Quantum Image Processing: the truth, the whole truth, and nothing but the truth about its problems on internal image- representation and outcomes recovering Mario Mastriani ORCID Id: 0000-0002-5627-3935 Qubit Reset LLC, 2875 NE 191, suite 801, Aventura, FL 33180, USA
[email protected] Abstract – In this paper, three tecniques of internal image-representation in a quantum computer are compared: Flexible Representation of Quantum Images (FRQI), Novel Enhanced Quantum Represen- tation of digital images (NEQR), and Quantum Boolean Image Processing (QBIP). All conspicuous technical items are considered in this comparison for a complete analysis: i) performance as Classical- to-Quantum (Cl2Qu) interface, ii) characteristics of the employed qubits, iii) sparsity of the used internal registers, iv) number and size of the required registers, v) quality in the outcomes recovering, vi) number of required gates and its consequent accumulated noise, vi) decoherence, and vii) fidelity. These analyses and demonstrations are automatically extended to all variants of FRQI and NEQR. This study demonstrated the practical infeasibility in the implementation of FRQI and NEQR on a physical quantum computer (QPU), while QBIP has proven to be extremely successful on: a) the four main quantum simulators on the cloud, b) two QPUs, and c) optical circuits from three labs. Moreover, QBIP also demonstrated its economy regarding the required resources needed for its proper function and its great robustness (immunity to noise), among other advantages, in fact, without any exceptions. Keywords: Classical-to-Quantum Interface; Flexible Representation of Quantum Images; Novel Enhanced Quantum Representation of digital images; Physical quantum computer; Quantum Boolean Image Processing; Quantum Image Processing.