Feeding Strategy and Locomotion of Cambrian Hyolithides

Total Page:16

File Type:pdf, Size:1020Kb

Feeding Strategy and Locomotion of Cambrian Hyolithides Available online at www.sciencedirect.com ScienceDirect Palaeoworld 27 (2018) 334–342 Feeding strategy and locomotion of Cambrian hyolithides a,∗ a b c,d b Hai-Jing Sun , Fang-Chen Zhao , Rong-Qin Wen , Han Zeng , Jin Peng a State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China b Resources and Environmental Engineering College, Guizhou University, Guiyang 550025, China c College of Earth Sciences, University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China d Department of Paleobiology, National Museum of Natural History, P.O. Box 37012, MRC-121, Washington, DC 20013-7012, USA Received 7 November 2017; received in revised form 8 March 2018; accepted 26 March 2018 Available online 3 April 2018 Abstract The Chengjiang (Cambrian Stage 3) and Balang (Cambrian Stage 4) Konservat-Lagerstätten of South China have produced abundant hyolithide hyoliths; however, little attention has been paid to their feeding strategy and the role it played in the ecosystem. Hyolithides preserved in coprolites from the Chengjiang Biota and associated with a Tuzoia carcass from the Balang Fauna reveal the fluid feces consuming and scavenging strategies of this group. Size distribution of hyolithides demonstrates that their dietary habit is ontogenetically dependent, with juveniles having ingested organic-rich material whereas adult food consumption was more likely by a variety of species-dependent methods The first discovery of hyolithides in association with locomotion traces and burrows indicates they were not only epibenthic vagrants, but also shallow horizontal burrowers. The new discoveries reported herein enhance our understanding of the feeding strategy and other behaviours of Cambrian hyolithides. © 2018 Elsevier Ireland Ltd Elsevier B.V. and Nanjing Institute of Geology and Palaeontology, CAS. Published by Elsevier B.V. All rights reserved. Keywords: Hyolithides; Feeding habit; Trace fossil; Cambrian; Chengjiang Biota; Balang Fauna 1. Introduction quently appear in the gut remains or coprolites of predators as an important food item (Chen et al., 1996; Chen and Li, 1997; Chen, Extensive study of exceptionally preserved Cambrian 2004; Vannier and Chen, 2005). Although both qualitative and Burgess Shale-type biotas offers deep insights into the trophic quantitative analyses have been applied to the Chengjiang Biota relationships of early life and permits further reconstruction to reconstruct the ecosystem and trophic links among animals of their ecosystems (Dunne et al., 2008; Vannier, 2012). The (Hu, 2005; Vannier and Chen, 2005; Zhao et al., 2010, 2012, Chengjiang Biota (Cambrian Stage 3) in Yunnan Province and 2014), little attention has been paid to the feeding behaviours the Balang Fauna (Cambrian Stage 4) in Guizhou Province, of the hyoliths (Chen, 2004; Vannier and Chen, 2005), and the South China, are two of the contributors to our understanding role that they played in the ecosystem has long been overlooked. of Cambrian animals and their interactions. Hyoliths are one of Similarly, with respect to the hyoliths in the Balang Fauna, only the most numerous and diverse biomineralising animals during limited work has focused on the dietary habit of the hyolithides the Cambrian, and ranged throughout the Paleozoic until their (Sun et al., 2016) and their biological associations with other Permian extinction. Hyolithides, as one of the main epifaunal animals (Sun et al., 2017). Definitive traces produced by these groups, are abundant in the Chengjiang and Balang lagerstätten animals have remained undocumented until now. (Peng et al., 2005; Zhao et al., 2010, 2012, 2014), and they fre- Our report focuses on three groups of specimens, two from the Chengjiang Biota containing hyolithides that we assign to ‘Ambrolinevitus’ ventricosus Qian and the other from the Balang ∗ Fauna that consists of indeterminate individuals. The former two Corresponding author at: State Key Laboratory of Palaeobiology and Stratig- are concentrated in fecal deposits, and one of them was described raphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, earlier by Chen (2004) and Vannier and Chen (2005). The latter China. from the Balang Fauna consists of individuals located on and E-mail address: [email protected] (H.J. Sun). https://doi.org/10.1016/j.palwor.2018.03.003 1871-174X/© 2018 Elsevier Ireland Ltd Elsevier B.V. and Nanjing Institute of Geology and Palaeontology, CAS. Published by Elsevier B.V. All rights reserved. H.J. Sun et al. / Palaeoworld 27 (2018) 334–342 335 around a Tuzoia sp. carcass. These specimens allow us to make 2010; Hu et al., 2013; Botting et al., 2015; Martí Mus, 2016; new interpretations concerning the feeding strategies and other Zhu et al., 2016), and rarely preserved in three dimensions behaviours of hyolithides, and provide additional details regard- (Sun et al., 2016). Because of inadequate preservation of the ing the flow of energy within the ecosystem from the perspective hyolithide gut, the feeding habit of these organisms remained of hyolithide hyoliths. In addition, we provide the first report of largely speculative, and no detailed comparison of feeding traces of hyolithide locomotion and horizontal burrowing. habit between hyolithides and orthothecids was possible. The hyolithides, with their slow and limited locomotion, were ear- 2. Material and methods lier interpreted as generalized omnivores, including deposit or detritus feeders (Runnegar et al., 1975; Marek and Yochelson, The hyoliths from the Chengjiang Biota are preserved in 1976; Dzik, 1980), filter feeders (Runnegar et al., 1975), and yellowish-green claystones from the Maotianshan Member of possible grazers (Marek and Yochelson, 1976). Subsequently, the Yu’anshan Formation in Shankou Village of Anning County serial discoveries of epibionts (bryozoans and tubular corals) and Ma’anshan Village of Chengjiang County, Yunnan Province, that lived only on the conchs of hyolithides (Marek and Galle, China. Trilobites associated with these individuals are indica- 1976; Malinky, 1990, 2006; Galle and Plusquellec, 2002; Galle tive of the Eoredlichia-Wutingaspis Zone (Steiner et al., 2001), and Parsley, 2005) indicated that the hyolithides were rheophylic which correlates with unnamed Cambrian Series 2 Stage 3 organisms and low level filter feeders (Marek et al., 1997). How- (Zhao et al., 2012). A specimen from the Balang Fauna is ever, the hyolithide Haplophrentis reesei Babcock and Robison, preserved in greenish-grey mudstone of the Balang Formation 1988 from the middle Cambrian Spence Shale with its incom- in the Wenglingtang section in Kaili City, Guizhou Province, plete gut (central string) filled with sediments was regarded China, which lies within the Arthricocephalus chauveaui Zone. as a deposit feeder (Babcock and Robison, 1988). An excep- This zone correlates with unnamed Cambrian Series 2 Stage 4 tionally preserved simple U-shaped and sediment-free gut of (Yan et al., 2014). For detailed geographical, stratigraphical, and a hyolithide was illustrated by Butterfield (2001, 2003) from depositional information on these sections see Zhu et al. (2001), the middle Cambrian Mount Cap Formation and interpreted Peng et al. (2005), Zhao et al. (2012) and Sun et al. (2017). Spec- by him as evidence for a suspension-feeding habit (Butterfield, imens discussed in this report are housed in the Nanjing Institute 2001). In contrast, a hyolithide reported from the early Cambrian of Geology and Palaeontology, Chinese Academy of Sciences Chengjiang Biota with a complex folded and sediment-filled ali- (specimens with prefixes SK and NIGPAS); and the palaeonto- mentary tract was interpreted as herbivore or sediment feeder logical collection of Guizhou University (specimen with prefix (Chen, 2004). Recently, two hyolithides from the base of the KW). Cambrian Emigrant Formation, USA and the Balang Formation, Our material was examined and imaged by the standard light China were reported as having a three dimensionally preserved microscopy, SU3500 Scanning Electron Microscope (SEM) gut consisting of a spiral intestine wound about a nearly straight with Electron Dispersive X-ray (EDX), digital macrophotogra- rectum (Sun et al., 2016). These specimens support the deposit or phy [Nikon D300S with an AF-S Micro Nikkor 105 mm f/2.8G detritus-feeding habit of hyolithides as suggested earlier (Marek lens], and a Carl Zeiss SteREO Discovery V12 microscope and Yochelson, 1976; Babcock and Robison, 1988; Chen, 2004). linked to an AxioCam HR3 digital microscope CCD camera. A subsequently discovered hyolithide that has an exception- Photographs were stacked and rendered using Adobe Photoshop ally preserved gut possessing an oesophagus, a central tube, CS6 and CorelDraw X4 softwares. and lateral winding fecal string was described from the Ordovi- cian Fezouata Konservat-Lagerstätte of Morocco by Martí Mus 3. Previous work on feeding habit of hyolithide hyoliths (2016). The illustrated tentacled mouth of that specimen was reconstructed as a generalized organ to adapt to suspension- The group Hyolitha is usually divided into two subgroups: detritus-deposit feeding spectrum (Martí Mus, 2016). The more orthothecides and hyolithides. The skeleton of the former con- recently described tentacled Haplophrentis with a U-shaped gut sists of a conical shell and a planar-retractable operculum, from the
Recommended publications
  • Durham Research Online
    Durham Research Online Deposited in DRO: 23 May 2017 Version of attached le: Accepted Version Peer-review status of attached le: Peer-reviewed Citation for published item: Betts, Marissa J. and Paterson, John R. and Jago, James B. and Jacquet, Sarah M. and Skovsted, Christian B. and Topper, Timothy P. and Brock, Glenn A. (2017) 'Global correlation of the early Cambrian of South Australia : shelly fauna of the Dailyatia odyssei Zone.', Gondwana research., 46 . pp. 240-279. Further information on publisher's website: https://doi.org/10.1016/j.gr.2017.02.007 Publisher's copyright statement: c 2017 This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Additional information: Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full DRO policy for further details. Durham University Library, Stockton Road, Durham DH1 3LY, United Kingdom Tel : +44 (0)191 334 3042 | Fax : +44 (0)191 334 2971 https://dro.dur.ac.uk Accepted Manuscript Global correlation of the early Cambrian of South Australia: Shelly fauna of the Dailyatia odyssei Zone Marissa J.
    [Show full text]
  • Abstract Volume
    https://doi.org/10.3301/ABSGI.2019.04 Milano, 2-5 July 2019 ABSTRACT BOOK a cura della Società Geologica Italiana 3rd International Congress on Stratigraphy GENERAL CHAIRS Marco Balini, Università di Milano, Italy Elisabetta Erba, Università di Milano, Italy - past President Società Geologica Italiana 2015-2017 SCIENTIFIC COMMITTEE Adele Bertini, Peter Brack, William Cavazza, Mauro Coltorti, Piero Di Stefano, Annalisa Ferretti, Stanley C. Finney, Fabio Florindo, Fabrizio Galluzzo, Piero Gianolla, David A.T. Harper, Martin J. Head, Thijs van Kolfschoten, Maria Marino, Simonetta Monechi, Giovanni Monegato, Maria Rose Petrizzo, Claudia Principe, Isabella Raffi, Lorenzo Rook ORGANIZING COMMITTEE The Organizing Committee is composed by members of the Department of Earth Sciences “Ardito Desio” and of the Società Geologica Italiana Lucia Angiolini, Cinzia Bottini, Bernardo Carmina, Domenico Cosentino, Fabrizio Felletti, Daniela Germani, Fabio M. Petti, Alessandro Zuccari FIELD TRIP COMMITTEE Fabrizio Berra, Mattia Marini, Maria Letizia Pampaloni, Marcello Tropeano ABSTRACT BOOK EDITORS Fabio M. Petti, Giulia Innamorati, Bernardo Carmina, Daniela Germani Papers, data, figures, maps and any other material published are covered by the copyright own by the Società Geologica Italiana. DISCLAIMER: The Società Geologica Italiana, the Editors are not responsible for the ideas, opinions, and contents of the papers published; the authors of each paper are responsible for the ideas opinions and con- tents published. La Società Geologica Italiana, i curatori scientifici non sono responsabili delle opinioni espresse e delle affermazioni pubblicate negli articoli: l’autore/i è/sono il/i solo/i responsabile/i. ST3.2 Cambrian stratigraphy, events and geochronology Conveners and Chairpersons Per Ahlberg (Lund University, Sweden) Loren E.
    [Show full text]
  • The Extent of the Sirius Passet Lagerstätte (Early Cambrian) of North Greenland
    The extent of the Sirius Passet Lagerstätte (early Cambrian) of North Greenland JOHN S. PEEL & JON R. INESON Ancillary localities for the Sirius Passet biota (early Cambrian; Cambrian Series 2, Stage 3) are described from the im- mediate vicinity of the main locality on the southern side of Sirius Passet, north-western Peary Land, central North Greenland, where slope mudstones of the Transitional Buen Formation abut against the margin of the Portfjeld Forma- tion carbonate platform. Whilst this geological relationship may extend over more than 500 km east–west across North Greenland, known exposures of the sediments yielding the lagerstätte are restricted to a 1 km long window at the south-western end of Sirius Passet. • Keywords: Early Cambrian, Greenland, lagerstätte. PEEL, J.S. & INESON, J.R. The extent of the Sirius Passet Lagerstätte (early Cambrian) of North Greenland. Bulletin of Geosciences 86(3), 535–543 (4 figures). Czech Geological Survey, Prague. ISSN 1214-1119. Manuscript received March 24, 2011; accepted in revised form July 8, 2011; published online July 28, 2011; issued September 30, 2011. John S. Peel, Department of Earth Sciences (Palaeobiology), Uppsala University, Villavägen 16, SE-75 236 Uppsala, Sweden; [email protected] • Jon R. Ineson, Geological Survey of Denmark and Greenland, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark; [email protected] Almost all of the fossils described from the early Cambrian The first fragmentary fossils from the Sirius Passet Sirius Passet Lagerstätte of northern Peary Land, North Lagerstätte (GGU collection 313035) were collected by Greenland, were collected from a single, west-facing talus A.K.
    [Show full text]
  • Reinterpretation of the Enigmatic Ordovician Genus Bolboporites (Echinodermata)
    Reinterpretation of the enigmatic Ordovician genus Bolboporites (Echinodermata). Emeric Gillet, Bertrand Lefebvre, Véronique Gardien, Emilie Steimetz, Christophe Durlet, Frédéric Marin To cite this version: Emeric Gillet, Bertrand Lefebvre, Véronique Gardien, Emilie Steimetz, Christophe Durlet, et al.. Reinterpretation of the enigmatic Ordovician genus Bolboporites (Echinodermata).. Zoosymposia, Magnolia Press, 2019, 15 (1), pp.44-70. 10.11646/zoosymposia.15.1.7. hal-02333918 HAL Id: hal-02333918 https://hal.archives-ouvertes.fr/hal-02333918 Submitted on 13 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Reinterpretation of the Enigmatic Ordovician Genus Bolboporites 2 (Echinodermata) 3 4 EMERIC GILLET1, BERTRAND LEFEBVRE1,3, VERONIQUE GARDIEN1, EMILIE 5 STEIMETZ2, CHRISTOPHE DURLET2 & FREDERIC MARIN2 6 7 1 Université de Lyon, UCBL, ENSL, CNRS, UMR 5276 LGL-TPE, 2 rue Raphaël Dubois, F- 8 69622 Villeurbanne, France 9 2 Université de Bourgogne - Franche Comté, CNRS, UMR 6282 Biogéosciences, 6 boulevard 10 Gabriel, F-2100 Dijon, France 11 3 Corresponding author, E-mail: [email protected] 12 13 Abstract 14 Bolboporites is an enigmatic Ordovician cone-shaped fossil, the precise nature and systematic affinities of 15 which have been controversial over almost two centuries.
    [Show full text]
  • 1158 Peel.Vp
    A new arthropod from the lower Cambrian Sirius Passet Fossil-Lagerstätte of North Greenland JOHN S. PEEL & MARTIN STEIN Aaveqaspis inesoni gen. et sp. nov., is described from the lower Cambrian Sirius Passet Fossil-Lagerstätte of Peary Land, North Greenland. It has a semicircular head shield and a thorax with 5 tergites. The tail shield carries 2 pairs of spines, the most anterior of which is enormous and dominates the trunk. A. inesoni lacks any preserved trace of eyes, as is also the case with several other Sirius Passet arthropods, suggesting that the fossils accumulated in deeper water than the contemporaneous Chengjiang Fossil-Lagerstätte of China or the middle Cambrian Burgess Shale assemblages of British Columbia. • Key words: Cambrian, arthropod, Sirius Passet, Lagerstätte, Greenland. PEEL,J.S.&STEIN, M. 2009. A new arthropod from the lower Cambrian Sirius Passet Fossil-Lagerstätte of North Greenland. Bulletin of Geosciences 84(4), 625–630 (3 figures). Czech Geological Survey, Prague. ISSN 1214-1119. Manuscript received July 30, 2009; accepted in revised form September 22, 2009; published online October 9, 2009; is- sued December 31, 2009. John S. Peel, Department of Earth Sciences (Palaeobiology), Uppsala University, Villavägen 16, SE-75 236 Uppsala, Sweden; [email protected] • Martin Stein, Museum of Evolution, Uppsala University, Norbyvägen 16, SE-752 36 Uppsala, Sweden; [email protected] Black laminated mudstones and siltstones juxtaposed with biomineralized hard parts is the trilobite Buenellus against the prominent buried escarpment of an eroded Blaker, 1988 which, although restricted to this locality carbonate platform in Peary Land, North Greenland (Blaker & Peel 1997), indicates the Nevadella Zone of the (Fig.
    [Show full text]
  • The Morphology and Evolutionary Significance of the Anomalocaridids
    !"#$ %&'%( )*+'*'&&'(,', -.---'/( ! " #$%%&&&'&& $ ($ $)*$ + , $) -.)%&&)*$ $ $ ) - ) /0)0& ) )1234/56467706//%868) - && 7&& 9 $ :. , ; $9 $! + )*$ $$21$ . +$ 6 < ) # . $ $ $ +$$ +$ 6 $ $ $ $ $< $ + )= $ $ $$$ $ )*$ $ !+$ $ +$ $ ! $ )= + + $21$ $ + $ $ $ $ + $ $$) 3+ $$ 21$ ! + +$ 6 $ $$ $ $ $+$ ) $ $ $ +$ + $ < )*+ + $ $ $ $ ) - $ $ $ $$ >+6 $$ $+$ $ $ 6 $ )*$$ $$ $ $. $ +! +$ ) $ + $ $$ +! +$$ 6!)*$ $ $2 1$ $ + ! + ) $ $ $.$ 9 .$ < $21$)* $1( 3 $? ) ! + +$$ $ $$ 6 $ $ )*$$ + $$ . +$$ $ $$ ) !" # . 21$ $% & %' %($)*% %&+,-./* %" @- .)%&& 11376%0 1234/56467706//%868 ' ''' 60&%A$ 'BB )!)B C D ' ''' 60&%E To my family List of Papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. I Daley, A.C., Budd, G.E., Caron, J.-B., Edgecombe, G.D. & Collins, D. 2009. The Burgess Shale anomalocaridid Hurdia and its significance for early euarthropod evolution. Science, 323:1597-1600. II Daley, A.C. & Budd, G.E. New anomalocaridid appendages from the Burgess Shale, Canada. In press. Palaeontology. III Daley, A.C., Budd,
    [Show full text]
  • Cambrian Transition in the Southern Great Basin
    The Sedimentary Record 2000; Shen and Schidlowski, 2000). Due to The Precambrian- endemic biotas and facies control, it is diffi- cult to correlate directly between siliciclas- Cambrian Transition in the tic- and carbonate-dominated successions. This is particularly true for the PC-C boundary interval because lowermost Southern Great Basin, USA Cambrian biotas are highly endemic and Frank A. Corsetti James W.Hagadorn individual, globally distributed guide fossils Department of Earth Science Department of Geology are lacking (Landing, 1988; Geyer and University of Southern California Amherst College Shergold, 2000). Los Angeles, CA 90089-0740 Amherst, MA 01002 Determination of a stratigraphic bound- [email protected] [email protected] ary generates a large amount of interest because it provides scientists with an oppor- ABSTRACT:The Precambrian-Cambrian boundary presents an interesting tunity to address a variety of related issues, stratigraphic conundrum: the trace fossil used to mark and correlate the base of the including whether the proposed boundary Cambrian, Treptichnus pedum, is restricted to siliciclastic facies, whereas position marks a major event in Earth histo- biomineralized fossils and chemostratigraphic signals are most commonly obtained ry. Sometimes the larger-scale meaning of from carbonate-dominated sections.Thus, it is difficult to correlate directly between the particular boundary can be lost during many of the Precambrian-Cambrian boundary sections, and to assess details of the the process of characterization. This is timing of evolutionary events that transpired during this interval of time.Thick demonstrated in a plot of PC-C boundary sections in the White-Inyo region of eastern California and western Nevada, USA, papers through time (Fig.
    [Show full text]
  • An Inventory of Trilobites from National Park Service Areas
    Sullivan, R.M. and Lucas, S.G., eds., 2016, Fossil Record 5. New Mexico Museum of Natural History and Science Bulletin 74. 179 AN INVENTORY OF TRILOBITES FROM NATIONAL PARK SERVICE AREAS MEGAN R. NORR¹, VINCENT L. SANTUCCI1 and JUSTIN S. TWEET2 1National Park Service. 1201 Eye Street NW, Washington, D.C. 20005; -email: [email protected]; 2Tweet Paleo-Consulting. 9149 79th St. S. Cottage Grove. MN 55016; Abstract—Trilobites represent an extinct group of Paleozoic marine invertebrate fossils that have great scientific interest and public appeal. Trilobites exhibit wide taxonomic diversity and are contained within nine orders of the Class Trilobita. A wealth of scientific literature exists regarding trilobites, their morphology, biostratigraphy, indicators of paleoenvironments, behavior, and other research themes. An inventory of National Park Service areas reveals that fossilized remains of trilobites are documented from within at least 33 NPS units, including Death Valley National Park, Grand Canyon National Park, Yellowstone National Park, and Yukon-Charley Rivers National Preserve. More than 120 trilobite hototype specimens are known from National Park Service areas. INTRODUCTION Of the 262 National Park Service areas identified with paleontological resources, 33 of those units have documented trilobite fossils (Fig. 1). More than 120 holotype specimens of trilobites have been found within National Park Service (NPS) units. Once thriving during the Paleozoic Era (between ~520 and 250 million years ago) and becoming extinct at the end of the Permian Period, trilobites were prone to fossilization due to their hard exoskeletons and the sedimentary marine environments they inhabited. While parks such as Death Valley National Park and Yukon-Charley Rivers National Preserve have reported a great abundance of fossilized trilobites, many other national parks also contain a diverse trilobite fauna.
    [Show full text]
  • Guidebook for Field Trip to Precambrian-Cam8ri An
    GUIDEBOOK FOR FIELD TRIP TO PRECAMBRIAN-CAM8RI AN SUCCESSION WHITE-INYO MOUNTAINS, CALIFORNIA By C. A. Nelson and J. Wyatt Durham Thursday-Sunday, November 17-20, 1966 CONTENTS .°age General Introduction 1 Road log and trip guide . 1 Figure 1. - Columnar section, following page, .... 1 Figure 2. - Reed Flat map, following page ...... 5 Figure 3. - Cedar Flat map, following page 12 Fossil Plates, following page ... 15 General Index map - "The Bristlecone Pine Recreation Area," USFS unbound Geologic Map of the Blanco Mountain Quadrangle, Inyo and Mono Counties, California, USGS GQ-529 unbound GENERAL INTRODUCTION In addition to the Precambrian and Cambrian strata to be seen, the White-Inyo region and its environs affords a wide variety of geo- logic features. Although we will concentrate on the principal objectives of the trip, we will have the opportunity to observe many features of the structure, geomorpnology, and Cenozoic history of the region as well. Travel will be by bus from San Francisco to Bishop, California on Thursday, November 17. For this segment of the trip, and the re- turn to San Francisco from Bishop, no guidebook has been prepared. We are fortunate, however, to have Mr. Bennie Troxel of the Cali- fornia Division of Mines and Geology with us.. Together we will try to provide you with some of the highlights of the trans-Sierran route. Field gear, including sturdy shoes and warm clothing is essential. Stops at the higher elevations are likely to be cold ones. As is true of all too many field trips, especially those using bus transportation, many of the best localities for collecting Cambrian fossils and for viewing features of the Precambrian and Cambrian succession are in areas too remote or too inaccessible to be visited.
    [Show full text]
  • Decoding the Fossil Record of Early Lophophorates
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1284 Decoding the fossil record of early lophophorates Systematics and phylogeny of problematic Cambrian Lophotrochozoa AODHÁN D. BUTLER ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-554-9327-1 UPPSALA urn:nbn:se:uu:diva-261907 2015 Dissertation presented at Uppsala University to be publicly examined in Hambergsalen, Geocentrum, Villavägen 16, Uppsala, Friday, 23 October 2015 at 13:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Professor Maggie Cusack (School of Geographical and Earth Sciences, University of Glasgow). Abstract Butler, A. D. 2015. Decoding the fossil record of early lophophorates. Systematics and phylogeny of problematic Cambrian Lophotrochozoa. (De tidigaste fossila lofoforaterna. Problematiska kambriska lofotrochozoers systematik och fylogeni). Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1284. 65 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9327-1. The evolutionary origins of animal phyla are intimately linked with the Cambrian explosion, a period of radical ecological and evolutionary innovation that begins approximately 540 Mya and continues for some 20 million years, during which most major animal groups appear. Lophotrochozoa, a major group of protostome animals that includes molluscs, annelids and brachiopods, represent a significant component of the oldest known fossil records of biomineralised animals, as disclosed by the enigmatic ‘small shelly fossil’ faunas of the early Cambrian. Determining the affinities of these scleritome taxa is highly informative for examining Cambrian evolutionary patterns, since many are supposed stem- group Lophotrochozoa. The main focus of this thesis pertained to the stem-group of the Brachiopoda, a highly diverse and important clade of suspension feeding animals in the Palaeozoic era, which are still extant but with only with a fraction of past diversity.
    [Show full text]
  • Terreneuvian Orthothecid (Hyolitha) Digestive Tracts from Northern Montagne Noire, France; Taphonomic, Ontogenetic and Phylogenetic Implications
    Terreneuvian Orthothecid (Hyolitha) Digestive Tracts from Northern Montagne Noire, France; Taphonomic, Ontogenetic and Phylogenetic Implications Le´a Devaere1*,Se´bastien Clausen1, J. Javier A´ lvaro2, John S. Peel3, Daniel Vachard1 1 UMR 8217 Ge´osyste`mes CNRS – Universite´ Lille 1Villeneuve d’Ascq, France, 2 Centro de Astrobiologı´a, Instituto Nacional de Te´cnica Aeroespacial, Consejo Superior de Investigaciones Cientı´ficas, Torrejo´n de Ardoz, Spain, 3 Department of Earth Sciences (Palaeobiology), Uppsala University, Uppsala, Sweden Abstract More than 285 specimens of Conotheca subcurvata with three-dimensionally preserved digestive tracts were recovered from the Terreneuvian (early Cambrian) Heraultia Limestone of the northern Montagne Noire, southern France. They represent one of the oldest occurrences of such preserved guts. The newly discovered operculum of some complete specimens provides additional data allowing emendation of the species diagnosis. Infestation of the U-shaped digestive tracts by smooth uniseriate, branching to anastomosing filaments along with isolated botryoidal coccoids attests to their early, microbially mediated phosphatisation. Apart from taphonomic deformation, C. subcurvata exhibits three different configurations of the digestive tract: (1) anal tube and gut parallel, straight to slightly undulating; (2) anal tube straight and loosely folded gut; and (3) anal tube straight and gut straight with local zigzag folds. The arrangement of the digestive tracts and its correlation with the mean apertural diameter of the specimens are interpreted as ontogenetically dependent. The simple U-shaped gut, usually considered as characteristic of the Hyolithida, developed in earlier stages of C. subcurvata, whereas the more complex orthothecid type-3 only appears in largest specimens. This growth pattern suggests a distinct phylogenetic relationship between these two hyolith orders through heterochronic processes.
    [Show full text]
  • New Palaeoscolecidan Worms from the Lower Cambrian: Sirius Passet, Latham Shale and Kinzers Shale
    New palaeoscolecidan worms from the Lower Cambrian: Sirius Passet, Latham Shale and Kinzers Shale SIMON CONWAY MORRIS and JOHN S. PEEL Conway Morris, S. and Peel, J.S. 2010. New palaeoscolecidan worms from the Lower Cambrian: Sirius Passet, Latham Shale and Kinzers Shale. Acta Palaeontologica Polonica 55 (1): 141–156. Palaeoscolecidan worms are an important component of many Lower Palaeozoic marine assemblages, with notable oc− currences in a number of Burgess Shale−type Fossil−Lagerstätten. In addition to material from the lower Cambrian Kinzers Formation and Latham Shale, we also describe two new palaeoscolecidan taxa from the lower Cambrian Sirius Passet Fossil−Lagerstätte of North Greenland: Chalazoscolex pharkus gen. et sp. nov and Xystoscolex boreogyrus gen. et sp. nov. These palaeoscolecidans appear to be the oldest known (Cambrian Series 2, Stage 3) soft−bodied examples, being somewhat older than the diverse assemblages from the Chengjiang Fossil−Lagerstätte of China. In the Sirius Passet taxa the body is composed of a spinose introvert (or proboscis), trunk with ornamentation that includes regions bearing cuticu− lar ridges and sclerites, and a caudal zone with prominent circles of sclerites. The taxa are evidently quite closely related; generic differentiation is based on degree of trunk ornamentation, details of introvert structure and nature of the caudal re− gion. The worms were probably infaunal or semi−epifaunal; gut contents suggest that at least X. boreogyrus may have preyed on the arthropod Isoxys. Comparison with other palaeoscolecidans is relatively straightforward in terms of compa− rable examples in other Burgess Shale−type occurrences, but is much more tenuous with respect to the important record of isolated sclerites.
    [Show full text]