Cellular Senescence and Inflammaging in Age-Related Diseases

Total Page:16

File Type:pdf, Size:1020Kb

Cellular Senescence and Inflammaging in Age-Related Diseases Mediators of Inflammation Cellular Senescence and Inflammaging in Age-Related Diseases Lead Guest Editor: Carmela R. Balistreri Guest Editors: Fabiola Olivieri, Johannes Grillari, and Francesco Prattichizzo Cellular Senescence and Inflammaging in Age-Related Diseases Mediators of Inflammation Cellular Senescence and Inflammaging in Age-Related Diseases Lead Guest Editor: Carmela R. Balistreri Guest Editors: Fabiola Olivieri, Johannes Grillari, and Francesco Prattichizzo Copyright © 2018 Hindawi. All rights reserved. This is a special issue published in “Mediators of Inflammation.” All articles are open access articles distributed under the Creative Com- mons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Editorial Board Anshu Agrawal, USA Antonella Fioravanti, Italy Kutty Selva Nandakumar, China Muzamil Ahmad, India Stefanie B. Flohé, Germany Hannes Neuwirt, Austria Maria Jose Alcaraz, Spain Jan Fric, Czech Republic Nadra Nilsen, Norway Simi Ali, UK Tânia Silvia Fröde, Brazil Daniela Novick, Israel Amedeo Amedei, Italy Julio Galvez, Spain Marja Ojaniemi, Finland Oleh Andrukhov, Germany Mirella Giovarelli, Italy Sandra Helena Penha Oliveira, Brazil Emiliano Antiga, Italy Denis Girard, Canada Olivia Osborn, USA Adone Baroni, Italy Ronald Gladue, USA Carla Pagliari, Brazil Jagadeesh Bayry, France Markus H. Gräler, Germany Martin Pelletier, Canada Jürgen Bernhagen, Germany Hermann Gram, Switzerland Vera L. Petricevich, Mexico Tomasz Brzozowski, Poland Francesca Granucci, Italy Sonja Pezelj-Ribarić, Croatia Philip Bufler, Germany Oreste Gualillo, Spain Phileno Pinge-Filho, Brazil Elisabetta Buommino, Italy Elaine Hatanaka, Brazil Michele T. Pritchard, USA Daniela Caccamo, Italy Nobuhiko Kamada, USA Michal A. Rahat, Israel Luca Cantarini, Italy Yoshihide Kanaoka, USA Zoltan Rakonczay Jr., Hungary Raffaele Capasso, Italy Yona Keisari, Israel Marcella Reale, Italy Calogero Caruso, Italy Alex Kleinjan, Netherlands Alexander Riad, Germany Maria Rosaria Catania, Italy Marije I. Koenders, Netherlands Carlos Rossa, Brazil Carlo Cervellati, Italy Elzbieta Kolaczkowska, Poland Settimio Rossi, Italy Cristina Contreras, Spain Vladimir A. Kostyuk, Italy Bernard Ryffel, France Robson Coutinho-Silva, Brazil Dmitri V. Krysko, Belgium Carla Sipert, Brazil Jose Crispin, Mexico Sergei Kusmartsev, USA HelenC.Steel,SouthAfrica Fulvio D’Acquisto, UK Martha Lappas, Australia Jacek Cezary Szepietowski, Poland Eduardo Dalmarco, Brazil Philipp M. Lepper, Germany Dennis D. Taub, USA Pham My-Chan Dang, France Eduardo López-Collazo, Spain Taina Tervahartiala, Finland Wilco de Jager, Netherlands Andreas Ludwig, Germany Kathy Triantafilou, UK Beatriz De las Heras, Spain Ariadne Malamitsi-Puchner, Greece Fumio Tsuji, Japan Chiara De Luca, Germany Francesco Marotta, Italy Giuseppe Valacchi, Italy Clara Di Filippo, Italy Joilson O. Martins, Brazil Luc Vallières, Canada Carlos Dieguez, Spain Donna-Marie McCafferty, Canada Elena Voronov, Israel Agnieszka Dobrzyn, Poland Barbro N. Melgert, Netherlands Kerstin Wolk, Germany Elena Dozio, Italy Paola Migliorini, Italy Soh Yamazaki, Japan Emmanuel Economou, Greece Vinod K. Mishra, USA Shin-ichi Yokota, Japan Ulrich Eisel, Netherlands Eeva Moilanen, Finland Teresa Zelante, Singapore Giacomo Emmi, Italy Alexandre Morrot, Brazil Fabíola B Filippin Monteiro, Brazil Jonas Mudter, Germany Contents Cellular Senescence and Inflammaging in Age-Related Diseases Fabiola Olivieri, Francesco Prattichizzo, Johannes Grillari, and Carmela R. Balistreri Volume 2018, Article ID 9076485, 6 pages The Role of Immunosenescence in Neurodegenerative Diseases Erica Costantini , Chiara D’Angelo, and Marcella Reale Volume 2018, Article ID 6039171, 12 pages Evaluation of Lymphocyte Response to the Induced Oxidative Stress in a Cohort of Ageing Subjects, including Semisupercentenarians and Their Offspring Federico Sizzano , Sebastiano Collino, Ornella Cominetti, Daniela Monti , Paolo Garagnani , Rita Ostan, Chiara Pirazzini , Maria Giulia Bacalini, Daniela Mari , Giuseppe Passarino , Claudio Franceschi, and Alessio Palini Volume 2018, Article ID 7109312, 14 pages Inducers of Senescence, Toxic Compounds, and Senolytics: The Multiple Faces of Nrf2-Activating Phytochemicals in Cancer Adjuvant Therapy Marco Malavolta , Massimo Bracci ,LorySantarelli , Md Abu Sayeed, Elisa Pierpaoli, Robertina Giacconi, Laura Costarelli, Francesco Piacenza, Andrea Basso, Maurizio Cardelli, and Mauro Provinciali Volume 2018, Article ID 4159013, 32 pages Anti-Inflamm-Ageing and/or Anti-Age-Related Disease Emerging Treatments: A Historical Alchemy or Revolutionary Effective Procedures? Carmela Rita Balistreri Volume 2018, Article ID 3705389, 13 pages Mitochondrial (Dys) Function in Inflammaging: Do MitomiRs Influence the Energetic, Oxidative, and Inflammatory Status of Senescent Cells? Angelica Giuliani, Francesco Prattichizzo, Luigina Micolucci, Antonio Ceriello, Antonio Domenico Procopio, and Maria Rita Rippo Volume 2017, Article ID 2309034, 11 pages Gene Expression, Oxidative Stress, and Senescence of Primary Coronary Endothelial Cells Exposed to Postprandial Serum of Healthy Adult and Elderly Volunteers after Oven-Cooked Meat Meals Costarelli Laura, Giacconi Robertina, Francesco Piacenza, Andrea Basso, Deborah Pacetti, Michele Balzano, Riccardo Gagliardi, Natale Giuseppe Frega, Eugenio Mocchegiani, Mauro Provinciali, and Marco Malavolta Volume 2017, Article ID 3868545, 12 pages Mouse Thyroid Gland Changes in Aging: Implication of Galectin-3 and Sphingomyelinase Giovanna Traina, Samuela Cataldi, Paola Siccu, Elisabetta Loreti, Ivana Ferri, Angelo Sidoni, Michela Codini, Chiara Gizzi, Marzia Sichetti, Francesco Saverio Ambesi-Impiombato, Tommaso Beccari, Francesco Curcio, and Elisabetta Albi Volume 2017, Article ID 8102170, 5 pages HIV as a Cause of Immune Activation and Immunosenescence T.Sokoya,H.C.Steel,M.Nieuwoudt,andT.M.Rossouw Volume 2017, Article ID 6825493, 16 pages The Light and Shadow of Senescence and Inflammation in Cardiovascular Pathology and Regenerative Medicine Laura Iop, Eleonora Dal Sasso, Leonardo Schirone, Maurizio Forte, Mariangela Peruzzi, Elena Cavarretta, Silvia Palmerio, Gino Gerosa, Sebastiano Sciarretta, and Giacomo Frati Volume 2017, Article ID 7953486, 13 pages Increased Levels of sRAGE in Diabetic CKD-G5D Patients: A Potential Protective Mechanism against AGE-Related Upregulation of Fibroblast Growth Factor 23 and Inflammation Elena Dozio, Valentina Corradi, Elena Vianello, Elisa Scalzotto, Massimo de Cal, Massimiliano Marco Corsi Romanelli, and Claudio Ronco Volume 2017, Article ID 9845175, 9 pages Seasonal Variation in Vitamin D in Association with Age, Inflammatory Cytokines, Anthropometric Parameters, and Lifestyle Factors in Older Adults Leticia Elizondo-Montemayor, Elena C. Castillo, Carlos Rodríguez-López, José R. Villarreal-Calderón, Merit Gómez-Carmona, Sofia Tenorio-Martínez, Bianca Nieblas, and Gerardo García-Rivas Volume 2017, Article ID 5719461, 14 pages Vitamin D Deficiency Is Associated with Increased Osteocalcin Levels in Acute Aortic Dissection: A Pilot Study on Elderly Patients Elena Vianello, Elena Dozio, Alessandra Barassi, Lorenza Tacchini, John Lamont, Santi Trimarchi, Massimiliano M. Marrocco-Trischitta, and Massimiliano M. Corsi Romanelli Volume 2017, Article ID 6412531, 8 pages Hindawi Mediators of Inflammation Volume 2018, Article ID 9076485, 6 pages https://doi.org/10.1155/2018/9076485 Editorial Cellular Senescence and Inflammaging in Age-Related Diseases 1,2 3 4 5 Fabiola Olivieri, Francesco Prattichizzo, Johannes Grillari, and Carmela R. Balistreri 1Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy 2Center of Clinical Pathology and Innovative Therapy, INRCA-IRCCS National Institute, Ancona, Italy 3IRCCS MultiMedica, Milan, Italy 4University of Natural Resources and Life Sciences Vienna, Vienna, Austria 5Department of Pathobiology and Medical Biotechnologies, University of Palermo, Corso Tukory 211, 90134 Palermo, Italy Correspondence should be addressed to Carmela R. Balistreri; [email protected] Received 15 February 2018; Accepted 15 February 2018; Published 17 April 2018 Copyright © 2018 Fabiola Olivieri et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The term cellular senescence was used in 1961 for the first wound closure by inducing myofibroblast differentiation time by Hayflick and Moorhead [1], to define the mechanism through the secretion of platelet-derived growth factor AA determining the irreversible loss of the proliferative activity (PDGF-AA). In addition, it has been also demonstrated that of human somatic cells [1]. In this respect, cellular senes- forced cellular reprogramming induces senescence, and senes- cence has been usually viewed as one of the regulatory mech- cent cells (SCs) create a permissive environment for repro- anisms able to stop the eventual uncontrolled proliferation of gramming itself [9]. This evidence leads to an interesting old and injured cells, mediating an activity likely similar to a hypothesis based on the concept that SCs act as a trigger of tumour suppressor gatekeeper [2]. Accordingly, oncogene tissue remodeling, following a precise regulated succession overexpression (i.e., H-ras) in primary cells is sufficient to of events, characterized
Recommended publications
  • Review CCR5 Antagonists: Host-Targeted Antivirals for the Treatment of HIV Infection
    Antiviral Chemistry & Chemotherapy 16:339–354 Review CCR5 antagonists: host-targeted antivirals for the treatment of HIV infection Mike Westby* and Elna van der Ryst Pfizer Global R&D, Kent, UK *Corresponding author: Tel: +44 1304 649876; Fax: +44 1304 651819; E-mail: [email protected] The human chemokine receptors, CCR5 and suggest that these compounds have a long plasma CXCR4, are potential host targets for exogenous, half-life and/or prolonged CCR5 occupancy, which small-molecule antagonists for the inhibition of may explain the delay in viral rebound observed HIV-1 infection. HIV-1 strains can be categorised by following compound withdrawal in short-term co-receptor tropism – their ability to utilise CCR5 monotherapy studies. A switch from CCR5 to (CCR5-tropic), CXCR4 (CXCR4-tropic) or both (dual- CXCR4 tropism occurs spontaneously in approxi- tropic) as a co-receptor for entry into susceptible mately 50% of HIV-infected patients and has been cells. CCR5 may be the more suitable co-receptor associated with, but is not required for, disease target for small-molecule antagonists because a progression. The possibility of a co-receptor natural deletion in the CCR5 gene preventing its tropism switch occurring under selection pressure expression on the cell surface is not associated by CCR5 antagonists is discussed. The completion with any obvious phenotype, but can confer of ongoing Phase IIb/III studies of maraviroc, resistance to infection by CCR5-tropic strains – the aplaviroc and vicriviroc will provide further insight most frequently sexually-transmitted strains. into co-receptor tropism, HIV pathogenesis and The current leading CCR5 antagonists in clinical the suitability of CCR5 antagonists as a potent development include maraviroc (UK-427,857, new class of antivirals for the treatment of HIV Pfizer), aplaviroc (873140, GlaxoSmithKline) and infection.
    [Show full text]
  • Product Monograph for CELSENTRI
    PRODUCT MONOGRAPH PrCELSENTRI maraviroc Tablets 150 and 300 mg CCR5 antagonist ViiV Healthcare ULC 245, boulevard Armand-Frappier Laval, Quebec H7V 4A7 Date of Revision: July 05, 2019 Submission Control No: 226222 © 2019 ViiV Healthcare group of companies or its licensor. Trademarks are owned by or licensed to the ViiV Healthcare group of companies. Page 1 of 60 Table of Contents PART I: HEALTH PROFESSIONAL INFORMATION.........................................................3 SUMMARY PRODUCT INFORMATION ........................................................................3 INDICATIONS AND CLINICAL USE..............................................................................3 CONTRAINDICATIONS ...................................................................................................3 WARNINGS AND PRECAUTIONS..................................................................................4 ADVERSE REACTIONS....................................................................................................9 DRUG INTERACTIONS ..................................................................................................19 DOSAGE AND ADMINISTRATION..............................................................................28 OVERDOSAGE ................................................................................................................31 ACTION AND CLINICAL PHARMACOLOGY ............................................................31 STORAGE AND STABILITY..........................................................................................36
    [Show full text]
  • Brain Inflammaging: Roles of Melatonin, Circadian Clocks
    C al & ellu ic la n r li Im C m Journal of Clinical & Cellular f u o n l o a l n o Hardeland, J Clin Cell Immunol 2018, 9:1 r g u y o J Immunology DOI: 10.4172/2155-9899.1000543 ISSN: 2155-9899 Mini Review Open Access Brain Inflammaging: Roles of Melatonin, Circadian Clocks and Sirtuins Rüdiger Hardeland* Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany *Corresponding author: Rüdiger Hardeland, Johann Friedrich Blumenbach Institute of Zoology and Anthropology, Bürgerstrasse. 50, D-37073 Göttingen, Germany, Tel: +49-551-395414; E-mail: [email protected] Received date: February 13, 2018; Accepted date: February 26, 2018; Published date: February 28, 2018 Copyright: ©2018 Hardeland R. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium. Abstract Inflammaging denotes the contribution of low-grade inflammation to aging and is of particular importance in the brain as it is relevant to development and progression of neurodegeneration and mental disorders resulting thereof. Several processes are involved, such as changes by immunosenescence, release of proinflammatory cytokines by DNA-damaged cells that have developed the senescence-associated secretory phenotype, microglia activation and astrogliosis because of neuronal overexcitation, brain insulin resistance, and increased levels of amyloid-β peptides and oligomers. Melatonin and sirtuin1, which are both part of the circadian oscillator system share neuroprotective and anti-inflammatory properties. In the course of aging, the functioning of the circadian system deteriorates and levels of melatonin and sirtuin1 progressively decline.
    [Show full text]
  • Managing Drug Interactions in the Treatment of HIV-Related Tuberculosis
    Managing Drug Interactions in the Treatment of HIV-Related Tuberculosis National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention Division of Tuberculosis Elimination Managing Drug Interactions in the Treatment of HIV-Related Tuberculosis Centers for Disease Control and Prevention Office of Infectious Diseases National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention Division of Tuberculosis Elimination June 2013 This document is accessible online at http://www.cdc.gov/tb/TB_HIV_Drugs/default.htm Suggested citation: CDC. Managing Drug Interactions in the Treatment of HIV-Related Tuberculosis [online]. 2013. Available from URL: http://www.cdc.gov/tb/TB_HIV_Drugs/default.htm Table of Contents Introduction 1 Methodology for Preparation of these Guidelines 2 The Role of Rifamycins in Tuberculosis Treatment 4 Managing Drug Interactions with Antivirals and Rifampin 5 Managing Drug Interactions with Antivirals and Rifabutin 9 Treatment of Latent TB Infection with Rifampin or Rifapentine 10 Treating Pregnant Women with Tuberculosis and HIV Co-infection 10 Treating Children with HIV-associated Tuberculosis 12 Co-treatment of Multidrug-resistant Tuberculosis and HIV 14 Limitations of these Guidelines 14 HIV-TB Drug Interaction Guideline Development Group 15 References 17 Table 1a. Recommendations for regimens for the concomitant treatment of tuberculosis and HIV infection in adults 21 Table 1b. Recommendations for regimens for the concomitant treatment of tuberculosis and HIV infection in children 22 Table 2a. Recommendations for co-administering antiretroviral drugs with RIFAMPIN in adults 23 Table 2b. Recommendations for co-administering antiretroviral drugs with RIFAMPIN in children 25 Table 3. Recommendations for co-administering antiretroviral drugs with RIFABUTIN in adults 26 ii Introduction Worldwide, tuberculosis is the most common serious opportunistic infection among people with HIV infection.
    [Show full text]
  • Cellular Senescence: Friend Or Foe to Respiratory Viral Infections?
    Early View Perspective Cellular Senescence: Friend or Foe to Respiratory Viral Infections? William J. Kelley, Rachel L. Zemans, Daniel R. Goldstein Please cite this article as: Kelley WJ, Zemans RL, Goldstein DR. Cellular Senescence: Friend or Foe to Respiratory Viral Infections?. Eur Respir J 2020; in press (https://doi.org/10.1183/13993003.02708-2020). This manuscript has recently been accepted for publication in the European Respiratory Journal. It is published here in its accepted form prior to copyediting and typesetting by our production team. After these production processes are complete and the authors have approved the resulting proofs, the article will move to the latest issue of the ERJ online. Copyright ©ERS 2020. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial Licence 4.0. Cellular Senescence: Friend or Foe to Respiratory Viral Infections? William J. Kelley1,2,3 , Rachel L. Zemans1,2 and Daniel R. Goldstein 1,2,3 1:Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA 2:Program in Immunology, University of Michigan, Ann Arbor, MI, USA 3:Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI USA Email of corresponding author: [email protected] Address of corresponding author: NCRC B020-209W 2800 Plymouth Road Ann Arbor, MI 48104, USA Word count: 2750 Take Home Senescence associates with fibrotic lung diseases. Emerging therapies to reduce senescence may treat chronic lung diseases, but the impact of senescence during acute respiratory viral infections is unclear and requires future investigation. Abstract Cellular senescence permanently arrests the replication of various cell types and contributes to age- associated diseases.
    [Show full text]
  • Age-Related Cerebral Small Vessel Disease and Inflammaging
    Li et al. Cell Death and Disease (2020) 11:932 https://doi.org/10.1038/s41419-020-03137-x Cell Death & Disease REVIEW ARTICLE Open Access Age-related cerebral small vessel disease and inflammaging Tiemei Li1,2,YinongHuang1,3,WeiCai1,2, Xiaodong Chen1,2, Xuejiao Men1,2, Tingting Lu1,2, Aiming Wu1,2 and Zhengqi Lu 1,2 Abstract The continued increase in global life expectancy predicts a rising prevalence of age-related cerebral small vessel diseases (CSVD), which requires a better understanding of the underlying molecular mechanisms. In recent years, the concept of “inflammaging” has attracted increasing attention. It refers to the chronic sterile low-grade inflammation in elderly organisms and is involved in the development of a variety of age-related chronic diseases. Inflammaging is a long-term result of chronic physiological stimulation of the immune system, and various cellular and molecular mechanisms (e.g., cellular senescence, immunosenescence, mitochondrial dysfunction, defective autophagy, metaflammation, gut microbiota dysbiosis) are involved. With the deepening understanding of the etiological basis of age-related CSVD, inflammaging is considered to play an important role in its occurrence and development. One of the most critical pathophysiological mechanisms of CSVD is endothelium dysfunction and subsequent blood-brain barrier (BBB) leakage, which gives a clue in the identification of the disease by detecting circulating biological markers of BBB disruption. The regional analysis showed blood markers of vascular inflammation are often associated with deep perforating arteriopathy (DPA), while blood markers of systemic inflammation appear to be associated with cerebral amyloid angiopathy (CAA). Here, we discuss recent findings in the pathophysiology of inflammaging and their effects on the development of age-related CSVD.
    [Show full text]
  • Retinal Inflammaging: Pathogenesis and Prevention
    Vol 4, Issue 4, 2016 ISSN - 2321-4406 Review Article RETINAL INFLAMMAGING: PATHOGENESIS AND PREVENTION ABHA PANDIT1, DEEPTI PANDEY BAHUGUNA2, ABHAY KUMAR PANDEY3*, PANDEY BL4, S Pandit5 1Department of Medicine, Index Medical College Hospital and Research Centre, Indore, Madhya Pradesh, India. 2Consultant, Otorhinolaryngologist, Shri Laxminarayan Marwari Multispeciality Charity Hospital, Varanasi, Uttar Pradesh, India. 3Department of Physiology, Government Medical College, Banda, Uttar Pradesh, India. 4Department of Pharmacology, IMS, Banaras Hindu University, Varanasi, Uttar Pradesh, India. 5Department of Ophthalmology, Health Services, Indore, Madhya Pradesh, India. Email: [email protected] Received: 09 June 2016, Revised and Accepted: 14 June 2016 ABSTRACT Macula lutea, the yellow spot or fovea centralis in eye, serves the distinctive central vision in perceiving visual cues and contributing to task performance. Impaired visual acuity, in later years in life, compromises safety, productivity, and life quality. Carotenoid pigment content declines with cumulation of light-induced damage through aging process in the retina. The progression of resultant macular degeneration is aggravated by oxidative stress, inflammation, raised blood sugar, and vasculopathy associating aging. Senescent dry degeneration involves drusen (a compound of glycolipid and glycol-conjugate core) deposition that impairs metabolic connectivity of upper layers of retina with choroid. Degeneration of retinal pigment epithelium and photoreceptors thus results. The late more severe form of age-related macular degeneration (AMD), involves factors inducing choroidal neovascularization. Leaky neocapillaries speed degenerative process of the retina. Most age-related pathologies are initiated by metabolic disruptions and AMD shares features of systemic atherosclerosis. An aberrant tissue response to free radical stress, vasculopathy, and local ischemic underlies AMD pathogenesis.
    [Show full text]
  • Cellular Senescence and Inflammaging in the Skin Microenvironment
    International Journal of Molecular Sciences Review Cellular Senescence and Inflammaging in the Skin Microenvironment Young In Lee 1,2 , Sooyeon Choi 1, Won Seok Roh 1 , Ju Hee Lee 1,2,* and Tae-Gyun Kim 1,* 1 Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul 107-11, Korea; [email protected] (Y.I.L.); [email protected] (S.C.); [email protected] (W.S.R.) 2 Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, Yonsei University College of Medicine, Seoul 107-11, Korea * Correspondence: [email protected] (J.H.L.); [email protected] (T.-G.K.); Tel.: +82-2-2228-2080 (J.H.L. & T.-G.K.) Abstract: Cellular senescence and aging result in a reduced ability to manage persistent types of inflammation. Thus, the chronic low-level inflammation associated with aging phenotype is called “inflammaging”. Inflammaging is not only related with age-associated chronic systemic diseases such as cardiovascular disease and diabetes, but also skin aging. As the largest organ of the body, skin is continuously exposed to external stressors such as UV radiation, air particulate matter, and human microbiome. In this review article, we present mechanisms for accumulation of senescence cells in different compartments of the skin based on cell types, and their association with skin resident immune cells to describe changes in cutaneous immunity during the aging process. Keywords: inflammaging; senescence; skin; fibroblasts; keratinocytes; melanocytes; immune cells Citation: Lee, Y.I.; Choi, S.; Roh, W.S.; Lee, J.H.; Kim, T.-G. Cellular Senescence and Inflammaging in the 1.
    [Show full text]
  • Cytokines and Chemokines in SARS-Cov-2 Infections—Therapeutic Strategies Targeting Cytokine Storm
    biomolecules Review Cytokines and Chemokines in SARS-CoV-2 Infections—Therapeutic Strategies Targeting Cytokine Storm Alexandra Pum 1, Maria Ennemoser 1, Tiziana Adage 2 and Andreas J. Kungl 1,3,* 1 Institute Of Pharmaceutical Sciences, Karl-Franzens-University Graz, Schubertstrasse 1, 8010 Graz, Austria; [email protected] (A.P.); [email protected] (M.E.) 2 Brain Implant Therapeutics (BIT) Pharma, Leonhardstrasse 109, 8010 Graz, Austria; [email protected] 3 Antagonis Biotherapeutics GmbH, Strasserhofweg 77, 8045 Graz, Austria * Correspondence: [email protected] Abstract: The recently identified severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, the cause of coronavirus disease (COVID-19) and the associated ongoing pandemic, frequently leads to severe respiratory distress syndrome and pneumonia with fatal consequences. Although several factors of this infection and its consequences are not completely clear, the presence and involvement of specific chemokines is undoubtedly crucial for the development and progression of COVID-19. Cytokine storm and the often-resulting cytokine release syndrome (CRS) are patho- physiological hallmarks in COVID-19 infections related to its most severe and fatal cases. In this hyperinflammatory event, chemokines and other cytokines are highly upregulated and are therefore not fulfilling their beneficial function in the host response anymore but causing harmful effects. Here, we present the recent views on the involvement of chemokines and selected cytokines in COVID-19 and the therapeutics currently in clinical development targeting or interfering with them, discussing their potentials in the treatment of COVID-19 infections. Keywords: chemokines; SARS-CoV-2; COVID-19; coronavirus; cytokine storm Citation: Pum, A.; Ennemoser, M.; Adage, T.; Kungl, A.J.
    [Show full text]
  • Contributions of Age-Related Thymic Involution to Immunosenescence and Inflammaging Rachel Thomas1, Weikan Wang1 and Dong-Ming Su2*
    Thomas et al. Immunity & Ageing (2020) 17:2 https://doi.org/10.1186/s12979-020-0173-8 REVIEW Open Access Contributions of Age-Related Thymic Involution to Immunosenescence and Inflammaging Rachel Thomas1, Weikan Wang1 and Dong-Ming Su2* Abstract Immune system aging is characterized by the paradox of immunosenescence (insufficiency) and inflammaging (over-reaction), which incorporate two sides of the same coin, resulting in immune disorder. Immunosenescence refers to disruption in the structural architecture of immune organs and dysfunction in immune responses, resulting from both aged innate and adaptive immunity. Inflammaging, described as a chronic, sterile, systemic inflammatory condition associated with advanced age, is mainly attributed to somatic cellular senescence-associated secretory phenotype (SASP) and age-related autoimmune predisposition. However, the inability to reduce senescent somatic cells (SSCs), because of immunosenescence, exacerbates inflammaging. Age-related adaptive immune system deviations, particularly altered T cell function, are derived from age-related thymic atrophy or involution, a hallmark of thymic aging. Recently, there have been major developments in understanding how age-related thymic involution contributes to inflammaging and immunosenescence at the cellular and molecular levels, including genetic and epigenetic regulation, as well as developments of many potential rejuvenation strategies. Herein, we discuss the research progress uncovering how age-related thymic involution contributes to immunosenescence and inflammaging, as well as their intersection. We also describe how T cell adaptive immunity mediates inflammaging and plays a crucial role in the progression of age-related neurological and cardiovascular diseases, as well as cancer. We then briefly outline the underlying cellular and molecular mechanisms of age-related thymic involution, and finally summarize potential rejuvenation strategies to restore aged thymic function.
    [Show full text]
  • Reversing the Immune Ageing Clock: Lifestyle Modifications And
    Biogerontology (2018) 19:481–496 https://doi.org/10.1007/s10522-018-9771-7 (0123456789().,-volV)(0123456789().,-volV) REVIEW ARTICLE Reversing the immune ageing clock: lifestyle modifications and pharmacological interventions Niharika A. Duggal Received: 27 June 2018 / Accepted: 16 September 2018 / Published online: 29 September 2018 Ó The Author(s) 2018 Abstract It is widely accepted that ageing is Immune ageing and health accompanied by remodelling of the immune system, including reduced numbers of naı¨ve T cells, increased Over the past 250 years life expectancy has increased senescent or exhausted T cells, compromise to mono- dramatically and is still increasing at 2 years per cyte, neutrophil and natural killer cell function and an decade in most countries. Advancing age is accompa- increase in systemic inflammation. In combination nied by a compromised ability of older adults to these changes result in increased risk of infection, combat bacterial and viral infections (Gavazzi and reduced immune memory, reduced immune tolerance Krause 2002; Molony et al. 2017a, b), increased risk of and immune surveillance, with significant impacts autoimmunity (Goronzy and Weyand 2012), poor upon health in old age. More recently it has become vaccination responses (Del Giudice et al. 2017; Lord clear that the rate of decline in the immune system is 2013) and the re-emergence of latent infections to malleable and can be influenced by environmental produce conditions such as shingles (Schmader 2001). factors such as physical activity as well as pharmaco- All of this contributing towards increased morbidity logical interventions. This review discusses briefly our and mortality in older adults (Pera et al.
    [Show full text]
  • Cellular Senescence and the Senescent Secretory Phenotype: Therapeutic Opportunities
    Cellular senescence and the senescent secretory phenotype: therapeutic opportunities Tamara Tchkonia, … , Judith Campisi, James L. Kirkland J Clin Invest. 2013;123(3):966-972. https://doi.org/10.1172/JCI64098. Review Series Aging is the largest risk factor for most chronic diseases, which account for the majority of morbidity and health care expenditures in developed nations. New findings suggest that aging is a modifiable risk factor, and it may be feasible to delay age-related diseases as a group by modulating fundamental aging mechanisms. One such mechanism is cellular senescence, which can cause chronic inflammation through the senescence-associated secretory phenotype (SASP). We review the mechanisms that induce senescence and the SASP, their associations with chronic disease and frailty, therapeutic opportunities based on targeting senescent cells and the SASP, and potential paths to developing clinical interventions. Find the latest version: https://jci.me/64098/pdf Review series Cellular senescence and the senescent secretory phenotype: therapeutic opportunities Tamara Tchkonia,1 Yi Zhu,1 Jan van Deursen,1 Judith Campisi,2 and James L. Kirkland1 1Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA. 2Buck Institute for Research on Aging, Novato, California, USA. Aging is the largest risk factor for most chronic diseases, which account for the majority of morbidity and health care expenditures in developed nations. New findings suggest that aging is a modifiable risk factor, and it may be feasible to delay age-related diseases as a group by modulating fundamental aging mechanisms. One such mech- anism is cellular senescence, which can cause chronic inflammation through the senescence-associated secretory phenotype (SASP).
    [Show full text]