on the tops body. If a person is unable to of the kidneys. They are part of the make aldosterone themselves, they endocrine system, which organises the will need to take a tablet called release of hormones within the body. ‘fludrocortisone’. Hormones are chemical messengers that switch on and off processes within the • Cortisol – this is the body’s natural body. steroid and has three main functions: The adrenal glands consist of two parts: - helping to control the blood the medulla (inner section) which sugar level makes the hormone ‘adrenaline’ which is part of the ‘fight or flight’ - helping the body deal with stress response a person has when stressed. - helping to control blood pressure the cortex (outer section) which and blood circulation. releases several hormones. If a person is unable to make cortisol themselves, they will need to take a tablet to replace it. Pituitary gland The most common form used is hydrocortisone, but other forms Parathyroid gland may be prescribed. Thyroid gland Medulla Cortex Adrenal Thymus gland Gland Kidney Adrenal gland Pancreas Sheet 1 of 7 Ref: 2014F0715 © GOSH NHS Foundation Trust March 2015 What is In these circumstances, the amount cortisol deficiency? of hydrocortisone given needs to be increased quickly.
    [Show full text]
  • CORTISOL IMBALANCE Patient Handout
    COMMON PATTERNS OF CORTISOL IMBALANCE Patient HandOut Cortisol that does not follow the normal pattern can trigger blood sugar imbalances, food cravings and fat storage, especially around the middle. Related imbalances of low DHEA commonly result in loss of lean muscle, lack of strength, decreased stamina and low exercise tolerance. Chronically Elevated Cortisol Overall higher than normal cortisol Lifestyle suggestions: production throughout the day from • Reduce stress and improve coping skills prolonged stress demands. High • Protein at each meal, no skipping lunch cortisol also depletes its precursor hormone progesterone. • Hydrate throughout the day, herbal teas and water, avoid soft drinks General symptoms: • Reduce consumption of refined carbohydrates and caffeine • Food/sugar cravings • Get adequate sleep (at least 7 hours); catnaps • Feeling “tired but wired” • Aerobic exercise: <40 min low – moderate intensity • Insomnia during time when cortisol level within optimal range • Anxiety • Strength training: with guidance 2-3 times per week • Enjoy exercise that decreases excessive stress symptoms Steep Drop in Cortisol • Exercise in the morning Stress/fatigued pattern – morning Lifestyle suggestions: cortisol in the high normal range or • Reduce stress and improve coping skills elevated, but levels drop off rapidly, • Protein at each meal, no skipping lunch indicating adrenal dysfunction. • Hydrate throughout the day, herbal teas General symptoms: and water, avoid soft drinks • Mid-day energy drop • Reduce consumption of refined carbohydrates and caffeine • Drowsiness • Get adequate sleep (at least 7 hours); catnaps • Caffeine/sugar cravings • Exercise mid morning to boost energy with a combination • Low exercise tolerance/ of muscle building and cardiovascular activities poor recovery • Schedule more time for fun activities Rebound Cortisol Up and down/ irregular cortisol, Lifestyle suggestions: not following the normal pattern.
    [Show full text]
  • Sleep Deprivation on the Nighttime and Daytime Profile of Cortisol Levels
    Sleep. 20(10):865-870 © 1997 American Sleep Disorders Association and Sleep Research Society Sleep Loss Sleep Loss Results in an Elevation of Cortisol Levels the Next Evening Downloaded from https://academic.oup.com/sleep/article/20/10/865/2725962 by guest on 30 September 2021 *Rachel Leproult, tGeorges Copinschi, *Orfeu Buxton and *Eve Van Cauter *Department of Medicine, University of Chicago, Chicago, Illinois, U.S.A.; and tCenter for the Study of Biological Rhythms and Laboratory of Experimental Medicine, Erasme Hospital, Universite Libre de Bruxelles, Brussels, Belgium Summary: Sleep curtailment constitutes an increasingly common condition in industrialized societies and is thought to affect mood and performance rather than physiological functions. There is no evidence for prolonged or delayed effects of sleep loss on the hypothalamo-pituitary-adrenal (HPA) axis. We evaluated the effects of acute partial or total sleep deprivation on the nighttime and daytime profile of cortisol levels. Plasma cortisol profiles were determined during a 32-hour period (from 1800 hours on day I until 0200 hours on day 3) in normal young men submitted to three different protocols: normal sleep schedule (2300-0700 hours), partial sleep deprivation (0400-0800 hours), and total sleep deprivation. Alterations in cortisol levels could only be demonstrated in the evening following the night of sleep deprivation. After normal sleep, plasma cortisol levels over the 1800-2300- hour period were similar on days I and 2. After partial and total sleep deprivation. plasma cortisol levels over the 1800-2300-hour period were higher on day 2 than on day I (37 and 45% increases, p = 0.03 and 0.003, respec­ tively), and the onset of the quiescent period of cortisol secretion was delayed by at least I hour.
    [Show full text]
  • Quantification of the Hormones Progesterone and Cortisol in Whale
    Quantification of the Hormones Progesterone and Cortisol in Whale Breath Samples Using Novel, Non-Invasive Sampling and Analysis with Highly-Sensitive ACQUITY UPLC and Xevo TQ-S Jody Dunstan,1 Antonietta Gledhill,1 Ailsa Hall,2 Patrick Miller,2 Christian Ramp3 1Waters Corporation, Manchester, UK 2Scottish Oceans Institute, University of St. Andrews, UK 3Mingan Island Cetacean Study, St Lambert, Quebec, Canada APPLICATION BENEFITS INTRODUCTION ■■ Provides a novel, non-invasive sampling method The conservation and management of large whale populations require information to obtain sample from whale blow. These about all aspects of their biology, life history, and behavior. However, it is samples can then be analyzed to determine extremely difficult to determine many of the important life history parameters, the levels of progesterone and cortisol. such as reproductive status, without using lethal or invasive methods. As such, efforts are now focused on obtaining as much information as possible from the ■■ A sensitive, repeatable, quantitative LC-tandem quadrupole MS method is shown. samples collected remotely, with a minimum of disturbance to the whales. Various excreted samples, such as sloughed skin and feces are being used to determine ■■ Parallel acquisition of MRM and full scan sex and maturity, as well as life history stage.1,2 MS data allows both the compounds of interest, and also the matrix background Attention has recently shifted more towards what can be analyzed from samples to be monitored. of whale blow for health assessment3 or steroid hormone analysis.4 Hormone analysis is of particular interest as high levels of progesterone can be used as an ■■ Simultaneous quantitative and investigative indicator of pregnancy status, while other steroids, such as glucocorticoids may be analysis can be performed for different markers of the short-term, acute stress response.
    [Show full text]
  • Progesterone – an Amazing Hormone Sheila Allison, MD
    Progesterone – An Amazing Hormone Sheila Allison, MD Management of abnormal PAP smears and HPV is changing rapidly as new research information is available. This is often confusing for physicians and patients alike. I would like to explain and hopefully clarify this information. Almost all abnormal PAP smears and cervical cancers are caused by the HPV virus. This means that cervical cancer is a sexually transmitted cancer. HPV stands for Human Papilloma Virus. This is a virus that is sexually transmitted and that about 80% of sexually active women are exposed to. The only way to absolutely avoid exposure is to never be sexually active or only have intercourse with someone who has not had intercourse with anyone else. Because most women become sexually active in their late teens and early 20s, this is when most exposures occur. We do not have medication to eradicate viruses (when you have a cold, you treat the symptoms and wait for the virus to run its course). Most women will eliminate the virus if they have a healthy immune system and it is then of no consequence. There are over 100 subtypes of the HPV virus. Most are what we call low-risk viruses. These are associated with genital warts and are rarely responsible for abnormal cells and cancer. Two of these subtypes are included in the vaccine that is now recommended prior to initiating sexual activity. Few women who see me for hormone management will leave without a progesterone prescription. As a matter of fact, I have several patients who are not on any estrogen but are on progesterone exclusively.
    [Show full text]
  • Hydrocortisone Tablets Contain Lactose Monohydrate
    New Zealand Data Sheet 1. PRODUCT NAME Hydrocortisone 5 mg Tablets Hydrocortisone 20 mg Tablets 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Each Hydrocortisone 5 mg Tablet contains 5 mg of hydrocortisone. Each Hydrocortisone 20 mg Tablet contains 20 mg of hydrocortisone. Excipient(s) with known effect Hydrocortisone Tablets contain lactose monohydrate. For the full list of excipients, see Section 6.1. 3. PHARMACEUTICAL FORM Hydrocortisone 5 mg Tablet: white, round, biconvex tablet having a diameter of 6.5 mm. Hydrocortisone 20 mg Tablet: white, round, biconvex tablet having a diameter of 7.94 mm, breakline on one face and dp logo on the other. The score line on Hydrocortisone 20 mg Tablet is only to facilitate breaking for ease of swallowing and not to divide into equal doses. 4. CLINICAL PARTICULARS 4.1. Therapeutic indications • Replacement therapy in Addison’s disease or chronic adrenocortical insufficiency secondary to hypopituitarism. • Inhibition of the secondary increase in ACTH secretion when aminoglutethimide is administered for breast or prostatic cancer. 4.2. Dose and method of administration Dose As replacement therapy The normal requirement is 10‐30 mg daily (usually 20 mg in the morning and 10 mg at night to mimic the circadian rhythm of the body). 1 | Page As combination therapy with aminoglutethimide A dosage of 40 mg daily, given as 10 mg with breakfast, 10 mg with dinner and 20 mg at bedtime is usually recommended. Special populations Elderly population Steroids should be used cautiously in the elderly, since adverse effects are enhanced in old age, see Section 4.4. When long term treatment is to be discontinued, the dose should be gradually reduced over a period of weeks or months, depending on dosage and duration of therapy, see Section 4.4.
    [Show full text]
  • Steroid-Induced Iatrogenic Adrenal Insufficiency in Children
    Review Steroid-Induced Iatrogenic Adrenal Insufficiency in Children: A Literature Review Shogo Akahoshi * and Yukihiro Hasegawa Division of Endocrinology and Metabolism, Tokyo Metropolitan Children’s Medical Center, 2-8-29 Musashidai, Fuchu, Tokyo 183-8561, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-42-300-5111 Received: 12 October 2020; Accepted: 5 December 2020; Published: 9 December 2020 Abstract: The present review focuses on steroid-induced adrenal insufficiency (SIAI) in children and discusses the latest findings by surveying recent studies. SIAI is a condition involving adrenocorticotropic hormone (ACTH) and cortisol suppression due to high doses or prolonged administration of glucocorticoids. While its chronic symptoms, such as fatigue and loss of appetite, are nonspecific, exposure to physical stressors, such as infection and surgery, increases the risk of adrenal crisis development accompanied by hypoglycemia, hypotension, or shock. The low-dose ACTH stimulation test is generally used for diagnosis, and the early morning serum cortisol level has also been shown to be useful in screening for the condition. Medical management includes gradually reducing the amount of steroid treatment, continuing administration of hydrocortisone corresponding to the physiological range, and increasing the dosage when physical stressors are present. Keywords: adrenal insufficiency; children; endocrinology; glucocorticoids; hypothalamic–pituitary –adrenal axis; therapeutics 1. Mainstem Concepts of Adrenal Insufficiency 1.1. Primary, Secondary, and Tertiary Adrenal Insufficiency Adrenal insufficiency (AI) is defined as the inability of the adrenal cortex to produce sufficient amounts of glucocorticoid hormone. It can also be associated with mineralocorticoid deficiency, depending on the pathophysiology of the disease [1]. Severe AI, or adrenal crisis, can be life-threatening because glucocorticoids and mineralocorticoids play a central role in maintaining energy, salt, and fluid homeostasis [2].
    [Show full text]
  • Cortisol, DHEA Sulphate, Their Ratio, and All-Cause and Cause-Specific
    European Journal of Endocrinology (2010) 163 285–292 ISSN 0804-4643 CLINICAL STUDY Cortisol, DHEA sulphate, their ratio, and all-cause and cause-specific mortality in the Vietnam Experience Study Anna C Phillips, Douglas Carroll, Catharine R Gale1, Janet M Lord2, Wiebke Arlt3 and G David Batty4 School of Sport and Exercise Sciences, University of Birmingham, Birmingham B15 2TT, England, UK, 1MRC Epidemiology Resource Centre, University of Southampton, Southampton SO17 1BJ, UK, 2School of Immunity and Infection, IMRC Centre for Immune Regulation, 3School of Clinical and Experimental Medicine, Centre for Endocrinology, Diabetes and Metabolism, University of Birmingham, Birmingham B15 2TT, UK and 4MRC Social and Public Health Sciences Unit, Glasgow G12 8QQ, UK (Correspondence should be addressed to A C Phillips; Email: [email protected]) Abstract Objectives: The aim of the present analyses was to examine the association between cortisol, DHEA sulphate (DHEAS) and the cortisol:DHEAS ratio and mortality. Design: This was a prospective cohort analysis. Methods: Participants were 4255 Vietnam-era US army veterans. From military service files, telephone interviews and a medical examination, occupational, socio-demographic and health data were collected. Contemporary morning fasted cortisol and DHEAS concentrations were determined. Mortality was tracked over the subsequent 15 years. The outcomes were all-cause, cardiovascular disease, cancer, other medical mortality and external causes of death. Cox proportional hazard models were tested, initially with adjustment for age, and then with adjustment for a range of candidate confounders. Results: In general, cortisol concentrations did not show an association with all-cause or cause-specific mortality. However, in age-adjusted and fully adjusted analyses, DHEAS was negatively related to all-cause, all cancers and other medical mortality; high DHEAS concentrations were protective.
    [Show full text]
  • Pharmacologic Characteristics of Corticosteroids 대한신경집중치료학회
    REVIEW J Neurocrit Care 2017;10(2):53-59 https://doi.org/10.18700/jnc.170035 eISSN 2508-1349 Pharmacologic Characteristics of Corticosteroids 대한신경집중치료학회 Sophie Samuel, PharmD1, Thuy Nguyen, PharmD1, H. Alex Choi, MD2 1Department of Pharmacy, Memorial Hermann Texas Medical Center, Houston, TX; 2Department of Neurosurgery and Neurology, The University of Texas Medical School at Houston, Houston, TX, USA Corticosteroids (CSs) are used frequently in the neurocritical care unit mainly for their anti- Received December 7, 2017 inflammatory and immunosuppressive effects. Despite their broad use, limited evidence Revised December 7, 2017 exists for their efficacy in diseases confronted in the neurocritical care setting. There are Accepted December 17, 2017 considerable safety concerns associated with administering these drugs and should be limited Corresponding Author: to specific conditions in which their benefits outweigh the risks. The application of CSs in H. Alex Choi, MD neurologic diseases, range from traumatic head and spinal cord injuries to central nervous Department of Pharmacy, Memorial system infections. Based on animal studies, it is speculated that the benefit of CSs therapy Hermann Texas Medical Center, 6411 in brain and spinal cord, include neuroprotection from free radicals, specifically when given Fannin Street, Houston, TX 77030, at a higher supraphysiologic doses. Regardless of these advantages and promising results in USA animal studies, clinical trials have failed to show a significant benefit of CSs administration Tel: +1-713-500-6128 on neurologic outcomes or mortality in patients with head and acute spinal injuries. This Fax: +1-713-500-0665 article reviews various chemical structures between natural and synthetic steroids, discuss its E-mail: [email protected] pharmacokinetic and pharmacodynamic profiles, and describe their use in clinical practice.
    [Show full text]
  • Cortisol, Progesterone, 17Α-Hydroxyprogesterone, and TSH Responses in Dogs Injected with Low-Dose Lipopolysaccharide
    Cortisol, progesterone, 17α-hydroxyprogesterone, and TSH responses in dogs injected with low-dose lipopolysaccharide Nicole L.B. Corder-Ramos1,*, Bente Flatland1, Michael M. Fry1, Xiaocun Sun2, Kellie Fecteau1 and Luca Giori1,* 1 Biomedical and Diagnostic Sciences Dept., University of Tennessee—College of Veterinary Medicine—Knoxville, Knoxville, TN, United States of America 2 Office of Information and Technology, University of Tennessee—Knoxville, Knoxville, TN, United States of America * These authors contributed equally to this work. ABSTRACT Background. Stress and diseases such as endotoxemia induce cortisol synthesis through a complex biosynthetic pathway involving intermediates (progesterone, and 17α- hydroxyprogesterone (17α-OHP)) and suppression of the hypothalamus-pituitary- thyroid axis. Objective. To measure plasma concentrations of cortisol, progesterone, 17α-OHP, and thyroid stimulating hormone (TSH) in dogs experimentally injected with intravenous low-dose lipopolysaccharide (LPS). Our hypothesis was that LPS treatment would elicit a significant increase in cortisol and its precursors, and a significant decrease in TSH concentration. Methods. Hormone measurements were performed on blood samples left over from a previous investigation (2011) on the effect of low-dose LPS on hematological measurands. Five sexually intact female dogs, none in estrous at the time of the study, were administered saline treatment two weeks prior to LPS treatment. LPS was administered intravenously at a dose of 0.1 mg/kg. Blood was collected before (baseline, Submitted 9 May 2019 time -24 hours) and 3-, 6- and 24-hours post-injection. Mixed model analysis for Accepted 12 July 2019 repeated measures was used, with both treatment and time as the repeated factors. Published 8 August 2019 Ranked transformation were applied when diagnostic analysis exhibited violation Corresponding author of normality and equal variance assumptions.
    [Show full text]
  • Conversion of Cortisone to Cortisol and Prednisone to Prednisolone
    22 April 1967 Histocompatibility Tests-Johnson and Russell MEBRITJSH 205 Bach, F., and Hirschhorn, K. (1964). Science, 143, 813. Harris, R., Clarke, C. A., Jones, A. L., Sheppard, P. M., Lehane, D., Bain, B., and Lowenstein, L. (1964). Ibid., 145, 1315. McCarthy, M., Lawler, S. D., and Shatwell, H. S. (1966). Brit. Vas, M. R., and Lowenstein, L. (1964). Blood, 23, 108. med. 7., 1, 509. Brent, L., and Medawar, P. B. (1963). Brit. med. 7., 2, 269. Hirschhorn, K. (1965). In Histocompatibility Testing, edited by P. S. - (1964). Nature (Lond.), 204, 90. Russell and H. J. Winn, Publication No. 1229, Nat. Acad. Sci., Bridges, J. M., Nelson, S. D., and McGeown, M. G. (1964). Lancet, 1, Washington, p. 177. 581. Huggins, C. E. (1964). Ann. Surg., 160, 643. Chen, P. S. (1958). Proc. Soc. exp. Biol. (N.Y.), 98, 546. Johnson, G. J., and Russell, P. S. (1965). Nature (Lond.), 208, 343. Gray, J. G., and Russell, P. S. (1963). Lancet, 2, 863. Moorhead, J. F., and Patel, A. R. (1964). Brit. med. 7., 2, 1111. - (1965). In Histocompatibility Testing, edited by P. S. Russell Russell, P. S. (1966). In Histocompatibility Testing 1965, edited by HE and H. J. Winn. Publication No. 1229, Nat. Acad. Sci., Washington, Balner, F. J. Cleton, and J. G. Eernissc, p. 233. Copenhagen. p. 105. Streilein, J. W. (1966). Ibid., p. 241. Conversion of Cortisone to Cortisol and Prednisone to Prednisolone J. S. JENKINS,* M.D., M.R.C.P.; P. A. SAMPSON,t M.B., CH.B. Brit. med. J., 1967, 2, 205-207 Though cortisone has been widely used since Hench et al.
    [Show full text]