Building Skills and Resources for Genomics, Epigenetics, And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
International Symposium of Human Genetics
ichg2022.com THE INTERNATIONAL The 14th International Congress of Human FEDERATION OF HUMAN Genetics was postponed GENETICS SOCIETIES by almost a year due to the COVID-19 pandemic, PRESENTS: and the LOC has decided to host a Symposium in 2021 as a taster of what will be expected at the International Congress in 2022. We are bringing together Symposium on exceptional speakers for two sessions on topics that are highly relevant to Human Genetics human geneticists and these discussions will be picked up again at the 9 & 10 March 2021 main meeting in 2022. DAY 1: The shaping of modern Tue 9 March 2021 3pm - 5pm human genomes: migration, admixture & Wed 10 March 2021 9am - 11 am ancient genomic Times are listed in SAST introgression DAY 2: Infectious diseases and Virtual Conference Platform our genome Programme: T U E S D A Y , 9 M A R C H 2 0 2 1 1 5 : 0 0 - 1 7 : 0 0 S A S T ( G M T + 2 ) The shaping of modern human genomes: migration, admixture and ancient genomic introgression - Chaired by Charles Rotimi & Michele Ramsay Since the emergence of modern man in Africa between 400,000 and 600,000 years ago, evolutionary forces have been shaping the human genome. Studies on the genomes of people living today and some who died thousands of years ago provide clues to our past and we begin to unravel a story of migration, admixture and adaptation. In this session we start with African population genomics, then adaptive signatures and introgression form extinct hominids to the peopling of Asia. -
13 Genomics and Bioinformatics
Enderle / Introduction to Biomedical Engineering 2nd ed. Final Proof 5.2.2005 11:58am page 799 13 GENOMICS AND BIOINFORMATICS Spencer Muse, PhD Chapter Contents 13.1 Introduction 13.1.1 The Central Dogma: DNA to RNA to Protein 13.2 Core Laboratory Technologies 13.2.1 Gene Sequencing 13.2.2 Whole Genome Sequencing 13.2.3 Gene Expression 13.2.4 Polymorphisms 13.3 Core Bioinformatics Technologies 13.3.1 Genomics Databases 13.3.2 Sequence Alignment 13.3.3 Database Searching 13.3.4 Hidden Markov Models 13.3.5 Gene Prediction 13.3.6 Functional Annotation 13.3.7 Identifying Differentially Expressed Genes 13.3.8 Clustering Genes with Shared Expression Patterns 13.4 Conclusion Exercises Suggested Reading At the conclusion of this chapter, the reader will be able to: & Discuss the basic principles of molecular biology regarding genome science. & Describe the major types of data involved in genome projects, including technologies for collecting them. 799 Enderle / Introduction to Biomedical Engineering 2nd ed. Final Proof 5.2.2005 11:58am page 800 800 CHAPTER 13 GENOMICS AND BIOINFORMATICS & Describe practical applications and uses of genomic data. & Understand the major topics in the field of bioinformatics and DNA sequence analysis. & Use key bioinformatics databases and web resources. 13.1 INTRODUCTION In April 2003, sequencing of all three billion nucleotides in the human genome was declared complete. This landmark of modern science brought with it high hopes for the understanding and treatment of human genetic disorders. There is plenty of evidence to suggest that the hopes will become reality—1631 human genetic diseases are now associated with known DNA sequences, compared to the less than 100 that were known at the initiation of the Human Genome Project (HGP) in 1990. -
Genomics and Its Impact on Science and Society: the Human Genome Project and Beyond
DOE/SC-0083 Genomics and Its Impact on Science and Society The Human Genome Project and Beyond U.S. Department of Energy Genome Research Programs: genomics.energy.gov A Primer ells are the fundamental working units of every living system. All the instructions Cneeded to direct their activities are contained within the chemical DNA (deoxyribonucleic acid). DNA from all organisms is made up of the same chemical and physical components. The DNA sequence is the particular side-by-side arrangement of bases along the DNA strand (e.g., ATTCCGGA). This order spells out the exact instruc- tions required to create a particular organism with protein complex its own unique traits. The genome is an organism’s complete set of DNA. Genomes vary widely in size: The smallest known genome for a free-living organism (a bac- terium) contains about 600,000 DNA base pairs, while human and mouse genomes have some From Genes to Proteins 3 billion (see p. 3). Except for mature red blood cells, all human cells contain a complete genome. Although genes get a lot of attention, the proteins DNA in each human cell is packaged into 46 chro- perform most life functions and even comprise the mosomes arranged into 23 pairs. Each chromosome is majority of cellular structures. Proteins are large, complex a physically separate molecule of DNA that ranges in molecules made up of chains of small chemical com- length from about 50 million to 250 million base pairs. pounds called amino acids. Chemical properties that A few types of major chromosomal abnormalities, distinguish the 20 different amino acids cause the including missing or extra copies or gross breaks and protein chains to fold up into specific three-dimensional rejoinings (translocations), can be detected by micro- structures that define their particular functions in the cell. -
Genetic Effects on Microsatellite Diversity in Wild Emmer Wheat (Triticum Dicoccoides) at the Yehudiyya Microsite, Israel
Heredity (2003) 90, 150–156 & 2003 Nature Publishing Group All rights reserved 0018-067X/03 $25.00 www.nature.com/hdy Genetic effects on microsatellite diversity in wild emmer wheat (Triticum dicoccoides) at the Yehudiyya microsite, Israel Y-C Li1,3, T Fahima1,MSRo¨der2, VM Kirzhner1, A Beiles1, AB Korol1 and E Nevo1 1Institute of Evolution, University of Haifa, Mount Carmel, Haifa 31905, Israel; 2Institute for Plant Genetics and Crop Plant Research, Corrensstrasse 3, 06466 Gatersleben, Germany This study investigated allele size constraints and clustering, diversity. Genome B appeared to have a larger average and genetic effects on microsatellite (simple sequence repeat number (ARN), but lower variance in repeat number 2 repeat, SSR) diversity at 28 loci comprising seven types of (sARN), and smaller number of alleles per locus than genome tandem repeated dinucleotide motifs in a natural population A. SSRs with compound motifs showed larger ARN than of wild emmer wheat, Triticum dicoccoides, from a shade vs those with perfect motifs. The effects of replication slippage sun microsite in Yehudiyya, northeast of the Sea of Galilee, and recombinational effects (eg, unequal crossing over) on Israel. It was found that allele distribution at SSR loci is SSR diversity varied with SSR motifs. Ecological stresses clustered and constrained with lower or higher boundary. (sun vs shade) may affect mutational mechanisms, influen- This may imply that SSR have functional significance and cing the level of SSR diversity by both processes. natural constraints. -
Gene Prediction and Genome Annotation
A Crash Course in Gene and Genome Annotation Lieven Sterck, Bioinformatics & Systems Biology VIB-UGent [email protected] ProCoGen Dissemination Workshop, Riga, 5 nov 2013 “Conifer sequencing: basic concepts in conifer genomics” “This Project is financially supported by the European Commission under the 7th Framework Programme” Genome annotation: finding the biological relevant features on a raw genomic sequence (in a high throughput manner) ProCoGen Dissemination Workshop, Riga, 5 nov 2013 Thx to: BSB - annotation team • Lieven Sterck (Ectocarpus, higher plants, conifers, … ) • Yao-cheng Lin (Fungi, conifers, …) • Stephane Rombauts (green alga, mites, …) • Bram Verhelst (green algae) • Pierre Rouzé • Yves Van de Peer ProCoGen Dissemination Workshop, Riga, 5 nov 2013 Annotation experience • Plant genomes : A.thaliana & relatives (e.g. A.lyrata), Poplar, Physcomitrella patens, Medicago, Tomato, Vitis, Apple, Eucalyptus, Zostera, Spruce, Oak, Orchids … • Fungal genomes: Laccaria bicolor, Melampsora laricis- populina, Heterobasidion, other basidiomycetes, Glomus intraradices, Pichia pastoris, Geotrichum Candidum, Candida ... • Algal genomes: Ostreococcus spp, Micromonas, Bathycoccus, Phaeodactylum (and other diatoms), E.hux, Ectocarpus, Amoebophrya … • Animal genomes: Tetranychus urticae, Brevipalpus spp (mites), ... ProCoGen Dissemination Workshop, Riga, 5 nov 2013 Why genome annotation? • Raw sequence data is not useful for most biologists • To be meaningful to them it has to be converted into biological significant knowledge -
Small Variants Frequently Asked Questions (FAQ) Updated September 2011
Small Variants Frequently Asked Questions (FAQ) Updated September 2011 Summary Information for each Genome .......................................................................................................... 3 How does Complete Genomics map reads and call variations? ........................................................................... 3 How do I assess the quality of a genome produced by Complete Genomics?................................................ 4 What is the difference between “Gross mapping yield” and “Both arms mapped yield” in the summary file? ............................................................................................................................................................................. 5 What are the definitions for Fully Called, Partially Called, Half-Called and No-Called?............................ 5 In the summary-[ASM-ID].tsv file, how is the number of homozygous SNPs calculated? ......................... 5 In the summary-[ASM-ID].tsv file, how is the number of heterozygous SNPs calculated? ....................... 5 In the summary-[ASM-ID].tsv file, how is the total number of SNPs calculated? .......................................... 5 In the summary-[ASM-ID].tsv file, what regions of the genome are included in the “exome”? .............. 6 In the summary-[ASM-ID].tsv file, how is the number of SNPs in the exome calculated? ......................... 6 In the summary-[ASM-ID].tsv file, how are variations in potentially redundant regions of the genome counted? ..................................................................................................................................................................... -
Epigenetics Analysis and Integrated Analysis of Multiomics Data, Including Epigenetic Data, Using Artificial Intelligence in the Era of Precision Medicine
biomolecules Review Epigenetics Analysis and Integrated Analysis of Multiomics Data, Including Epigenetic Data, Using Artificial Intelligence in the Era of Precision Medicine Ryuji Hamamoto 1,2,*, Masaaki Komatsu 1,2, Ken Takasawa 1,2 , Ken Asada 1,2 and Syuzo Kaneko 1 1 Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; [email protected] (M.K.); [email protected] (K.T.); [email protected] (K.A.); [email protected] (S.K.) 2 Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan * Correspondence: [email protected]; Tel.: +81-3-3547-5271 Received: 1 December 2019; Accepted: 27 December 2019; Published: 30 December 2019 Abstract: To clarify the mechanisms of diseases, such as cancer, studies analyzing genetic mutations have been actively conducted for a long time, and a large number of achievements have already been reported. Indeed, genomic medicine is considered the core discipline of precision medicine, and currently, the clinical application of cutting-edge genomic medicine aimed at improving the prevention, diagnosis and treatment of a wide range of diseases is promoted. However, although the Human Genome Project was completed in 2003 and large-scale genetic analyses have since been accomplished worldwide with the development of next-generation sequencing (NGS), explaining the mechanism of disease onset only using genetic variation has been recognized as difficult. Meanwhile, the importance of epigenetics, which describes inheritance by mechanisms other than the genomic DNA sequence, has recently attracted attention, and, in particular, many studies have reported the involvement of epigenetic deregulation in human cancer. -
The Economic Impact and Functional Applications of Human Genetics and Genomics
The Economic Impact and Functional Applications of Human Genetics and Genomics Commissioned by the American Society of Human Genetics Produced by TEConomy Partners, LLC. Report Authors: Simon Tripp and Martin Grueber May 2021 TEConomy Partners, LLC (TEConomy) endeavors at all times to produce work of the highest quality, consistent with our contract commitments. However, because of the research and/or experimental nature of this work, the client undertakes the sole responsibility for the consequence of any use or misuse of, or inability to use, any information or result obtained from TEConomy, and TEConomy, its partners, or employees have no legal liability for the accuracy, adequacy, or efficacy thereof. Acknowledgements ASHG and the project authors wish to thank the following organizations for their generous support of this study. Invitae Corporation, San Francisco, CA Regeneron Pharmaceuticals, Inc., Tarrytown, NY The project authors express their sincere appreciation to the following indi- viduals who provided their advice and input to this project. ASHG Government and Public Advocacy Committee Lynn B. Jorde, PhD ASHG Government and Public Advocacy Committee (GPAC) Chair, President (2011) Professor and Chair of Human Genetics George and Dolores Eccles Institute of Human Genetics University of Utah School of Medicine Katrina Goddard, PhD ASHG GPAC Incoming Chair, Board of Directors (2018-2020) Distinguished Investigator, Associate Director, Science Programs Kaiser Permanente Northwest Melinda Aldrich, PhD, MPH Associate Professor, Department of Medicine, Division of Genetic Medicine Vanderbilt University Medical Center Wendy Chung, MD, PhD Professor of Pediatrics in Medicine and Director, Clinical Cancer Genetics Columbia University Mira Irons, MD Chief Health and Science Officer American Medical Association Peng Jin, PhD Professor and Chair, Department of Human Genetics Emory University Allison McCague, PhD Science Policy Analyst, Policy and Program Analysis Branch National Human Genome Research Institute Rebecca Meyer-Schuman, MS Human Genetics Ph.D. -
Mathematical Challenges from Genomics and Molecular Biology Richard M
Mathematical Challenges from Genomics and Molecular Biology Richard M. Karp fundamental goal of biology is to un- algorithms and the role of combinatorics, opti- derstand how living cells function. This mization, probability, statistics, pattern recognition, understanding is the foundation for all and machine learning. higher levels of explanation, including We begin by presenting the minimal information Aphysiology, anatomy, behavior, ecology, about genes, genomes, and proteins required to and the study of populations. The field of molec- understand some of the key problems in genomics. ular biology analyzes the functioning of cells and Next we describe some of the fundamental goals of the processes of inheritance principally in terms of the molecular life sciences and the role of genomics interactions among three crucially important classes in attaining these goals. We then give a series of of macromolecules: DNA, RNA, and proteins. brief vignettes illustrating algorithmic and mathe- Proteins are the molecules that enable and execute matical questions arising in a number of specific most of the processes within a cell. DNA is the car- areas: sequence comparison, sequence assembly, rier of hereditary information in the form of genes gene finding, phylogeny construction, genome re- and directs the production of proteins. RNA is a key arrangement, associations between polymorphisms intermediary between DNA and proteins. and disease, classification and clustering of gene Molecular biology and genetics are undergoing expression data, and the logic of transcriptional revolutionary changes. These changes are guided by control. An annotated bibliography provides point- a view of a cell as a collection of interrelated sub- ers to more detailed information. -
Global Health, Epidemiology and Genomics Call for Papers
Global Health, Epidemiology and Genomics Call for Papers - H3Africa and Genomics in Africa Guest Editors: Charles Rotimi, Center for Research on Genomics and Global Health, USA Michèle Ramsay, University of the Witwatersrand, South Africa Christian Happi, Redeemer’s University, Nigeria Jantina de Vries, University of Cape Town, South Africa Despite the global upsurge in genomic studies, populations from Africa remain understudied and poorly represented in health research. Recent large genomic studies have highlighted the considerable genetic diversity across the continent and the need for studying region specific ethnolinguistic groups to gain a better understanding of genomic and environmental influences in susceptibility to disease. The Human Heredity and Health in Africa Consortium (H3Africa) supports research on infectious and non-communicable diseases to enhance our knowledge and understanding of health on the continent and provide valuable region-specific base-line data to build upon. If Africans are to benefit from precision medicine it is imperative that research is done and interpreted in an appropriate local context. This special collection of articles in Global Health, Epidemiology and Genomics (GHEG) on H3Africa and Genomics in Africa is a unique opportunity to bring together a collection of original research, perspectives, commentaries, brief reports, protocols, research resources and blog articles to highlight the importance of genomic research in African populations as well as ethical considerations, good governance and -
Genomic Epidemiology in Africa
Genomic epidemiology in Africa Manjinder Sandhu [email protected] Genetic Epidemiology Group International Health Research Group Wellcome Trust Sanger Institute Department of Public Health and Primary Care What is the African Genome Variation Project? • Study of 16 ethno-linguistic groups across SSA from populations relevant to medical genomics • 100 individuals with dense (2.5M) genotype data in each • One of the largest diversity panel from Africa so far • Aim: to study genetic variation in Africa to inform large scale studies in African genomics Population structure in SSA 1 Population structure in SSA 3 Evidence for Eurasian and KhoeSan admixture YRI CEU Population structure in SSA 2 Confirming Eurasian and KhoeSan admixture pop A pop B pop C f3,C;A,B Z score pop Apop B pop C f3,C;A,B Z score CEU YRI Zulu 0.00543 33.528 YRI Juhoansi Zulu -0.00705 -44.604 CEU YRI Fula -0.01115 -59.361 YRI Juhoansi Sotho -0.00984 -64.773 CEU YRI Jola 0.005366 31.897 YRI Juhoansi Fula 0.005064 38.379 CEU YRI Mandinka -4.5E-05 -0.338 YRI Juhoansi Jola 0.007087 51.022 CEU YRI Wolof -0.00079 -5.376 YRI Juhoansi Mandinka 0.003206 29.069 CEU YRI Baganda -0.00316 -23.709 YRI Juhoansi Wolof 0.005002 40.037 CEU YRI Banyarwanda -0.01206 -74.707 YRI Juhoansi Baganda -0.00067 -6.157 CEU YRI Barundi -0.00904 -64.071 YRI Juhoansi Barundi -0.00207 -19.407 CEU YRI LWK -0.00322 -21.533 YRI Juhoansi Banyarwanda -0.00044 -3.81 CEU YRI Kalenjin -0.01042 -50.547 YRI Juhoansi LWK -0.00017 -1.394 CEU YRI Kikuyu -0.01618 -89.291 YRI Juhoansi Kikuyu 0.003081 20.333 CEU YRI SOMALI -
Genomics Research in Africa: Implications for Disease Diagnosis, Treatment
Genomics Research in Africa: Implications for Disease Diagnosis, Treatment and Drug Development Proceedings of the 5th Annual Meeting of the African Society of Human Genetics Short title: AfSHG proceedings 2007 Melanie J Newport 1, Sonia Abdelhak 2, Eman Abulezz 3, Adebowale Adeyemo 4, Gail Davey 5, Yehia Gad 3, Branwen J Hennig 6, Patricia A Marshall 7, Amal M. Mohamed 3, Charmaine D Royal 8, Himla Soodyall 9 and Charles N Rotimi 4 for the AfSHG. 1Department of Medicine, Brighton and Sussex Medical School, Falmer, Sussex, UK 2Institut Pasteur de Tunis, Tunis, Tunisia 3Division of Human Genetics and Genome Research, National Research Center, Elbehooth Street, Dokki, Giza, 12311 Egypt. 4NIH-Intramural Center for Genomics and Health Disparities, NHGRI/NIH, Bethesda, Maryland, USA 5School of Public Health, Addis Ababa University, Ethiopia 6Department of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK 7Department of Bioethics. School of Medicine, Case Western Reserve University. Cleveland, Ohio, USA 8Institute for Genome Sciences & Policy, Duke University, North Carolina, USA 9Human Genomic Diversity and Disease Research Unit, University of Witwatersand, Johannesburg, South Africa 1 Corresponding author: Melanie Newport, Department of Medicine, Brighton and Sussex Medical School, Falmer, Sussex, BN1 9PS, UK; tel: +44 (0) 1273 877882; fax +44(0)1273877884; email: [email protected] Key words: human genetics, African populations, African genome project, non- communicable diseases, infectious diseases, pharmacogenetics, 2 Abstract This paper presents the proceedings of the 5 th Annual Meeting of the African Society of Human Genetics, which took place in Cairo, Egypt, on 3 rd -5th November 2007.