Genetics and Mitochondrial Abnormalities in Autism Spectrum Disorders: a Review

Total Page:16

File Type:pdf, Size:1020Kb

Genetics and Mitochondrial Abnormalities in Autism Spectrum Disorders: a Review 322 Current Genomics, 2011, 12, 322-332 Genetics and Mitochondrial Abnormalities in Autism Spectrum Disorders: A Review Sukhbir Dhillon, Jessica A. Hellings and Merlin G. Butler* Departments of Psychiatry & Behavioral Sciences and Pediatrics, Kansas University Medical Center, Kansas City, Kansas 66160, USA Abstract: We review the current status of the role and function of the mitochondrial DNA (mtDNA) in the etiology of autism spectrum disorders (ASD) and the interaction of nuclear and mitochondrial genes. High lactate levels reported in about one in five children with ASD may indicate involvement of the mitochondria in energy metabolism and brain development. Mitochondrial disturbances include depletion, decreased quantity or mutations of mtDNA producing defects in biochemical reactions within the mitochondria. A subset of individuals with ASD manifests copy number variation or small DNA deletions/duplications, but fewer than 20 percent are diagnosed with a single gene condition such as fragile X syndrome. The remaining individuals with ASD have chromosomal abnormalities (e.g., 15q11-q13 duplications), other genetic or multigenic causes or epigenetic defects. Next generation DNA sequencing techniques will enable better characterization of genetic and molecular anomalies in ASD, including defects in the mitochondrial genome particularly in younger children. Received on: April 15, 2011 - Revised on: May 24, 2011 - Accepted on: May 25, 2011 Keywords: Autism spectrum disorders (ASD), mitochondrial DNA (mtDNA) mutations and depletion, oxidative stress, nuclear genes, lactate/pyruvate ratios, genetic causation. Leo Kanner described autism in 1943 in 11 children GENETIC CONTRIBUTIONS TO AUTISM SPECT- manifesting withdrawal from human contact as early as age RUM DISORDERS 1 year postulating origins in prenatal life [1]. The Diagnostic The etiology of ASD is complex and encompasses the and Statistical Manual of Mental Disorders IV-Text Revised (DSM-IV-TR) described autism as a complex roles of genes, the environment (epigenetics) and the mitochondria. Mitochondria are cellular organelles that neurobehavioral disorder characterized by deficiencies in function to control energy production necessary for brain social interaction, impaired communication skills and development and activity. Researchers are increasingly repetitive stereotypic behavior with onset prior to 3 years of identifying mitochondrial abnormalities in young children age [2]. Several conditions including full-syndrome autism with ASD since the most severe cases present early with (Autistic Disorder), Asperger Syndrome and Pervasive Developmental Disorder Not Otherwise Specified (PDD- features of ASD. Better awareness and more accurate and detailed genetic and biochemical testing are now available NOS) are now grouped as Autism Spectrum Disorders for the younger patient presenting with developmental delay (ASD) also known as Pervasive Developmental Disorders or behavioral problems. (PDDs) [2-4]. Epidemiologic and family studies suggest that genetic Symptoms of ASD usually begin in early childhood with evidence of delayed development before age 3 years. The risk factors are present. Monogenic causes are identifiable in less than 20 percent of subjects with ASD. The remaining American Academy of Pediatrics recommends autism subjects have other genetic or multigenic causes and/or screening for early identification and intervention by at least epigenetic influences which are environmental factors age 12 months and again at 24 months. Rating scales helpful altering gene expression without changing the DNA in establishing the diagnosis are Autism Diagnostic sequence [7-10]. Epigenetic factors in ASD have been Interview- Revised (ADI-R) and the Autism Diagnostic Observation Schedule (ADOS) in combination with clinical reviewed by Grafodatskaya et al. [11]. The recurrence risk for ASD varies by gender for the second child to be affected presentation [5, 6]. (4% if the first child affected is female and 7% if a male). The recurrence rate increases to 25-30% if the second child is also diagnosed with ASD. Studies have shown that among identical twins, if one child has ASD, then the other has a 60 *Address correspondence to this author at the Department of Psychiatry & to 95% chance of being affected. Behavioral Sciences, Kansas University Medical Center, 3901 Rainbow Fragile X syndrome and tuberous sclerosis are the most Boulevard, MS 4015, Kansas City, Kansas 66160, USA; Tel: (913) 588- 1873; Fax: (913) 588-1305; E-mail: [email protected] common single gene conditions associated with ASD. The commonest chromosomal abnormality in non-syndromal 1389-2029/11 $58.00+.00 ©2011 Bentham Science Publishers Ltd. Mitochondria and Autism Current Genomics, 2011, Vol. 12, No. 5 323 autism is duplication of the 15q11-q13 region, accounting genes encode neuronal cell-adhesion molecules. These for 5% of patients with autism. Large microdeletions in findings were replicated in two independent cohorts and chromosome 16p11.2 and 22q regions account for another demonstrate an association with susceptibility to ASD. 1% of cases [12]. The rapid rise in the incidence of ASD in Sebat et al. [23] studied 165 individuals with autism the past 30 years, apart from improved identification, points grouped into 118 simplex families without a family history to environmental factors acting on essentially unchanged of autism and 47 multiplex families with multiple affected genetic predispositions involving nuclear and mitochondrial siblings and compared them with control groups without DNA since de novo changes in genes are unlikely to occur so autism. They reported that 10.2% (12 of 118) of simplex quickly. Specific genetic and cytogenetic conditions families showed copy number variants (CNVs), 2.6% (2 of associated with ASD are summarized in a recent review [13]. 77) with CNVs in individuals with autism from multiplex The role and importance of genetic testing for individuals families and 1% (2 of 196) with CNVs among normally with ASD is well recognized [14] with various studies developing children. The majority of CNVs were of the showing yields of 6% to 40% with newer testing methods deletion type. Thus, CNVs were significantly more common [15, 16]. Early studies by Miles and Hillman [15] tested 94 in the sporadic form of autism than in those with a family children clinically diagnosed with ASD and found that 6 of history due to single gene mutations not detectable by DNA 94 (6%) had identifiable genetic disorders. Herman et al. deletion or duplication analysis. [17] later found genetic causes in 7 of 71 (10%) subjects As a result of research into nucleotide sequences, with ASD. Schaefer and Lutz [16] used a three- tier clinical microdeletions and duplications in children with ASD can genetic approach to identify causes in 32 clinically now be identified including syntaxin binding protein 5 diagnosed children with ASD, and reported positive genetic (STXBP5) and neuronal leucine rich repeat 1 (NLRR1) genes. findings in 13 subjects (40%). These included 5% with a Syntaxin 5 regulates synaptic transmission at the pre- high resolution chromosomal abnormality, 5% with fragile X synaptic cleft and is known to inhibit synapse formation. syndrome, 5% with Rett syndrome (MECP2 gene defects in Syntaxin 1 protein is increased in those with high females), 3% with PTEN gene mutations in those with a functioning autism. The role of NLRR1 at the synaptic level head circumference > 2.5 SD, approximately 10% with other is unknown but is thought to be related to neuronal growth genetic syndromes (e.g., tuberous sclerosis) and 10% with [24]. small deletions or duplications identified using chromosomal microarrays. An autism genome-wide copy number variation study reported by Glessner et al. [25] in a large cohort of ASD High resolution chromosome analysis detects 3 to 5 cases compared with controls showed that NRXN1 and megabase-sized abnormalities; however, new technology CNTN4 genes play a role. They also described new using DNA or chromosomal microarrays can identify susceptibility genes, NLGN1 and ASTN2 which encode abnormalities 100 times smaller. Therefore, microdeletions neuronal cell-adhesion molecules and other genes involved and duplications may now be identified with microarrays in in the ubiquitin pathways (UBE3A, PARK2, RFWD2 and individuals with ASD who previously had normal FBXO40), two important gene networks expressed in the cytogenetic testing. Children with ASD show a higher central nervous system. prevalence of microdeletions and duplications, particularly involving chromosome regions 1q24.2, 3p26.2, 4q34.2, Next generation DNA sequencing is currently underway, 6q24.3 and 7q35 including those with non-syndromal ASD allowing for rapid and efficient detection of mutations at the [18]. Therefore, if cytogenetic analysis is negative in nuclear and mitochondrial DNA (mtDNA) level in human clinically diagnosed ASD, testing for microdeletions and investigations and becoming part of clinical workup. duplications with newer techniques is warranted. Heteroplasmy or the existence of multiple mtDNA types within cells of an individual, is detectable using standard Shen and coworkers [19] studied genetic testing results molecular genetic techniques which focus on hypervariable from a cohort of 933 patients with ASD including G-banded regions of the mitochondrial genome. With high-throughput karyotypes, fragile X testing and chromosomal microarrays. next generation sequencing of the complete human mtDNA, They reported
Recommended publications
  • The Human Gene Encoding Phosphatidylinositol-3 Kinase Associated P85a Is at Chromosome Region 5Ql2-13'
    [CANCER RESEARCH 5l. .1818-.1820, July 15, 1991| Advances in Brief The Human Gene Encoding Phosphatidylinositol-3 Kinase Associated p85a Is at Chromosome Region 5ql2-13' L. A. Cannizzaro, E. Y. Skolnik, B. Margolis, C. M. Croce, J. Schlesinger, and K. Huebner2 Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140 [L. A. C., C. M. C., K. H.J, and Department of Pharmacology, New York University Medical Center, New York, New York 10016 [E. Y. S., B. M., J. S.J Abstract scribed previously (10, 11). Hybrids 9142 (full name GM9142), 114 (GM100114), 115 (GM100115), 7297 (GM7297), 7300 (GM7300), I In' human chromosomal location of the gene encoding the phospha- 449 (GM10449), 10095 (GM10095), and 7301 (GM7301) were ob tidylinositol-3 kinase associated protein, p85a, has been determined by tained from the National Institute of General Medical Sciences Human analysis of its segregation in rodent-human hybrids and by chromosome Genetic Mutant Cell Repository (Corieli Institute for Medical Re in situ hybridization using a complementary DNA clone, GRB-1. search, Camden, NJ). Human chromosomes or chromosome regions The gene for p85<*is at chromosome region 5ql3, perhaps near the retained by individual hybrids in the panel are illustrated in Fig. 1. gene encoding another receptor associated signal transducing protein, the Hybrids retaining partial chromosome 5 have also been described GTPase activating protein. previously (12). Filter Hybridization. DNA from mouse, human, and hybrid cell lines Introduction was obtained by a standard phenol-chloroform extraction procedure (10). Approximately 10 Mgof DNA were digested to completion with Skolnik et al.
    [Show full text]
  • Cytogenetic and Molecular Delineation of the Smallest Commonly Deleted Region of Chromosome 5 in Malignant Myeloid Diseases
    Proc. Natl. Acad. Sci. USA Vol. 90, pp. 5484-5488, June 1993 Medical Sciences Cytogenetic and molecular delineation of the smallest commonly deleted region of chromosome 5 in malignant myeloid diseases (myeloid leukemias/tumor-suppressor genes/fluorescence in situ hybridization/therapy-related leukemia) MICHELLE M. LE BEAU*, RAFAEL ESPINOSA III, WILMA L. NEUMAN, WENDY STOCK, DIANE ROULSTON, RICHARD A. LARSON, MAURI KEINANEN, AND CAROL A. WESTBROOK Section of Hematology/Oncology, The University of Chicago, Chicago, IL 60637-1470 Communicated by Janet D. Rowley, March 5, 1993 ABSTRACT Loss ofa whole chromosomeS or a deletion of nonmalignant diseases (4). Therapy-related MDS or AML its long arm (5q) is a recurring abnormality in malignant (t-MDS/t-AML) typically presents =5 years after treatment. myeloid neoplasms. To determine the location of genes on Sq Frequently, all three hematopoietic cell lines (erythroid, that may be involved in leukemogenesis, we examined the myeloid, and megakaryocytic) are involved in the myelo- deleted chromosome 5 homologs in a series of 135 patients with dysplastic process. Survival times ofpatients with t-AML are malignant myeloid diseases. By comparing the breakpoints, we usually short (median, 8 months). identified a small segment of 5q, consisting of band 5q31, that At the cytogenetic level, t-MDS/t-AML is characterized by was deleted in each patient. This segment has been termed the loss ofan entire chromosome 5 or7 or a deletion ofthe long arm critical region. Distal Sq contains a number of genes encoding of these chromosomes [del(5q)/del(7q)] (5, 6). In our recently growth factors, hormone receptors, and proteins involved in updated series of 129 consecutive patients with t-MDS/t-AML signal transduction or transcriptional regulation.
    [Show full text]
  • The Cytogenetics of Hematologic Neoplasms 1 5
    The Cytogenetics of Hematologic Neoplasms 1 5 Aurelia Meloni-Ehrig that errors during cell division were the basis for neoplastic Introduction growth was most likely the determining factor that inspired early researchers to take a better look at the genetics of the The knowledge that cancer is a malignant form of uncon- cell itself. Thus, the need to have cell preparations good trolled growth has existed for over a century. Several biologi- enough to be able to understand the mechanism of cell cal, chemical, and physical agents have been implicated in division became of critical importance. cancer causation. However, the mechanisms responsible for About 50 years after Boveri’s chromosome theory, the this uninhibited proliferation, following the initial insult(s), fi rst manuscripts on the chromosome makeup in normal are still object of intense investigation. human cells and in genetic disorders started to appear, fol- The fi rst documented studies of cancer were performed lowed by those describing chromosome changes in neoplas- over a century ago on domestic animals. At that time, the tic cells. A milestone of this investigation occurred in 1960 lack of both theoretical and technological knowledge with the publication of the fi rst article by Nowell and impaired the formulations of conclusions about cancer, other Hungerford on the association of chronic myelogenous leu- than the visible presence of new growth, thus the term neo- kemia with a small size chromosome, known today as the plasm (from the Greek neo = new and plasma = growth). In Philadelphia (Ph) chromosome, to honor the city where it the early 1900s, the fundamental role of chromosomes in was discovered (see also Chap.
    [Show full text]
  • Cri-Du-Chat Syndrome Diagnosed in a 21-Year-Old Woman by Means of Comparative Genomic Hybridization
    Rev. Fac. Med. 2017 Vol. 65 No. 3: 525-9 525 CASE REPORT DOI: http://dx.doi.org/10.15446/revfacmed.v65n3.57414 Cri-du-chat syndrome diagnosed in a 21-year-old woman by means of comparative genomic hybridization Síndrome de cri du chat diagnosticado en mujer de 21 años por hibridación genómica comparativa Received: 15/05/2016. Accepted: 06/08/2016. Wilmar Saldarriaga1 • Laura Collazos-Saa2 • Julián Ramírez-Cheyne2 1 Universidad del Valle - Faculty of Health - Department Morphology - MACOS Research Group - Cali - Colombia. 2 Universidad del Valle - Faculty of Health - Medicine and Surgery - Cali - Colombia. Corresponding author: Wilmar Saldarriaga. Department Morphology, Faculty of Health, Universidad del Valle. Calle 4B No. 36-00, building 116, floor 1, espacio 30. Phone number: +57 2 5285630, ext.: 4030; mobile number: +57 3164461596. Cali. Colombia. Email: [email protected]. | Abstract | entero. La prevalencia va desde 1 por 15 000 habitantes hasta 1 por 50 000 habitantes. Su diagnóstico se puede confirmar con cariotipo The cri-du-chat syndrome is caused by a deletion on the short con bandas G de alta resolución, hibridación fluorescente in situ o arm of chromosome number 5. The size of genetic material loss hibridación genómica comparativa por microarreglos (HGCm); este varies from the 5p15.2 region only to the whole arm. Prevalence se sospecha en infantes con un llanto similar al maullido de un gato, rates range between 1:15000 and 1:50000 live births. Diagnosis fascies dismórficas, hipotonía y retardo del desarrollo psicomotor; is suspected on infants with a high-pitched (cat-like) cry, facial sin embargo, en los adultos afectados los hallazgos fenotípicos son dysmorfism, hypotonia and delayed psychomotor development.
    [Show full text]
  • Allele-Specific Disparity in Breast Cancer Fatemeh Kaveh1, Hege Edvardsen1, Anne-Lise Børresen-Dale1,2, Vessela N Kristensen1,2,3* and Hiroko K Solvang1,4
    Kaveh et al. BMC Medical Genomics 2011, 4:85 http://www.biomedcentral.com/1755-8794/4/85 RESEARCHARTICLE Open Access Allele-specific disparity in breast cancer Fatemeh Kaveh1, Hege Edvardsen1, Anne-Lise Børresen-Dale1,2, Vessela N Kristensen1,2,3* and Hiroko K Solvang1,4 Abstract Background: In a cancer cell the number of copies of a locus may vary due to amplification and deletion and these variations are denoted as copy number alterations (CNAs). We focus on the disparity of CNAs in tumour samples, which were compared to those in blood in order to identify the directional loss of heterozygosity. Methods: We propose a numerical algorithm and apply it to data from the Illumina 109K-SNP array on 112 samples from breast cancer patients. B-allele frequency (BAF) and log R ratio (LRR) of Illumina were used to estimate Euclidian distances. For each locus, we compared genotypes in blood and tumour for subset of samples being heterozygous in blood. We identified loci showing preferential disparity from heterozygous toward either the A/B-allele homozygous (allelic disparity). The chi-squared and Cochran-Armitage trend tests were used to examine whether there is an association between high levels of disparity in single nucleotide polymorphisms (SNPs) and molecular, clinical and tumour-related parameters. To identify pathways and network functions over-represented within the resulting gene sets, we used Ingenuity Pathway Analysis (IPA). Results: To identify loci with a high level of disparity, we selected SNPs 1) with a substantial degree of disparity and 2) with substantial frequency (at least 50% of the samples heterozygous for the respective locus).
    [Show full text]
  • Human Chromosome-Specific Cdna Libraries: New Tools for Gene Identification and Genome Annotation
    Downloaded from genome.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press RESEARCH Human Chromosome-specific cDNA Libraries: New Tools for Gene Identification and Genome Annotation Richard G. Del Mastro, 1'2 Luping Wang, ~'2 Andrew D. Simmons, Teresa D. Gallardo, 1 Gregory A. Clines, ~ Jennifer A. Ashley, 1 Cynthia J. Hilliard, 3 John J. Wasmuth, 3 John D. McPherson, 3 and Michael Lovett ~'4 1Department of Biochemistry and the McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, Texas 75235-8591; 3Department of Biological Chemistry and the Human Genome Center, University of California, Irvine, California 9271 7 To date, only a small percentage of human genes have been cloned and mapped. To facilitate more rapid gene mapping and disease gene isolation, chromosome S-specific cDNA libraries have been constructed from five sources. DNA sequencing and regional mapping of 205 unique cDNAs indicates that 25 are from known chromosome S genes and 138 are from new chromosome S genes (a frequency of 79.5%}. Sequence complexity estimates indicate that each library contains -20% of the -SO00 genes that are believed to reside on chromosome 5. This study more than doubles the number of genes mapped to chromosome S and describes an important new tool for disease gene isolation. A detailed map of expressed sequences within the pressed Sequence Tags (eSTs)] (Adams et al. 1991, human genome would provide an indispensable 1992, 1993a,b; Khan et al. 1991; Wilcox et al. resource for isolating disease genes, and would 1991; Okubo et al.
    [Show full text]
  • 5Q14.3 Deletions FTNW
    5q14.3 deletions rarechromo.org Sources & 5q14.3 deletions references A 5q14.3 deletion is a rare genetic condition in which a piece is missing from one of the body’s 46 chromosomes. The missing This guide tells you what is known about piece can be tiny or much larger but includes important genetic 21 people with a material. This material usually includes all or part of one or molecular diagnosis of more genes that are important for normal development. a 5q14.3 deletion and Sometimes the missing piece does not include part of a gene but recently described in consists of material close to one. the medical literature; Chromosomes are the structures in each of the body’s cells that about eight people carry the genetic information that tells the body how to develop with a molecular diagnosis on the and function. They come in pairs, one from each parent, and are Decipher database numbered 1 to 22 approximately from largest to smallest. Each (https:// chromosome has a short (p) arm and a long (q) arm. decipher.sanger.ac. Research into 5q14.3 deletions is very active. The belief today is uk) and about that a deletion involving the MEF2C gene in the q14.3 band of Unique ’s12 members chromosome 5 causes the major features of the 5q14.3 deletion with a 5q14.3 syndrome. The syndrome can also be deletion. The oldest person caused by a point mutation involving was just 17 years old the MEF2C gene. A point mutation when described so occurs when a single base is replaced there is much still to in the structure of DNA.
    [Show full text]
  • Deletions and Losses in Chromosomes 5 Or 7 in Adult Acute
    Leukemia (1999) 13, 869–872 1999 Stockton Press All rights reserved 0887-6924/99 $12.00 http://www.stockton-press.co.uk/leu Deletions and losses in chromosomes 5 or 7 in adult acute lymphocytic leukemia: incidence, associations and implications BS Dabaja1, S Faderl1, D Thomas1, J Cortes1, S O’Brien1, F Nasr1, S Pierce1, K Hayes2, A Glassman2, M Keating1 and HM Kantarjian1 Departments of 1Leukemia and 2Hematopathology, Section of Cytogenetics, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA Deletions or losses in chromosomes 5 or 7 are recurrent non- Table 1 Characteristics of the study group random abnormalities in acute myeloid leukemia (AML), and are associated with prior exposure to carcinogens or leukem- Characteristic Category No. of patients (%) ogenic agents, and with poor prognosis. Their occurrence and significance in adult acute lymphocytic leukemia (ALL) is not well described. The aim of the study was to evaluate the inci- Chromosome 5 or P value dence, associations and implications of chromosome 5 or 7 7 abnormality abnormalities in adult ALL. Patients with newly diagnosed ALL referred to MD Anderson Cancer Center between 1980 and 1996 Present Absent were analyzed. Characteristics and outcome of patients with or without chromosome 5 or 7 abnormalities were compared by Number 31 437 standard statistical methods. Thirty-one of 468 patients (6.6%) Age (years) у60 9 (29) 80 (18) 0.14 had chromosome 5 or 7 abnormalities. Loss of chromosome 5 Performance (Zubrod) у3 1 (3) 36 (8) 0.33 occurred in six cases, three of them had both chromosome 5 Hepatomegaly yes 3 (10) 96 (22) 0.1 and 7 abnormalities.
    [Show full text]
  • Rare Allelic Forms of PRDM9 Associated with Childhood Leukemogenesis
    Rare allelic forms of PRDM9 associated with childhood leukemogenesis Julie Hussin1,2, Daniel Sinnett2,3, Ferran Casals2, Youssef Idaghdour2, Vanessa Bruat2, Virginie Saillour2, Jasmine Healy2, Jean-Christophe Grenier2, Thibault de Malliard2, Stephan Busche4, Jean- François Spinella2, Mathieu Larivière2, Greg Gibson5, Anna Andersson6, Linda Holmfeldt6, Jing Ma6, Lei Wei6, Jinghui Zhang7, Gregor Andelfinger2,3, James R. Downing6, Charles G. Mullighan6, Philip Awadalla2,3* 1Departement of Biochemistry, Faculty of Medicine, University of Montreal, Canada 2Ste-Justine Hospital Research Centre, Montreal, Canada 3Department of Pediatrics, Faculty of Medicine, University of Montreal, Canada 4Department of Human Genetics, McGill University, Montreal, Canada 5Center for Integrative Genomics, School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA 6Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA 7Department of Computational Biology and Bioinformatics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA. *corresponding author : [email protected] SUPPLEMENTARY INFORMATION SUPPLEMENTARY METHODS 2 SUPPLEMENTARY RESULTS 5 SUPPLEMENTARY TABLES 11 Table S1. Coverage and SNPs statistics in the ALL quartet. 11 Table S2. Number of maternal and paternal recombination events per chromosome. 12 Table S3. PRDM9 alleles in the ALL quartet and 12 ALL trios based on read data and re-sequencing. 13 Table S4. PRDM9 alleles in an additional 10 ALL trios with B-ALL children based on read data. 15 Table S5. PRDM9 alleles in 76 French-Canadian individuals. 16 Table S6. B-ALL molecular subtypes for the 24 patients included in this study. 17 Table S7. PRDM9 alleles in 50 children from SJDALL cohort based on read data. 18 Table S8: Most frequent translocations and fusion genes in ALL.
    [Show full text]
  • Ring Chromosome 5 with Dental Anomalies
    PEDIATRICDENTISTRY/Copyright -~ 1981 by The American Academyof Pedodontics/Vol. 3, No. 4 CASE Ring chromosome 5 with dental anomalies Katherine Kula, DMDShivanand Patil, PhD James Hanson, MD Arthur Nowak, DMDHans Zellweger, MD Abstract Although ring chromosomesare observed in ahnost all manent molars is reported in one case2 autosomalgroups in man, they are rare. Wedescribe a male Although,~ some patients survive to adulthood) patient exldbiting cd du chat syndromein which most patients die in infancy due to severe respiratory cytogenetic studies demonstratethe presonse of a ring and feeding problems2 chromosome5. Deletion o£ the ring chromosome5 is found between the p15 and q35 bands. Dental, medical and Diagnosis is based on clinical features, abnormal cytogenetic findings are comparedto other ring chromosome crying during infancy, chromosomal studies, and der- 5 cases descMbedin literature. matoglyphic features. Diagnosis based soley on clini- cal features is difficult in somecases due to phenoty- Introduetion pic variability and to characteristics changing with Cri du chat syndrome, first described in 1963,~ is age. Clinical features are used, however, as indications characterized by a shrill high cry similar to that of a for confLrmatory chromosomal studiesY young cat. The cry is attributed to a hypotonic, dys- Cri du chat syndromeis usually attributed to a par- morphic larynx noted in some patients. ~ The cry may tial deletion, either terminal or interstitial, of the not be pathognomonic of the syndrome since it is ab- short arm of chromosome57 in the area of p14 to p15 sent in some patients and is reported in other chromo- band?~ The most commonly reported cause is de novo somal abnormalities? deletion occurring in approximately 85 percent of the The~,~ following traits may be found during infancy: cases, m~There are eight reported cases of ring chromo- microcephaly, round facies, apparent ocular hypertel- someu,l~ 5.
    [Show full text]
  • The Human Gene Encoding Phosphatidylinositol-3 Kinase Associated P85a Is at Chromosome Region 5Ql2-13'
    [CANCER RESEARCH 5l. .1818-.1820, July 15, 1991| Advances in Brief The Human Gene Encoding Phosphatidylinositol-3 Kinase Associated p85a Is at Chromosome Region 5ql2-13' L. A. Cannizzaro, E. Y. Skolnik, B. Margolis, C. M. Croce, J. Schlesinger, and K. Huebner2 Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140 [L. A. C., C. M. C., K. H.J, and Department of Pharmacology, New York University Medical Center, New York, New York 10016 [E. Y. S., B. M., J. S.J Abstract scribed previously (10, 11). Hybrids 9142 (full name GM9142), 114 (GM100114), 115 (GM100115), 7297 (GM7297), 7300 (GM7300), I In' human chromosomal location of the gene encoding the phospha- 449 (GM10449), 10095 (GM10095), and 7301 (GM7301) were ob tidylinositol-3 kinase associated protein, p85a, has been determined by tained from the National Institute of General Medical Sciences Human analysis of its segregation in rodent-human hybrids and by chromosome Genetic Mutant Cell Repository (Corieli Institute for Medical Re in situ hybridization using a complementary DNA clone, GRB-1. search, Camden, NJ). Human chromosomes or chromosome regions The gene for p85<*is at chromosome region 5ql3, perhaps near the retained by individual hybrids in the panel are illustrated in Fig. 1. gene encoding another receptor associated signal transducing protein, the Hybrids retaining partial chromosome 5 have also been described GTPase activating protein. previously (12). Filter Hybridization. DNA from mouse, human, and hybrid cell lines Introduction was obtained by a standard phenol-chloroform extraction procedure (10). Approximately 10 Mgof DNA were digested to completion with Skolnik et al.
    [Show full text]
  • Gain of Chromosome 4Qter and Loss of 5Pter: an Unusual Case with Features of Cri Du Chat Syndrome
    Hindawi Publishing Corporation Case Reports in Genetics Volume 2012, Article ID 153405, 4 pages doi:10.1155/2012/153405 Case Report Gain of Chromosome 4qter and Loss of 5pter: An Unusual Case with Features of Cri du Chat Syndrome Frenny Sheth,1 Naresh Gohel,2 Thomas Liehr,3 Olakanmi Akinde,1 Manisha Desai,1 Olawaleye Adeteye,1 and Jayesh Sheth1 1 FRIGE’s Institute of Human Genetics, FRIGE House, Satellite, Ahmedabad 380 015, India 2 Critical Neonatal & Child Care Centre, Aakar Complex, Sir T Hospital, Kalanala, Jail Road, Bhavnagar 364 001, India 3 Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, 07743 Jena, Germany Correspondence should be addressed to Frenny Sheth, [email protected] Received 25 October 2012; Accepted 23 November 2012 Academic Editors: D. J. Bunyan, E. Ergul, and M. Fenger Copyright © 2012 Frenny Sheth et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Here, we present a case with an unusual chromosomal rearrangement in a child with a predominant phenotype of high-pitched crying showing deletion encompassing CTNND2 due to an unbalanced translocation of chromosomes 4 and 5. This rearrangement led to a duplication of ∼35 Mb in 4qter which replaced 18 Mb genetic materials in 5pter. Even though, in this patient, there was no clinically obvious modification to the classical phenotypes of CdCS, and the influence of the 4q-duplication cannot be completely excluded in this case. However, the region 4q34.1–34.3 was previously reported as a region not leading to phenotypic changes if present in three copies, an observation which could possibly be supported by this case.
    [Show full text]