Dendritic Cells Transcriptome and Regulate the Function Of

Total Page:16

File Type:pdf, Size:1020Kb

Dendritic Cells Transcriptome and Regulate the Function Of Immunoproteasomes Shape the Transcriptome and Regulate the Function of Dendritic Cells This information is current as Danielle A. de Verteuil, Alexandre Rouette, Marie-Pierre of September 25, 2021. Hardy, Stéphanie Lavallée, Assya Trofimov, Étienne Gaucher and Claude Perreault J Immunol published online 23 June 2014 http://www.jimmunol.org/content/early/2014/06/22/jimmun ol.1400871 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2014/06/22/jimmunol.140087 Material 1.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 25, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2014 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published June 23, 2014, doi:10.4049/jimmunol.1400871 The Journal of Immunology Immunoproteasomes Shape the Transcriptome and Regulate the Function of Dendritic Cells Danielle A. de Verteuil,*,†,1 Alexandre Rouette,*,†,1 Marie-Pierre Hardy,*,† Ste´phanie Lavalle´e,* Assya Trofimov,* E´ tienne Gaucher,* and Claude Perreault*,† By regulating protein degradation, constitutive proteasomes (CPs) control practically all cellular functions. In addition to CPs, vertebrates express immunoproteasomes (IPs). The major nonredundant role ascribed to IPs is their enhanced ability to generate antigenic peptides. We report that CPs and IPs differentially regulate the expression of >8000 transcripts in maturing mouse dendritic cells (DCs) via regulation of signaling pathways such as IFN regulatory factors, STATs, and NF-kB. IPs regulate the transcription of many mRNAs and maturation of a few of them. Moreover, even when engineered to present optimal amounts of antigenic peptide, IP-deficient DCs are inefficient for in vivo T cell priming. Our study shows that the role of IPs in DCs is not limited to Ag processing and reveals a major nonredundant role for IPs in transcription regulation. The dramatic effect of IPs on Downloaded from the transcriptional landscape could explain the various immune and nonimmune phenotypes observed in vertebrates with IP deficiency or mutations. The Journal of Immunology, 2014, 193: 000–000. n all eukaryotes, proteolysis of a variety of cellular proteins by or inhibition of IP subunits can affect several immune cell functions constitutive proteasomes (CPs) plays an important role in independently of MIP processing: T cell proliferation, B cell sur- I many basic cellular processes including regulation of cell vival, and cytokine production (10, 11). Moreover, the expression of http://www.jimmunol.org/ cycle and division, differentiation and development, morphogen- IPs in numerous nonimmune cells from noninflamed tissues sug- esis, and response to stress (1). Vertebrates also express immu- gests that the roles of IPs are not limited to the immune system. noproteasomes (IPs), in which the catalytic b-subunits are re- Thus, IPs have been implicated in adipocyte differentiation (12), placedbyIFN-g–inducible homologs: LMP2 (aka b1i, Psmb9) maintenance of pluripotency in embryonic stem cells (13), response for b1(Psmb6), MECL1 (aka b2i, Psmb10) for b2(Psmb7), and to injury in the retina and brain (14), and neoplastic transformation LMP7 (aka b5i, Psmb8)forb5(Psmb5). The best-described non- (15). However, the mechanisms responsible for the various pheno- redundant role ascribed to IPs is their enhanced ability to generate types observed in vertebrates with IP deficiency or mutations re- MHC class I–associated peptides (MIPs) (2–5). main elusive. As regulators of protein degradation, proteasomes regulate The proteolytic subunits of CPs are known to regulate gene ex- by guest on September 25, 2021 practically all cellular functions (1, 6, 7). It is therefore logical to pression, typically via cleavage of transcriptional regulators (16). assume that replacement of CPs by IPs could have pleiotropic and Because CPs and IPs display distinct substrate preferences (4, 17), far reaching effects on cell function (8, 9). In line with this, deletion we hypothesized that they might have nonredundant effects on gene expression. This assumption was supported by preliminary gene expression microarray experiments showing that several transcripts *Institute for Research in Immunology and Cancer, University of Montreal, Montreal, are differentially expressed in wild-type (WT) and IP-deficient Quebec H3C 3J7, Canada; and †Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada dendritic cells (DCs) (4). The goal of our work was therefore to 1D.A.d.V. and A.R. contributed equally to this work. evaluate the global impact of IPs on gene expression, discover its underlying mechanisms, and evaluate its in vivo relevance. Received for publication April 8, 2014. Accepted for publication May 23, 2014. Based on multidimensional profiling of WT and Lmp72/2Mecl12/2 This work was supported by grants from the Canadian Institutes for Health Research (CIHR) (MOP 42384) and the Canadian Cancer Society (Grant 701564). The Insti- (double knockout [dKO]) DCs, we report that IPs regulate the tute for Research in Immunology and Cancer is supported in part by the Canada expression of .8000 transcripts in maturing DCs. The broad impact Foundation for Innovation and the Fonds de Recherche Que´bec Sante´ (FRQS). of IPs on gene expression is cell autonomous, mediated mainly at D.A.d.V. and A.R. were supported by doctoral research awards from FRQS and CIHR, respectively. E.G. was supported by a studentship from the De´fiPerse´ve´rance-Famille the transcriptional level, and likely involves major signaling path- Gosselin Fund. C.P. holds a Canada Research Chair in Immunobiology. ways including IFN regulatory factors (IRFs), NF-kB, and STATs. RNA sequencing data presented in this article have been submitted to the Gene Furthermore, even when engineered to present similar levels of Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/) under accession number a model epitope, dKO DCs were less effective than WT DCs in GSE52616. priming T cells in vivo. We conclude that IPs have pervasive effects Address correspondence and reprint requests to Prof. Claude Perreault, Institute for Research in Immunology and Cancer, P.O. Box 6128, Station Centre-Ville, Montreal, on gene transcription and may thereby regulate fundamental cellular QC H3C 3J7, Canada. E-mail address: [email protected] processes in DCs. The online version of this article contains supplemental material. Abbreviations used in this article: cDC, conventional DC; CP, constitutive protea- Materials and Methods some; DC, dendritic cell; DEG, differentially expressed gene; dKO, double knockout; GO, gene ontology; H2A, histone 2A; H2B, histone 2B; IP, immunoproteasome; IPA, Mice and DC culture Ingenuity Pathway Analysis; IRF, IFN regulatory factor; IRIC, Institute for Research Mice on a C57BL/6 or B6.SJL background were housed at the Institute for in Immunology and Cancer; MIP, MHC class I–associated peptide; NP-40, Nonidet 2/2 P-40; ubH2A, ubiquitylated histone 2A; ubH2B, ubiquitylated histone 2B; WT, wild- Research in Immunology and Cancer (IRIC) animal facility. Lmp7 2/2 2/2 type. Mecl1 (dKO) and Mecl1 mice were generously provided by Dr. T.A. Griffin from the Medicine College of the University of Cincinnati 2 2 Copyright Ó 2014 by The American Association of Immunologists, Inc. 0022-1767/14/$16.00 and Lmp7 / mice by Dr. H.J. Fehling from the Institute of immunology, www.jimmunol.org/cgi/doi/10.4049/jimmunol.1400871 2 IMMUNOPROTEASOMES REGULATE TRANSCRIPTION University Clinics Ulm. OT-1 on a Rag22/2 background mice were pur- and upstream regulator analysis was performed from which we extracted chased from Taconic Farms. All protocols using animals conformed to the most drastically affected molecules described as “transcriptional reg- the local law and regulations and have been approved by Universite´ de ulators” (p , 0.05 with right-tailed Fisher exact test). The IPA’s z-score Montre´al’s Comite´ de de´ontologie de l’expe´rimentation sur les animaux. algorithm was used to predict the direction of change for a given regulator Bone marrow–derived DCs were generated from 8–12-wk-old mice, and (increase [z-score $ 2] or decrease [z-score #22]) depending on the maturation was induced with LPS (Sigma-Aldrich), as described (4). For dKO/WT ratio of expression of its target genes within a cluster, for each coculture experiment of B6.SJL WT and C57BL/6 bone marrow–derived time point (no LPS and 1-, 2-, and 6-h LPS). For each cluster, a map DCs, sorting was performed on DCs stimulated overnight with LPS. was generated with any given regulator that had a p value #0.05 and a Harvested cells were treated for 20 min with Fc Block CD16/CD32 (BD z-score $2or#22 at one of the time points. Regulators passing these Biosciences) before staining with anti-CD11c (PECy7; BD Biosciences), two thresholds were highlighted.
Recommended publications
  • Genetic Variations in the PSMA6 and PSMC6 Proteasome Genes Are Associated with Multiple Sclerosis and Response to Interferon‑Β Therapy in Latvians
    EXPERIMENTAL AND THERAPEUTIC MEDICINE 21: 478, 2021 Genetic variations in the PSMA6 and PSMC6 proteasome genes are associated with multiple sclerosis and response to interferon‑β therapy in Latvians NATALIA PARAMONOVA1, JOLANTA KALNINA1, KRISTINE DOKANE1, KRISTINE DISLERE1, ILVA TRAPINA1, TATJANA SJAKSTE1 and NIKOLAJS SJAKSTE1,2 1Genomics and Bioinformatics, Institute of Biology of The University of Latvia; 2Department of Medical Biochemistry of The University of Latvia, LV‑1004 Riga, Latvia Received July 8, 2020; Accepted December 8, 2020 DOI: 10.3892/etm.2021.9909 Abstract. Several polymorphisms in genes related to the Introduction ubiquitin‑proteasome system exhibit an association with pathogenesis and prognosis of various human autoimmune Multiple sclerosis (MS) is a lifelong demyelinating disease of diseases. Our previous study reported the association the central nervous system. The clinical onset of MS tends to between multiple sclerosis (MS) and the PSMA3‑rs2348071 be between the second and fourth decade of life. Similarly to polymorphism in the Latvian population. The current study other autoimmune diseases, women are affected 3‑4 times more aimed to evaluate the PSMA6 and PSMC6 genetic variations, frequently than men (1). About 10% of MS patients experience their interaction between each other and with the rs2348071, a primary progressive MS form characterized by the progres‑ on the susceptibility to MS risk and response to therapy in sion of neurological disability from the onset. In about 90% the Latvian population. PSMA6‑rs2277460, ‑rs1048990 and of MS patients, the disease undergoes the relapse‑remitting PSMC6‑rs2295826, ‑rs2295827 were genotyped in the MS MS course (RRMS); in most of these patients, the condition case/control study and analysed in terms of genotype‑protein acquires secondary progressive course (SPMS) (2).
    [Show full text]
  • Molecular Pathology and Novel Clinical Therapy for Uterine
    ANTICANCER RESEARCH 36 : 4997-5008 (2016) doi:10.21873/anticanres.11068 Review Molecular Pathology and Novel Clinical Therapy for Uterine Leiomyosarcoma TAKUMA HAYASHI 1,2 , MIKI KAWANO 2,3 , TOMOYUKI ICHIMURA 4, KOICHI IDA 1, HIROFUMI ANDO 1, DORIT ZHARHARY 5, YAE KANAI 6, HIROYUKI ABURATANI 7, SUSUMU TONEGAWA 8, TANRI SHIOZAWA 1, NOBUO YAEGASHI 9 and IKUO KONISHI 10 1Department of Obstetrics and Gynecology, Shinshu University School of Medicine, Nagano, Japan; 2Department of Medical Technology, International University of Health and Welfare, Chiba, Japan; 3Department of Health Science, Kyushu University Graduate School of Medicine, Fukuoka, Japan; 4Department of Obstetrics and Gynecology, Osaka City University Graduate School of Medicine, Osaka, Japan; 5SIGMA-Aldrich Israel, Rehovot, Israel; 6Pathology Division, Keio University School of Medicine, Tokyo, Japan; 7The Cancer System Laboratory, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan; 8Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, U.S.A.; 9Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Miyagi, Japan; 10 National Hospital Organization Kyoto Medical Centre, Kyoto, Japan Abstract. Patients with uterine leiomyosarcoma (LMS) disease prevalence of ~37% by 12 months of age. Furthermore, typically present with vaginal bleeding, pain, and a pelvic a recent report showed the loss of ability to induce PSMB9/ β1 i mass, with atypical presentations of hypercalcemia and expression,
    [Show full text]
  • Micrornas in the Etiology of Colorectal Cancer: Pathways and Clinical Implications Ashlee M
    Washington University School of Medicine Digital Commons@Becker Open Access Publications 2017 MicroRNAs in the etiology of colorectal cancer: Pathways and clinical implications Ashlee M. Strubberg Washington University School of Medicine in St. Louis Blair B. Madison Washington University School of Medicine in St. Louis Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Recommended Citation Strubberg, Ashlee M. and Madison, Blair B., ,"MicroRNAs in the etiology of colorectal cancer: Pathways and clinical implications." Disease Models & Mechanisms.10,3. 197-214. (2017). https://digitalcommons.wustl.edu/open_access_pubs/5644 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. © 2017. Published by The Company of Biologists Ltd | Disease Models & Mechanisms (2017) 10, 197-214 doi:10.1242/dmm.027441 REVIEW MicroRNAs in the etiology of colorectal cancer: pathways and clinical implications Ashlee M. Strubberg and Blair B. Madison* ABSTRACT rates from colorectal cancer have declined over the past 20 years, MicroRNAs (miRNAs) are small single-stranded RNAs that repress largely thanks to early detection; however, CRC incidence still mRNA translation and trigger mRNA degradation. Of the ∼1900 remains high (Siegel et al., 2015) and new treatments have been miRNA-encoding genes present in the human genome, ∼250 lagging. Treatment usually entails surgical removal of tumors, miRNAs are reported to have changes in abundance or altered which may be followed with chemotherapy and/or targeted functions in colorectal cancer.
    [Show full text]
  • Proteasome Immunosubunits Protect Against the Development of CD8 T Cell-Mediated Autoimmune Diseases
    Proteasome Immunosubunits Protect against the Development of CD8 T Cell-Mediated Autoimmune Diseases This information is current as Dietmar M. W. Zaiss, Cornelis P. J. Bekker, Andrea Gröne, of September 29, 2021. Benedicte A. Lie and Alice J. A. M. Sijts J Immunol published online 29 July 2011 http://www.jimmunol.org/content/early/2011/07/29/jimmun ol.1101003 Downloaded from Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision http://www.jimmunol.org/ • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: by guest on September 29, 2021 http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2011 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published July 29, 2011, doi:10.4049/jimmunol.1101003 The Journal of Immunology Proteasome Immunosubunits Protect against the Development of CD8 T Cell-Mediated Autoimmune Diseases Dietmar M. W. Zaiss,* Cornelis P. J. Bekker,* Andrea Gro¨ne,† Benedicte A. Lie,‡ and Alice J. A. M. Sijts* Exposure of cells to inflammatory cytokines induces the expression of three proteasome immunosubunits, two of which are encoded in the MHC class II region.
    [Show full text]
  • Tyrosine Kinase Chromosomal Translocations Mediate Distinct and Overlapping Gene Regulation Events
    Kim et al. BMC Cancer 2011, 11:528 http://www.biomedcentral.com/1471-2407/11/528 RESEARCHARTICLE Open Access Tyrosine kinase chromosomal translocations mediate distinct and overlapping gene regulation events Hani Kim1,3, Lisa C Gillis1,2, Jordan D Jarvis1,2, Stuart Yang3, Kai Huang1, Sandy Der3 and Dwayne L Barber1,2,3* Abstract Background: Leukemia is a heterogeneous disease commonly associated with recurrent chromosomal translocations that involve tyrosine kinases including BCR-ABL, TEL-PDGFRB and TEL-JAK2. Most studies on the activated tyrosine kinases have focused on proximal signaling events, but little is known about gene transcription regulated by these fusions. Methods: Oligonucleotide microarray was performed to compare mRNA changes attributable to BCR-ABL, TEL- PDGFRB and TEL-JAK2 after 1 week of activation of each fusion in Ba/F3 cell lines. Imatinib was used to control the activation of BCR-ABL and TEL-PDGFRB, and TEL-JAK2-mediated gene expression was examined 1 week after Ba/F3- TEL-JAK2 cells were switched to factor-independent conditions. Results: Microarray analysis revealed between 800 to 2000 genes induced or suppressed by two-fold or greater by each tyrosine kinase, with a subset of these genes commonly induced or suppressed among the three fusions. Validation by Quantitative PCR confirmed that eight genes (Dok2, Mrvi1, Isg20, Id1, gp49b, Cxcl10, Scinderin, and collagen Va1(Col5a1)) displayed an overlapping regulation among the three tested fusion proteins. Stat1 and Gbp1 were induced uniquely by TEL-PDGFRB. Conclusions: Our results suggest that BCR-ABL, TEL-PDGFRB and TEL-JAK2 regulate distinct and overlapping gene transcription profiles.
    [Show full text]
  • Intratumoral Injection of SYNB1891, a Synthetic Biotic Medicine Designed
    Intratumoral injection of SYNB1891 A Synthetic Biotic medicine designed to activate the innate immune system. Therapy demonstrates target engagement in humans including intratumoral STING activation. Janku F, MD Anderson Cancer Center; Luke JJ, UPMC Hillman Cancer Center; Brennan AM, Synlogic; Riese RJ, Synlogic; Varterasian M, Pharmaceutical Consultant; Kuhn K, Synlogic; Sokolovska A, Synlogic; Strauss J, Mary Crowley Cancer Research Presented by Filip Janku, MD, PhD Study supported by Synlogic, Inc American Association for Cancer Research (AACR) April 2021 Introduction and Methods SYNB1891 Strain Phase 1 First-in-Human Clinical Trial • Live, modified strain of the probiotic E. coli • Enrolling patients with refractory advanced solid Nissle engineered to produce cyclic tumors or lymphoma dinucleotides (CDN) under hypoxia leading to stimulator of interferon genes (STING)- • Intratumoral (IT) injection of SYNB1891 on Days activation 1, 8 and 15 of the first 21-day cycle and then on Day 1 of each subsequent cycle. • Preferentially taken up by phagocytic antigen- presenting cells in tumors, activating • Dose escalation planned across 7 cohorts (1x106 complementary innate immune pathways – 1x109 live cells) with Arm 1 consisting of (direct CDN STING activation; cGAS-mediated SYNB1891 as monotherapy, and Arm 2 in STING activation and TLR4/MyD88 activation by combination with atezolizumab the bacterial chassis) SYNB1891 was safe and well-tolerated in heterogenous population Nov 2020: Interim Analysis IA Updated through 15 Mar 2021 15 Mar 2021:
    [Show full text]
  • Biological Models of Colorectal Cancer Metastasis and Tumor Suppression
    BIOLOGICAL MODELS OF COLORECTAL CANCER METASTASIS AND TUMOR SUPPRESSION PROVIDE MECHANISTIC INSIGHTS TO GUIDE PERSONALIZED CARE OF THE COLORECTAL CANCER PATIENT By Jesse Joshua Smith Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University In partial fulfillment of the requirements For the degree of DOCTOR OF PHILOSOPHY In Cell and Developmental Biology May, 2010 Nashville, Tennessee Approved: Professor R. Daniel Beauchamp Professor Robert J. Coffey Professor Mark deCaestecker Professor Ethan Lee Professor Steven K. Hanks Copyright 2010 by Jesse Joshua Smith All Rights Reserved To my grandparents, Gladys and A.L. Lyth and Juanda Ruth and J.E. Smith, fully supportive and never in doubt. To my amazing and enduring parents, Rebecca Lyth and Jesse E. Smith, Jr., always there for me. .my sure foundation. To Jeannine, Bill and Reagan for encouragement, patience, love, trust and a solid backing. To Granny George and Shawn for loving support and care. And To my beautiful wife, Kelly, My heart, soul and great love, Infinitely supportive, patient and graceful. ii ACKNOWLEDGEMENTS This work would not have been possible without the financial support of the Vanderbilt Medical Scientist Training Program through the Clinical and Translational Science Award (Clinical Investigator Track), the Society of University Surgeons-Ethicon Scholarship Fund and the Surgical Oncology T32 grant and the Vanderbilt Medical Center Section of Surgical Sciences and the Department of Surgical Oncology. I am especially indebted to Drs. R. Daniel Beauchamp, Chairman of the Section of Surgical Sciences, Dr. James R. Goldenring, Vice Chairman of Research of the Department of Surgery, Dr. Naji N.
    [Show full text]
  • Additive Loss-Of-Function Proteasome Subunit Mutations in CANDLE/PRAAS Patients Promote Type I IFN Production
    Amendment history: Erratum (February 2016) Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production Anja Brehm, … , Ivona Aksentijevich, Raphaela Goldbach-Mansky J Clin Invest. 2015;125(11):4196-4211. https://doi.org/10.1172/JCI81260. Research Article Immunology Autosomal recessive mutations in proteasome subunit β 8 (PSMB8), which encodes the inducible proteasome subunit β5i, cause the immune-dysregulatory disease chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE), which is classified as a proteasome-associated autoinflammatory syndrome (PRAAS). Here, we identified 8 mutations in 4 proteasome genes, PSMA3 (encodes α7), PSMB4 (encodes β7), PSMB9 (encodes β1i), and proteasome maturation protein (POMP), that have not been previously associated with disease and 1 mutation inP SMB8 that has not been previously reported. One patient was compound heterozygous for PSMB4 mutations, 6 patients from 4 families were heterozygous for a missense mutation in 1 inducible proteasome subunit and a mutation in a constitutive proteasome subunit, and 1 patient was heterozygous for a POMP mutation, thus establishing a digenic and autosomal dominant inheritance pattern of PRAAS. Function evaluation revealed that these mutations variably affect transcription, protein expression, protein folding, proteasome assembly, and, ultimately, proteasome activity. Moreover, defects in proteasome formation and function were recapitulated by siRNA-mediated knockdown of the respective
    [Show full text]
  • PSMB9/LMP2 Rabbit Pab
    Leader in Biomolecular Solutions for Life Science PSMB9/LMP2 Rabbit pAb Catalog No.: A1771 1 Publications Basic Information Background Catalog No. The proteasome is a multicatalytic proteinase complex with a highly ordered ring- A1771 shaped 20S core structure. The core structure is composed of 4 rings of 28 non-identical subunits; 2 rings are composed of 7 alpha subunits and 2 rings are composed of 7 beta Observed MW subunits. Proteasomes are distributed throughout eukaryotic cells at a high 22kDa concentration and cleave peptides in an ATP/ubiquitin-dependent process in a non- lysosomal pathway. An essential function of a modified proteasome, the Calculated MW immunoproteasome, is the processing of class I MHC peptides. This gene encodes a 22kDa/23kDa member of the proteasome B-type family, also known as the T1B family, that is a 20S core beta subunit. This gene is located in the class II region of the MHC (major Category histocompatibility complex). Expression of this gene is induced by gamma interferon and this gene product replaces catalytic subunit 1 (proteasome beta 6 subunit) in the Primary antibody immunoproteasome. Proteolytic processing is required to generate a mature subunit. Applications WB, IF Cross-Reactivity Human, Mouse Recommended Dilutions Immunogen Information WB 1:500 - 1:2000 Gene ID Swiss Prot 5698 P28065 IF 1:10 - 1:100 Immunogen Recombinant fusion protein containing a sequence corresponding to amino acids 1-219 of human PSMB9/LMP2/LMP2 (NP_002791.1). Synonyms PSMB9;LMP2;PSMB6i;RING12;beta1i Contact Product Information www.abclonal.com Source Isotype Purification Rabbit IgG Affinity purification Storage Store at -20℃.
    [Show full text]
  • TNFR2 Signaling Regulates the Immunomodulatory Function of Oligodendrocyte Precursor Cells
    cells Article TNFR2 Signaling Regulates the Immunomodulatory Function of Oligodendrocyte Precursor Cells Haritha L. Desu 1, Placido Illiano 1, James S. Choi 1, Maureen C. Ascona 1, Han Gao 1,2, Jae K. Lee 1 and Roberta Brambilla 1,3,4,* 1 The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; [email protected] (H.L.D.); [email protected] (P.I.); [email protected] (J.S.C.); [email protected] (M.C.A.); [email protected] (H.G.); [email protected] (J.K.L.) 2 Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China 3 Department of Neurobiology Research, Institute of Molecular Medicine, and BRIDGE—Brain Research Inter Disciplinary Guided Excellence, 5000 Odense, Denmark 4 Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark * Correspondence: [email protected]; Tel.: +305-243-3567 Abstract: Multiple sclerosis (MS) is a neuroimmune disorder characterized by inflammation, CNS demyelination, and progressive neurodegeneration. Chronic MS patients exhibit impaired remyeli- nation capacity, partly due to the changes that oligodendrocyte precursor cells (OPCs) undergo in response to the MS lesion environment. The cytokine tumor necrosis factor (TNF) is present in the MS-affected CNS and has been implicated in disease pathophysiology. Of the two active forms of TNF, transmembrane (tmTNF) and soluble (solTNF), tmTNF signals via TNFR2 mediating protective and reparative effects, including remyelination, whereas solTNF signals predominantly via TNFR1 Citation: Desu, H.L.; Illiano, P.; Choi, promoting neurotoxicity.
    [Show full text]
  • Anti-Proteasome 20S LMP2 Antibody (ARG41082)
    Product datasheet [email protected] ARG41082 Package: 100 μl anti-Proteasome 20S LMP2 antibody Store at: -20°C Summary Product Description Rabbit Polyclonal antibody recognizes Proteasome 20S LMP2 Tested Reactivity Hu Predict Reactivity Ms, Rat Tested Application FACS, ICC/IF, WB Host Rabbit Clonality Polyclonal Isotype IgG Target Name Proteasome 20S LMP2 Antigen Species Human Immunogen Synthetic peptide derived from Human Proteasome 20S LMP2. Conjugation Un-conjugated Alternate Names beta1i; Proteasome subunit beta type-9; Really interesting new gene 12 protein; Proteasome chain 7; Multicatalytic endopeptidase complex chain 7; Proteasome subunit beta-1i; Macropain chain 7; RING12; EC 3.4.25.1; LMP2; PSMB6i; Low molecular mass protein 2 Application Instructions Application table Application Dilution FACS 1:50 ICC/IF 1:50 - 1:200 WB 1:1000 - 1:5000 Application Note * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Calculated Mw 23 kDa Observed Size 23 kDa Properties Form Liquid Purification Affinity purified. Buffer PBS (pH 7.4), 150 mM NaCl, 0.02% Sodium azide and 50% Glycerol. Preservative 0.02% Sodium azide Stabilizer 50% Glycerol www.arigobio.com 1/2 Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. Note For laboratory research only, not for drug, diagnostic or other use. Bioinformation Gene Symbol PSMB9 Gene Full Name proteasome subunit beta 9 Background The proteasome is a multicatalytic proteinase complex with a highly ordered ring-shaped 20S core structure.
    [Show full text]
  • 1 NUP98-PHF23 Is a Chromatin Modifying Oncoprotein That Causes
    Author Manuscript Published OnlineFirst on February 17, 2014; DOI: 10.1158/2159-8290.CD-13-0419 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. NUP98-PHF23 is a chromatin modifying oncoprotein that causes a wide array of leukemias sensitive to inhibition of PHD domain histone reader function. Sheryl M Gough1, Fan Lee1, Fan Yang1, Robert L Walker1, Yeulin J Zhu1, Marbin Pineda1, Masahiro Onozawa1, Yang Jo Chung1, Sven Bilke1, Elise K Wagner2, John M Denu2, Yi Ning3, Bowen Xu4, Gang Greg Wang4, Paul S Meltzer1 and Peter D Aplan1*. 1Genetics Branch, Center for Cancer Research, NCI/NIH, Bethesda, MD 20892-4265, USA. 2Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53715, USA. 3Department of Pathology, Johns Hopkins University, Baltimore, MD 21287, USA. 4Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA. RUNNING TITLE: NUP98-PHF23 is a chromatin modifying oncoprotein KEYWORDS: NUP98-PHF23, AML, HOXA9, disulfiram, BAHCC1, NUP98-JARID1A, epigenetic therapy. ABBREVIATIONS LIST: NP23, NUP98-PHF23; NJL, NUP98-JARID1A; PHD, plant homeodomain; AML, acute myeloid leukemia; ALL, acute lymphoid leukemia; BM, bone marrow; WT, wild type; CBC, complete blood count; DSF, disulfiram. FINANCIAL SUPPORT: This work was supported by the Intramural Research Program of the National Cancer Institute, National Institutes of Health. CONTACT *Corresponding author: Peter D. Aplan Genetics Branch Center for Cancer Research National Cancer Institute National Institutes of Health Building 37 Room 6002 37 Convent Drive Bethesda, MD 20892, USA PH: 301-435-5005 FAX: 301-496-0047 [email protected] CONFLICTS OF INTEREST STATEMENT: J.M.D.
    [Show full text]