Ecology of Carnivorous Species in Urban Ecosystems

Total Page:16

File Type:pdf, Size:1020Kb

Ecology of Carnivorous Species in Urban Ecosystems Stefan Martins Ribeiro Ecology of carnivorous species in urban ecosystems: Are they adapted? Dissertação de mestrado, orientada pelo Professor Doutor José Paulo Sousa e pela Doutora Joana Silva Alves e apresentada ao Departamento Ciências da Vida da Faculdade de Ciências e Tecnologias da Universidade de Coimbra 2016 1 2 DEPARTAMENTO DE CIÊNCIAS DA VIDA FACULDADE DE CIÊNCIAS E TECNOLOGIA UNIVERSIDADE DE COIMBRA Ecology of carnivorous species in urban ecosystems: Are they adapted? Dissertação apresentada à Universidade de Coimbra para cumprimento dos requisitos necessários à obtenção do grau Mestre em Ecologia, realizada sob a orientação científica do Professor Doutor José Paulo Sousa e Doutora Joana Silva Alves (Universidade de Coimbra) Stefan Martins Ribeiro 2016 1 Agradecimentos Em primeiro lugar gostaria de agradecer ao Professor Doutor José Paulo Sousa pela oportunidade que me deu de realizar este projecto. Gostaria também de agradecer à Doutora Joana Alves por tudo o que fez por mim nestes últimos dois anos, não se limitou a orientar-me neste projecto, fazendo-me crescer a nível profissional, mas principalmente a nível pessoal. Pelas palavras de apoio e de força nos momentos difíceis e por nunca ter desistido de mim um especial obrigado. Agradeço ao Mestre António Alves da Silva por todo o apoio em todas as etapas do projecto durante estes dois anos e ao Luís Pascoal da Silva por me ter passado todos os ensinamentos acerca de trabalho de campo e laboratorial. Quero também deixar um especial agradecimento aos meus companheiros de trabalho de campo, Pedro Selas e Sandra Simões, que me acompanharam tantas vezes nas difíceis jornadas à chuva. Aos meus amigos para a vida David, Bu, Ruben e Gonca por me terem apoiado desde sempre, por todos estes anos, todos os momentos passados, por todos os concelhos, por tudo. Aos meus parceiros em toda esta caminhada, Xavier, Filipe e Bruno, pelo todo o apoio dado desde o inicio do curso, desde pequenos bebés caloiros a estudar Fisica até aos grandes homens que passaram meses fechados a escrever a tese. Obrigado por nunca terem desistido de mim, mesmo quando estava mais em baixo vocês levantaram-me. Um obrigado especial à Joaninha que apareceu de paraquedas em Coimbra, mas aterrou no local certo! 3 Um enorme agradecimento a todas as pessoas que fizeram parte desta minha caminhada por Coimbra, ao Valdemar, Soneca, Joni, Luís, Marujo, Nelson, Pedro, Cátia, Ana, Ivo, David, e a todas muitas outras que fizeram com que esta aventura fosse inesquecível. Às minhas meninas da Benetton, que tanto aturam comigo e que tanto me ouviram falar da tese. Colegas de trabalho que se tornaram amigas. Um muito obrigado do vosso menino! À Catarina Pinto que vai ser preciso muito mais que esta mensagem para lhe agradecer, encontraste-me numa fase difícil e viraste completamente o “jogo”. Para além da ajuda no trabalho (que foi mais que muito), ajudaste-me a voltar a acreditar em mim, a não querer desistir mesmo quando as coisas pareciam impossíveis, a ter um objectivo e algo por que lutar. Fizeste-me perceber que eu era capaz e que tinha valor. Por tudo o que já fizeste e que tens feito por mim, pela pessoa que demonstraste ser, pela tua companhia, pelos teus risos e “piadas”, pelo teu amor. Um eterno obrigado! Por fim aos mais importantes de toda esta jornada de 23 anos, aos meus pais e irmãos. Começando pelo “mai” novo, o Cristiano, o miúdo la da casa, o nosso “puto”, muito obrigado. Ao mais velho, o Ivan, por todo o apoio e por nunca se esquecer do irmão de Coimbra. À Ana Isabel, que é mãe, amiga, confidente, que apesar de longe nunca deixa de pensar nos seus 3 meninos. Por fim ao homem da casa, o Hélder, por todo o esforço e dedicação que sempre teve para que pudéssemos ter tudo e todas as oportunidades. Muito obrigado aos 4 que estão em todos os momentos no meu coração! 4 Index CHAPTER 1- General Introduction ........................................................................................................... 11 1.1 Urban ecology ...................................................................................................................................... 12 1.1.1 Why urban ecology? ..................................................................................................................... 12 1.1.2 Work done so far ........................................................................................................................... 13 1.1.3. What is urban ecology? ................................................................................................................ 14 1.1.4. Complex urban areas .................................................................................................................... 15 1.1.5. Wildlife corridor and “Hot-spots” ................................................................................................ 17 1.1.6 Comparison between urban and rural populations ........................................................................ 18 1.2 Study species ........................................................................................................................................ 19 1.2.1 Ecology and Behaviour of carnivorous ........................................................................................ 19 1.2.2. Main preys ................................................................................................................................... 22 1.3. Concepts in ecology of carnivorous .................................................................................................... 23 1.3.1 Ecological niche ............................................................................................................................ 23 1.3.2 Predator-prey models .................................................................................................................... 24 1.4 Study sites ............................................................................................................................................ 25 1.4.1 Location, climate, topography ....................................................................................................... 25 1.4.2. Land cover and Fauna .................................................................................................................. 25 1.5 Objectives ............................................................................................................................................. 26 CHAPTER 2 - Carnivore species in urban ecosystems: Are small urban parks capable of maintain carnivore populations? ............................................................................................................................... 29 2.1 Introduction .......................................................................................................................................... 30 2.2 Methods ................................................................................................................................................ 32 2.2.1 Study area ...................................................................................................................................... 32 2.2.2 Data collection .............................................................................................................................. 34 2.2.2.1 Camera-trapping surveys ....................................................................................................... 34 2.2.2.2 Live-trapping surveys ............................................................................................................ 35 2.2.2.3 Scats surveys .......................................................................................................................... 35 2.2.3 Data analysis ................................................................................................................................. 36 2.3. Results ................................................................................................................................................. 39 2.3.1. Captured species .......................................................................................................................... 39 2.4.2. Population estimate: size, density ................................................................................................ 40 2.3.3 Biodiversity of mammal species ................................................................................................... 44 2.3.4. Niche overlap ............................................................................................................................... 46 2.3.5. Circadian rhythms ........................................................................................................................ 47 2.4. Discussion ........................................................................................................................................... 49 CHAPTER 3 – General Conclusions ......................................................................................................... 57 3. General Conclusions ............................................................................................................................... 58 4. References .............................................................................................................................................. 61 5 6 Resumo Com o atual crescimento das populações humanas, principalmente em zonas urbanas, o crescimento das áreas
Recommended publications
  • Mammalian Predators Appropriating the Refugia of Their Prey
    Mamm Res (2015) 60:285–292 DOI 10.1007/s13364-015-0236-y ORIGINAL PAPER When prey provide more than food: mammalian predators appropriating the refugia of their prey William J. Zielinski 1 Received: 30 September 2014 /Accepted: 20 July 2015 /Published online: 31 July 2015 # Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland (outside the USA) 2015 Abstract Some mammalian predators acquire both food and predators) may play disproportionately important roles in their shelter from their prey, by eating them and using the refugia communities. the prey construct. I searched the literature for examples of predators that exhibit this behavior and summarize their taxo- Keywords Predator–prey . Dens . Herbivore . Behavior . nomic affiliations, relative sizes, and distributions. I hypothe- Habitat . Resting . Foraging sized that size ratios of species involved in this dynamic would be near 1.0, and that most of these interactions would occur at intermediate and high latitudes. Seventeen species of Introduction Carnivorans exploited at least 23 species of herbivores as food and for their refugia. Most of them (76.4 %) were in the Mammals require food and most require shelter, either to pro- Mustelidae; several small species of canids and a few tect them from predators or from thermal stress. Carnivorous herpestids were exceptions. Surprisingly, the average mammals are unique in that they subsist on mobile food predator/prey weight ratio was 10.51, but few species of pred- sources which, particularly if these sources are vertebrates, ators were more than ten times the weight of the prey whose may build their own refuges to help regulate their body tem- refugia they exploit.
    [Show full text]
  • The Ecology of Large-Spotted Genets Within an Urban Landscape and to Determine What Factors Facilitate Their Ability to Persist in an Urban Environment
    i The ecology of large-spotted genets within an urban landscape Craig D. Widdows Submitted in fulfilment of the academic requirements for the degree of Doctor of Philosophy In the Discipline of Ecological Sciences School of Life Sciences College of Agriculture, Science and Engineering University of KwaZulu-Natal Pietermaritzburg Campus 2015 i ABSTRACT Urbanization is one of the most damaging and rapidly expanding forms of anthropogenic landscape modification and is having profound consequences on biodiversity worldwide. The global increase in urbanization has resulted in exclusion of many carnivore species from human- altered landscapes due to a variety of anthropogenic impacts. However, despite the negative impacts of urbanization on carnivores, certain species such as large-spotted genets (Genetta tigrina) exhibit an ability to persist within urban areas. Despite their extensive distribution range, large-spotted genets are poorly studied in comparison to other African carnivores, with a handful of studies conducted on genetics, activity patterns and diet. Furthermore, no studies have focused on their ecology in an urban environment. There have been increasing reports of large-spotted genets within urban areas throughout KwaZulu-Natal, South Africa. The mosaic of patches of native vegetation within this urban landscape provides habitats for a variety of wildlife species. The main aim of the study was to investigate the ecology of large-spotted genets within an urban landscape and to determine what factors facilitate their ability to persist in an urban environment. Residential interviews were conducted to ascertain information pertaining to behavioural observations, land use as well as wildlife conflict and public perceptions of genets. Chi-square (2) goodness-of-fit tests were used to determine significant differences in the frequency of responses.
    [Show full text]
  • Downloaded on 12 January 2021
    bioRxiv preprint doi: https://doi.org/10.1101/2021.08.12.456157; this version posted August 12, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 TITLE PAGE 2 Research article 3 Article full title: 4 Effects of land-use and landscape drivers in the species richness and distribution of 5 carnivores in Faragosa-Fura Landscape of Southern Rift Valley, Ethiopia 6 Article short title: 7 Anthropogenic drivers of carnivores in Southern Rift Valley of Ethiopia 8 9 10 11 Authors’ name 12 Berhanu Gebo1* (ORCID: http://orcid.org/0000-0003-3876-0948)│ Serekebirhan Takele1 13 (ORCID: http://orcid.org/0000-0002-1701-2871)│Simon Shibru1 (ORCID: 14 http://orcid.org/0000-0003-2673-3272) 15 16 Authors Affiliation 17 1Department of Biology, Natural and Computational Sciences College, Arba Minch 18 University, Arba Minch, Ethiopia 19 20 *Corresponding author: 21 Email: [email protected], 22 ORCID: http://orcid.org/0000-0003-3876-0948 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.08.12.456157; this version posted August 12, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 23 2 bioRxiv preprint doi: https://doi.org/10.1101/2021.08.12.456157; this version posted August 12, 2021.
    [Show full text]
  • The 2008 IUCN Red Listings of the World's Small Carnivores
    The 2008 IUCN red listings of the world’s small carnivores Jan SCHIPPER¹*, Michael HOFFMANN¹, J. W. DUCKWORTH² and James CONROY³ Abstract The global conservation status of all the world’s mammals was assessed for the 2008 IUCN Red List. Of the 165 species of small carni- vores recognised during the process, two are Extinct (EX), one is Critically Endangered (CR), ten are Endangered (EN), 22 Vulnerable (VU), ten Near Threatened (NT), 15 Data Deficient (DD) and 105 Least Concern. Thus, 22% of the species for which a category was assigned other than DD were assessed as threatened (i.e. CR, EN or VU), as against 25% for mammals as a whole. Among otters, seven (58%) of the 12 species for which a category was assigned were identified as threatened. This reflects their attachment to rivers and other waterbodies, and heavy trade-driven hunting. The IUCN Red List species accounts are living documents to be updated annually, and further information to refine listings is welcome. Keywords: conservation status, Critically Endangered, Data Deficient, Endangered, Extinct, global threat listing, Least Concern, Near Threatened, Vulnerable Introduction dae (skunks and stink-badgers; 12), Mustelidae (weasels, martens, otters, badgers and allies; 59), Nandiniidae (African Palm-civet The IUCN Red List of Threatened Species is the most authorita- Nandinia binotata; one), Prionodontidae ([Asian] linsangs; two), tive resource currently available on the conservation status of the Procyonidae (raccoons, coatis and allies; 14), and Viverridae (civ- world’s biodiversity. In recent years, the overall number of spe- ets, including oyans [= ‘African linsangs’]; 33). The data reported cies included on the IUCN Red List has grown rapidly, largely as on herein are freely and publicly available via the 2008 IUCN Red a result of ongoing global assessment initiatives that have helped List website (www.iucnredlist.org/mammals).
    [Show full text]
  • Site Report: Kafa Biosphere Reserve and Adjacent Protected Areas
    Site report: Kafa Biosphere Reserve and adjacent Protected Areas Part of the NABU / Zoo Leipzig Project ‘Field research and genetic mapping of large carnivores in Ethiopia’ Hans Bauer, Alemayehu Acha, Siraj Hussein and Claudio Sillero-Zubiri Addis Ababa, May 2016 Contents Implementing institutions and contact persons: .......................................................................................... 3 Preamble ....................................................................................................................................................... 4 Introduction .................................................................................................................................................. 4 Objective ....................................................................................................................................................... 5 Description of the study site ......................................................................................................................... 5 Kafa Biosphere Reserve ............................................................................................................................ 5 Chebera Churchura NP .............................................................................................................................. 5 Omo NP and the adjacent Tama Reserve and Mago NP .......................................................................... 6 Methodology ................................................................................................................................................
    [Show full text]
  • Educator Packet
    Educator Packet Animal Survival Strategies Grade Level: 4th Grade (can be adapted to 2nd and 3rd grade) Overview: Students will observe pieces of art from the Art and Animal exhibit and learn about various Ohio wildlife species and the ways they adapt to survive extremes in weather and environments. Materials: Wildlife board game and handout on animal traits. Content Standards: Science: Changes in an organism’s environment are sometimes beneficial to its survival and sometimes harmful. Plants and animals have life cycles that are part of their adaptations for survival in their natural environments. Organisms that survive pass on their traits to future generations Social Studies: Places and Regions: The regions of the United States known as the North, South and West developed in the early 1800s largely based on their physical environments and economies. Human Systems: People have modified the environment since prehistoric times. There are both positive and negative consequences for modifying the environment in Ohio and the United States. Background/Key Ideas: Students will play a game that includes reproductions of several pieces of art from the exhibit Art and the Animal. All pieces are images of animals that can be found in Ohio. Students will use previous knowledge and deductive reasoning to match the correct facts (classifications, and characteristics) to each animal. After completion of the game, facts about adaptation will be further addressed with a silly exercise where the classroom teacher is outfitted with various props which represent each of the animals from the game. Procedures: Introduction: “Hello and welcome to another round of Adapt to Survive; the game where you compete to match Ohio’s wildlife to the correct category.
    [Show full text]
  • Behavioral Patterns of Laboratory Mongolian Gerbils by Sex and Housing Condition: a Case Study with an Emphasis on Sleeping Patterns
    Journal of Veterinary Behavior 30 (2019) 69e79 Contents lists available at ScienceDirect Journal of Veterinary Behavior journal homepage: www.journalvetbehavior.com Small Mammal Research Behavioral patterns of laboratory Mongolian gerbils by sex and housing condition: a case study with an emphasis on sleeping patterns Camilo Hurtado-Parrado, PhD a,b,*, Ángelo Cardona-Zea, BSc b, Mónica Arias-Higuera, BSc b, Julián Cifuentes, BSc b, Alejandra Muñoz, MSc b, Javier L. Rico, PhD b, Cesar Acevedo-Triana, MSc c a Department of Psychology, Troy University, Troy, AL, USA b Faculty of Psychology, Fundación Universitaria Konrad Lorenz, Bogotá DC, Colombia c School of Psychology, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia article info abstract Article history: The behavioral patterns of Mongolian gerbils (Meriones unguiculatus) housed individually and in same- Received 10 September 2018 sex groups (siblings) were characterized. Gerbils were continuously video-recorded 24 hours (day 1) and Accepted 7 December 2018 120 hours (day 5) after housing conditions were established (no environmental enrichment was Available online 13 December 2018 implemented). Video samples totaling 2016 minutes were scored to obtain measures of maintenance (drinking, sleeping, grooming, and eating), locomotor (jumping and rearing), communication (foot Keywords: stomping), and stereotyped behaviors (gnawing bar and digging), which were compared across housing case study conditions and sex. Irrespective of sex or housing, gerbils dedicated between 65 and 75% of the day to Mongolian gerbil Meriones unguiculatus maintenance behaviors; more than 50% of this time was dedicated to sleep. Time allocated to other d d housing conditions behavioral states for example, bar gnawing, digging, and eating remained below 5% of the observation captivity time.
    [Show full text]
  • Aspects of the Ecology of Spotted Hyena (Crocuta Crocuta) in Relation to Prey Availability, Land Use Changes and Conflict with Humans in Western Zimbabwe
    Aspects of the ecology of spotted hyena (Crocuta crocuta) in relation to prey availability, land use changes and conflict with humans in western Zimbabwe Mlamuleli Mhlanga Submitted in fulfilment of the academic requirements for the degree of DOCTOR OF PHILOSOPHY In the Discipline of Ecological Sciences In the School of Life Sciences College of Agriculture, Engineering and Science University of KwaZulu-Natal Pietermaritzburg Campus 2018 ii ABSTRACT Patch selection by carnivores is affected by various factors including availability of prey and denning areas, extent of vegetation cover, competition from sympatric large carnivores and anthropogenic habitat change among other variables. Understanding the influence of such factors is fundamental in the management of the carnivores. The study investigated spotted (i) hyena occupancy and (ii) co-occurrence with mesocarnivores in Zambezi National Park, Matetsi Safari (hunting) Area and Dimbangombe Ranch (mixed livestock and wildlife) in western Zimbabwe during the dry and wet seasons of 2014 and 2015 using camera traps. First, habitat characteristics, potential major prey and possible disturbance factors were modelled using the occupancy modelling approach to quantify habitat occupancy of the spotted hyena. It was found that the spotted hyena mean site occupancy was high (ψ = 0.617, SE = 0.147 and ψ = 0.502, SE = 0.107 for wet and dry seasons respectively). Furthermore, spotted hyena habitat occupancy increased in clayey soil and grasslands in the national park and hunting area, a behaviour attributed to denning preferences and possibly prey movement. Management priorities should focus on improving habitats for wild prey outside protected areas while preserving clayey areas for enhanced productivity of the spotted hyena inside protected areas.
    [Show full text]
  • Web Ecology 7: 53–62
    Web Ecology 7: 53–62. Trophic niche partitioning between two native and two exotic carnivores in SW Portugal Maria João Santos, Bruno Miguel Pinto and Margarida Santos-Reis Santos, M. J., Pinto, B. M. and Santos-Reis, M. Trophic niche partitioning between two native and two exotic carnivores in SW Portugal. – Web Ecol. 7: 53–62. The introduction of exotic species is one of the most pervasive consequences of the increased human mobility. The most known negative effects are the decrease or extinc- tion of natives. The common-genet, Genetta genetta, and the Egyptian mongoose, Her- pestes ichneumon, were introduced in the Iberian Peninsula in the 15th and 19th centu- ries, respectively. The competitive exclusion principle defines that two ecologically simi- lar species cannot coexist. Thus, some degree of partitioning has to occur in species realized niche, which can occur at the trophic level. To test this hypothesis of partitio- ning we compared the diet of these two exotic species with that of two native species (stone marten, Martes foina, and red fox, Vulpes vulpes). The results show a high degree of overlap (>45%) between the diets of species similar in their feeding strategies (arbore- al and ground feeding). Nonetheless, at the finer scale of prey consumed at the species level some differences are found between the native and exotic species. These results suggest that if coexistence is due to trophic niche partitioning it only occurs at the level of the consumed species. However, coexistence may also be due to a combination of different strategies (home-range size, time and space use) that structured the different realized niches of each species.
    [Show full text]
  • Environmental Impact Report
    ENVIRONMENTAL IMPACT REPORT SUPPLEMENT TO THE REPORT ON THE ENVIROMENTAL IMPACT OF THE “CONSTRUCTION OF THE KARCINO-SARBIA WIND FARM (17 WIND TURBINES)” OF 2003 Name of the undertaking: KARCINO-SARBIA Wind Farm (under construction) Contractor: AOS Agencja Ochrony Środowiska Sp. z o.o. based in Koszalin Arch. No. 52/OŚ/OOS/06 Koszalin, September 2006 Team: Bogdan Gutkowski, M.Sc.Eng.– Expert for Environmental Impact Assessment Appointed by the Governor of the West Pomerania Province Marek Ziółkowski, M.Sc. Eng. – Environmental Protection Expert of the Ministry of Environmental Protection, Natural Resources and Forestry; Environmental Protection Consultant Dagmara Czajkowska, M.Sc. Eng. – Specialist for Environmental Impact Assessment, Specialist for Environmental Protection and Management Ewa Reszka, M.Sc. – Specialist for the Protection of Water and Land and Protection against Impact of Waste Damian Kołek, M.Sc.Eng. – Environmental Protection Specialist 2 CONTENTS I. INTRODUCTION .................................................................................................................. 5 II. GENERAL INFORMATION ABOUT THE PROJECT ..................................................... 9 1. Location and adjacent facilities....................................................................................................... 9 2. Modifications to the project .......................................................................................................... 10 3. Technical description of the project ..............................................................................................
    [Show full text]
  • Optimising the Value of By-Catch from Lynx Lynx Camera Trap Surveys in the Swiss Jura Region
    ©KORA ©KORA Optimising the Value of By-catch from Lynx lynx Camera Trap Surveys in the Swiss Jura Region. Fiona Anne Pamplin 6th August 2013 ©KORA A dissertation submitted to the University of East Anglia, Norwich for the Master of Science degree in Applied Ecology and Conservation 2012-2013. ©This copy of the dissertation has been supplied on the condition that copyright rests with the author and that no information derived therefrom may be published without the author’s written consent. Copyright for all wildlife camera trap photographs used in this document rests with KORA and may not be reproduced in any media without prior permission from KORA, Switzerland. ©KORA Contents 1. Abstract ………………………………………………………………………………………. 4 2. Introduction………………………………………………………………………………… 5 3. Methods …………………………………………………………………………………….. 10 4. Results………………………………………………………………………………………… 18 5. Conclusion & Discussion……………….................................................. 29 6. Recommendations……………………………………………………………………... 34 7. References…………………………………………………………………………………. 37 8. Appendix …………………………………………………………...……………………... 42 2 Acknowledgements I am extremely grateful to Dr. Urs Breitenmoser (KORA) for providing me with the wonderful opportunity to work at KORA Switzerland and for allowing me to use the camera trap data for the purpose of this study. Many thanks also to Dr. Fridolin Zimmermann for granting me access to his treasure trove of camera trap photos, providing lots of helpful ideas, editing suggestions and supporting references. I am indebted to Danilo
    [Show full text]
  • Feeding Habits and Overlap Among Red Fox (Vulpes Vulpes) and Stone
    Mamm. biol. 67 2002) 137±146 Mammalian Biology ã Urban & Fischer Verlag http://www.urbanfischer.de/journals/mammbiol Zeitschrift fuÈr SaÈ ugetierkunde Original investigation Feeding habits and overlap among red fox Vulpes vulpes) and stone marten Martes foina) in two Mediterranean mountain habitats By J. M. PADIAL,E.AÂVILA,andJ.M.GIL-SAÂNCHEZ Group for the study and conservation of nature Signatus and Department of Animal Biology, University of Granada, Spain. Receipt of Ms. 31. 01. 2001 Acceptance of Ms. 30. 07. 2001 Abstract The feeding habits of two carnivorous opportunists, red fox 3Vulpes vulpes) and stonemarten 3Martes foina), have been compared in two Mediterranean mountain habitats 3mesic and xeric), lo- cated in the Sierra Nevada National Park 3SE Spain), between April 1997 and March 1998. The ana- lysis of scats revealed a very important interspecific trophic niche overlap in the mesic habitat. In the xeric habitat the differences were significant and the overlap moderate. Seasonal variations ex- isted in the degree of overlap, which reached its highest level in winter in the mesic habitat and in spring in the xeric habitat. The results indicated that the availability of food in each habitat was important in determining the divergence of the diets. Thus, in the mesic habitat, competition could be possible, although it was not important enough to cause a habitat segregation. Martens seemed to be more adaptive than foxes, probably due to their smaller size and arboreal life, allowing them to exploit fruit which is not as profitable for the fox. Foxes based their diet on small mammals, car- rion and cultivated fruit in both habitats.
    [Show full text]