Management Indicator Species of the Kaibab National Forest: Population Status and Trends Version 2.0 2008

Total Page:16

File Type:pdf, Size:1020Kb

Management Indicator Species of the Kaibab National Forest: Population Status and Trends Version 2.0 2008 Management Indicator Species of the Kaibab National Forest: Population Status and Trends Version 2.0 2008 Pronghorn (Antilocapra americana) Photo by Corbis Historic Ponderosa Pine Forest , 1914 Photo by Gus Pearson Hairy Woodpecker (Picoides villosus) Photo by J. R. Woodward Sonefly (Pteronarcyidae sp.) Photo by Milton Rand/Tom Stack & Associates Red Squirrel (Sciurus vulgaris) Photo by John Koprowski Current Ponderosa Pine Forest , 1999 Photo by Tom Bean Prepared by: Kristin Bratland, Wildlife Biologist, Kaibab National Forest, Supervisor’s Office Bill Noble, Forest Biologist, Kaibab National Forest, Supervisor’s Office Roger Joos, Wildlife Biologist, Kaibab National Forest, Supervisor’s Office 1 TABLE OF CONTENTS MANAGEMENT INDICATOR SPECIES .................................................................................................4 INTRODUCTION ...................................................................................................................................... 4 Regulatory Background ........................................................................................................................ 4 National Directives........................................................................................................................................... 4 Kaibab National Forest’s Forest Plan............................................................................................................. 5 Management Indicator Species............................................................................................................. 7 Overview of Management Indicator Species ................................................................................................... 7 Kaibab National Forest’s Management indicator Species.............................................................................. 8 Management Indicator Species Population Estimates.........................................................................10 Overview ......................................................................................................................................................... 10 Population Trend Assessment Sources.......................................................................................................... 12 BREEDING BIRD SURVEYS AND BIRD CONSERVATION REGIONS .............................................................. 12 KAIBAB NATIONAL FOREST LANDBIRD SURVEYS .................................................................................... 16 NATURESERVE RANKS ............................................................................................................................. 16 ARIZONA GAME AND FISH DEPARTMENT ANNUAL SUMMARY REPORT ................................................... 17 SPECIES ACCOUNTS............................................................................................................................. 18 Aquatic Macroinvertebrates ............................................................................................................... 18 Cinnamon Teal.................................................................................................................................... 21 Northern Goshawk.............................................................................................................................. 26 Hairy Woodpecker .............................................................................................................................. 33 Lincoln’s Sparrow............................................................................................................................... 39 Lucy’s Warbler ................................................................................................................................... 43 Juniper Titmouse................................................................................................................................. 47 Pygmy Nuthatch.................................................................................................................................. 52 Mexican Spotted Owl .......................................................................................................................... 56 Wild Turkey......................................................................................................................................... 62 Red-Naped Sapsucker ......................................................................................................................... 65 Yellow-Breasted Chat ......................................................................................................................... 70 Elk....................................................................................................................................................... 75 Mule Deer ........................................................................................................................................... 77 Pronghorn........................................................................................................................................... 81 Red Squirrel ........................................................................................................................................ 85 Tassel-Eared Squirrel ......................................................................................................................... 87 Arizona Bugbane................................................................................................................................. 91 HABITAT TRENDS ON THE KAIBAB NATIONAL FOREST ...........................................................93 INTRODUCTION .................................................................................................................................... 93 VEGETATION COVER TYPE ......................................................................................................................... 94 Changes in Management Direction .................................................................................................... 95 Ponderosa Pine Cover Type ............................................................................................................... 98 Gambel Oak ...................................................................................................................................... 105 Mixed Conifer/Spruce Fir Cover Types ............................................................................................105 Snags in Coniferous Forests ............................................................................................................. 108 Aspen Cover Type ............................................................................................................................. 111 Grasslands ........................................................................................................................................ 113 Pinyon-Juniper Woodlands Cover Type ........................................................................................... 137 RIPARIAN ASSOCIATIONS .......................................................................................................................... 147 Riparian Associations: High Elevation Riparian............................................................................. 151 Riparian Association: Freshwater Marshes ..................................................................................... 153 Riparian Associations: Open Water Habitat .................................................................................... 155 Stopover Ecology of Migratory Landbirds and the Oasis Theory .................................................... 156 Management Indicator Species for Riparian Associations ............................................................... 157 2 LITERATURE CITED.............................................................................................................................160 Appendices Appendix 1: Common northern goshawk prey in the Southwest Appendix 2: Kaibab National Forest’s MIS trend analyses using Breeding Bird Surveys Appendix 3: Species detections by habitat type from Kaibab National Forest surveys Appendix 4: Arizona Game and Fish Department Game Management Units 3 Management Indicator Species INTRODUCTION This report provides information about management indicator species (MIS) for the Kaibab National Forest (KNF) in northern Arizona. It also includes a description of the status and trends of the major habitat types on the KNF. This report is intended to be used for regulatory, planning, and public education purposes. It is considered a “living document” which allows the KNF to update specific sections of the report as new science becomes available. In calendar year 2007 the MIS portion of the document was updated. It is expected that the habitat portion will soon be updated as well. Regulatory Background National Directives The USDA Forest Service is charged with managing all renewable resources, including wildlife, on National Forest lands. This obligation was enacted by Congress and set forth in the National Forest Management Act (NFMA) of 1976. As a federal law, the NFMA is the primary statute governing the administration of National Forests. The Forest Service first promulgated regulations implementing NFMA in September, 1979, and subsequently revised them in 1982 (known as the 1982 Rule). The 1976 legislation requires the Secretary
Recommended publications
  • Clonality and Dynamics of Leaf Abscission of Gambel Oaks at Small Spatial Scales in Utah
    For. Sci. 61(●):000–000 FUNDAMENTAL RESEARCH http://dx.doi.org/10.5849/forsci.14-204 Copyright © 2015 Society of American Foresters forest ecology Clonality and Dynamics of Leaf Abscission of Gambel Oaks at Small Spatial Scales in Utah Jacob W. Chalmers, Karen E. Mock, Kevin D. Kohl, Katelin J. Madsen, and Nalini M. Nadkarni The Intermountain West of the United States supports a mosaic of Gambel oak (Quercus gambelii Nutt.) clumps interspersed with grassland. Both the tree and shrub forms of Gambel oak are typically found in distinct clumps that have often been presumed to be single clones, although quantitative evidence to support this is minimal. We examined the patterns of clonality within and between oak clumps and explored the variance in phenology of leaf abscission within and among clones and clumps in a study site in the Wasatch Mountains, Utah, USA. Using amplified fragment length polymorphism analysis, we genotyped multiple stems within 10 clumps of Gambel oaks in Red Butte Canyon. Nine of the 10 clumps were monoclonal (each a single distinct genet). The 10th clump was composed of 2 genets. To characterize the genetic influence on leaf abscission phenology, we compared the timing of abscission of individually marked leaves among genets, ramets, and branches. Of these three levels of organization, genet membership had the greatest influence on timing of leaf abscission, and branch membership had the smallest influence. Our results suggest that clonal diversity may be an important metric of phenotypic and ecological diversity in Gambel oak landscapes. Keywords: genet, ramet, abscission, Gambel oak lant communities often comprise genetic mosaics at multiple trait variances are partitioned among genets (clones) versus ramets spatial scales because species in the communities reproduce (stems).
    [Show full text]
  • Elbroch Et Al 2017 Benefiting from Carrion Provided by Pumas
    Biological Conservation 215 (2017) 123–131 Contents lists available at ScienceDirect Biological Conservation journal homepage: www.elsevier.com/locate/biocon Short communication Vertebrate diversity benefiting from carrion provided by pumas and other MARK subordinate, apex felids ⁎ L. Mark Elbroch , Connor O'Malley, Michelle Peziol, Howard B. Quigley Panthera, 8 West 40th Street, 18th Floor, New York, NY 10018, USA ARTICLE INFO ABSTRACT Keywords: Carrion promotes biodiversity and ecosystem stability, and large carnivores provide this resource throughout the Biodiversity year. In particular, apex felids subordinate to other carnivores contribute more carrion to ecological commu- Carnivores nities than other predators. We measured vertebrate scavenger diversity at puma (Puma concolor) kills in the Food webs Greater Yellowstone Ecosystem, and utilized a model-comparison approach to determine what variables influ- Scavenging enced scavenger diversity (Shannon's H) at carcasses. We documented the highest vertebrate scavenger diversity of any study to date (39 birds and mammals). Scavengers represented 10.9% of local birds and 28.3% of local mammals, emphasizing the diversity of food-web vectors supported by pumas, and the positive contributions of pumas and potentially other subordinate, apex felids to ecological stability. Scavenger diversity at carcasses was most influenced by the length of time the carcass was sampled, and the biological variables, temperature and prey weight. Nevertheless, diversity was relatively consistent across carcasses. We also identified six additional stalk- and-ambush carnivores weighing > 20 kg, that feed on prey larger than themselves, and are subordinate to other predators. Together with pumas, these seven felids may provide distinctive ecological functions through their disproportionate production of carrion and subsequent contributions to biodiversity.
    [Show full text]
  • The Collection of Oak Trees of Mexico and Central America in Iturraran Botanical Gardens
    The Collection of Oak Trees of Mexico and Central America in Iturraran Botanical Gardens Francisco Garin Garcia Iturraran Botanical Gardens, northern Spain [email protected] Overview Iturraran Botanical Gardens occupy 25 hectares of the northern area of Spain’s Pagoeta Natural Park. They extend along the slopes of the Iturraran hill upon the former hay meadows belonging to the farmhouse of the same name, currently the Reception Centre of the Park. The minimum altitude is 130 m above sea level, and the maximum is 220 m. Within its bounds there are indigenous wooded copses of Quercus robur and other non-coniferous species. Annual precipitation ranges from 140 to 160 cm/year. The maximum temperatures can reach 30º C on some days of summer and even during periods of southern winds on isolated days from October to March; the winter minimums fall to -3º C or -5 º C, occasionally registering as low as -7º C. Frosty days are few and they do not last long. It may snow several days each year. Soils are fairly shallow, with a calcareous substratum, but acidified by the abundant rainfall. In general, the pH is neutral due to their action. Collections The first plantations date back to late 1987. There are currently approximately 5,000 different taxa, the majority being trees and shrubs. There are around 3,000 species, including around 300 species from the genus Quercus; 100 of them are from Mexico and Central America. Quercus costaricensis photo©Francisco Garcia 48 International Oak Journal No. 22 Spring 2011 Oaks from Mexico and Oaks from Mexico
    [Show full text]
  • Merging Science and Management in a Rapidly Changing World: Biodiversity and Management of the Madrean (Q
    Preliminary Assessment of Species Richness and Avian Community Dynamics in the Madrean Sky Islands, Arizona Jamie S. Sanderlin, William M. Block, Joseph L. Ganey, and Jose M. Iniguez U.S. Forest Service, Rocky Mountain Research Station, Flagstaff, Arizona Abstract—The Sky Island mountain ranges of southeastern Arizona contain a unique and rich avifaunal community, including many Neotropical migratory species whose northern breeding range extends to these mountains along with many species typical of similar habitats throughout western North America. Understand- ing ecological factors that influence species richness and biological diversity of both resident and migratory species is important for conservation of this unique bird assemblage. We used a 5-year data set to evaluate avian species distribution across montane habitat types within the Santa Rita, Santa Catalina, Huachuca, Chiricahua, and Pinaleño Mountains. Using point-count data from spring-summer breeding seasons, we de- scribe avian diversity and community dynamics. We use a Bayesian hierarchical model to describe occupancy as a function of vegetative cover type and mountain range latitude, and detection probability as a function of species heterogeneity and sampling effort. By identifying important habitat correlates for avian species, these results can help guide management decisions to minimize loss of key habitats and guide restoration efforts in response to disturbance events in the Madrean Archipelago. Introduction We studied occupancy and cover type associations of forest birds across montane vegetative cover types in the Santa Rita, Santa The Sky Island mountain ranges of southeastern Arizona, USA, Catalina, Huachuca, Chiricahua, and Pinaleño Mountains of south- contain a unique and rich avifaunal community.
    [Show full text]
  • Chapter XXV —Class Oligochaeta
    Chapter XXV —Class Oligochaeta (Aquatic Worms)- Phylum Annelida Oligochaetes are common in most freshwater habitats, but they are often ignored by freshwater biologists because they are thought to be extraordinarily difficult to identify. The extensive taxo- nomic work done since 1960 by Brinkhurst and others, however, has enabled routine identifica- tion of most of our freshwater oligochaetes from simple whole mounts. Some aquatic worms closely resemble terrestrial earthworms while others can be much narrower or thread-like. Many aquatic worms can tolerate low dissolved oxygen and may be found in large numbers in organi- cally polluted habitats. Aquatic worms can be distinguished by: (Peckarsky et al., 1990) • Body colour may be red, tan, brown or black. • Cylindrical, thin (some are very thin), segmented body may be upto 5 inches. • May have short bristles or hairs (setae) that help with movement (usually not visible). • Moves by stretching and pulling its body along in a worm-like fashion. Four families in the orders Tubificida and Lumbriculida are common in freshwater in northeastern North America: the Tubificidae, Naididae, Lumbriculidae, and Enchytraeidae. In addition, fresh- water biologists sometimes encounter lumbricine oligochaetes (order Lumbricina; the familiar earthworms), haplotaxid oligochaetes (order Haplotaxida; rare inhabitants of groundwater), Aeolosoma (class Aphanoneura; small worms once classified with the oligochaetes), and Manayunkia speciosa (class Polychaeta) in waters of northeastern North America. (Peckarsky et al., 1990). The two families, Naididae and Tubificidae form 80 to 100% of the annelid communi- ties in the benthos of most streams and lakes at all trophic levels. They range in size from 0.1 cm in Naididae to 3 or 4 cm in relaxed length in Lumbricidae, the family that contains the earth- worms.
    [Show full text]
  • Phylogeographic and Nested Clade Analysis of the Stonefly Pteronarcys
    J. N. Am. Benthol. Soc., 2004, 23(4):824–838 q 2004 by The North American Benthological Society Phylogeographic and nested clade analysis of the stonefly Pteronarcys californica (Plecoptera:Pteronarcyidae) in the western USA JOHN S. K. KAUWE1 Department of Biology, Washington University, St. Louis, Missouri 63110 USA DENNIS K. SHIOZAWA2 Department of Integrative Biology, Brigham Young University, Provo, Utah 84602 USA R. PAUL EVANS3 Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah 84602 USA Abstract. Long-distance dispersal by aquatic insects can be difficult to detect because direct mea- surement methods are expensive and inefficient. When dispersal results in gene flow, signs of that dispersal can be detected in the pattern of genetic variation within and between populations. Four hundred seventy-five base pairs of the mitochondrial gene, cytochrome b, were examined to inves- tigate the pattern of genetic variation in populations of the stonefly Pteronarcys californica and to determine if long-distance dispersal could have contributed to this pattern. Sequences were obtained from 235 individuals from 31 different populations in the western United States. Sequences also were obtained for Pteronarcella badia, Pteronarcys dorsata, Pteronarcys princeps, Pteronarcys proteus, and Pter- onarcys biloba. Phylogenies were constructed using all of the samples. Nested clade analysis on the P. californica sequence data was used to infer the processes that have generated the observed patterns of genetic variation. An eastern North American origin and 2 distinct genetic lineages of P.californica could be inferred from the analysis. Most of the current population structure in both lineages was explained by a pattern of restricted gene flow with isolation by distance (presumably the result of dispersal via connected streams and rivers), but our analyses also suggested that long-distance, over- land dispersal has contributed to the observed pattern of genetic variation.
    [Show full text]
  • 14 January 2008 a Short History of Pteronarcys Californica and Pteronarcella Badia in the Logan River, Cache County, Utah by Mark Vinson, [email protected]
    Last update: 14 January 2008 A short history of Pteronarcys californica and Pteronarcella badia in the Logan River, Cache County, Utah By Mark Vinson, [email protected] The salmonflies, Pteronarcys californica and Pteronarcella badia (Plecotpera: Pteronarcyidae) were once abundant in the Logan River. In a 1927 paper, James Needham wrote “Pteronarcys californica abounds in the clear waters of Logan River below 6000 feet. It is undoubtedly one of the most important insect species of the stream. Its greatest abundance seems to be in trash piles that gather against the upstream side of the larger rocks in midstream where it finds both food and shelter. Fifty or more well-grown nymphs could be taken on a screen by dislodging a single large stone (Needham, 1927)”. In later pages of this publication he comments as well on the abundance of Pteronarcella badia in the Logan River. I first noticed that Pteronarcyidae were absent in the Logan River about 10 years ago, but I did not know they had once been common until about 5 years ago. It always seemed a bit strange to that they were not in the Logan River as both species are very common in the Blacksmith Fork River - the Logan River’s largest tributary stream that drains the basin just to the south of the Logan River. Anyway, for the last 5 years I have been on a somewhat of quest to find these species in the Logan River and its tributaries and to work at summarizing the history of collections of these species in the Logan River.
    [Show full text]
  • US Fish and Wildlife Service
    U.S. Fish & Wildlife Service Federal Duck Stamp Office Presents North American Waterfowl Photo: Donna Dewhurst/USFWS This publication is dedicated to the memory of Robert W. Hines (1912-94), the internationally renowned wildlife artist whose illustrations appear in these pages. Born in Columbus, Ohio, Bob Hines was a self- taught artist and wildlife scientist. By the age of 27, he was working as a staff artist with the Ohio Division of Wildlife. In 1947, he accepted a similar position with the U.S. Fish and Wildlife Service. Rachel Carson was Hines’ first FWS supervisor in Washington, DC. She asked him to illustrate her second book, “The Edge of the Sea”. Throughout the years, his work appeared in many government published books, pamphlets and posters, as well as in national magazines such as Sports Afield and The New Yorker. Hines loved the outdoors, particularly Alaska, and was an avid hunter and fisherman, with a deep reverence and appreciation for fish and wildlife. His practiced eye could see incredible details in a sunset or the breast feather of a wild turkey. Hines was charming, as well as an extraordinarily talented artist: his personal friends included several Secretaries of the Interior, who would occasionally slip into his office to listen to tales of his outdoor adventures. Hine’s sense of humor and relaxed, modest air belied his tremendous talent. Recognized by the Department of the Interior with three Meritorious Service Awards and upon his retirement, the U.S. Fish and Wildlife Service honored him with the Distinguished Service Award. Bob Hines’ beautiful wildlife art stands as not only his legacy for current and future generations of wildlife artists but also as a lasting tribute to a dedicated conservationist and gifted artist.
    [Show full text]
  • Landbird Monitoring in the Sonoran Desert Network 2012 Annual Report
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Landbird Monitoring in the Sonoran Desert Network 2012 Annual Report Natural Resource Technical Report NPS/SODN/NRTR—2013/744 ON THE COVER Hooded Oriole (Icterus cucullatus). Photo by Moez Ali. Landbird Monitoring in the Sonoran Desert Network 2012 Annual Report Natural Resource Technical Report NPS/SODN/NRTR—2013/744 Authors Moez Ali Rocky Mountain Bird Observatory 230 Cherry Street, Suite 150 Fort Collins, Colorado 80521 Kristen Beaupré National Park Service Sonoran Desert Network 7660 E. Broadway Blvd, Suite 303 Tucson, Arizona 85710 Patricia Valentine-Darby University of West Florida Department of Biology 11000 University Parkway Pensacola, Florida 32514 Chris White Rocky Mountain Bird Observatory 230 Cherry Street, Suite 150 Fort Collins, Colorado 80521 Project Contact Robert E. Bennetts National Park Service Southern Plains Network Capulin Volcano National Monument PO Box 40 Des Moines, New Mexico 88418 May 2013 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colora- do, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource manage- ment, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Technical Report Series is used to disseminate results of scientific studies in the physical, biological, and social sciences for both the advancement of science and the achievement of the National Park Service mission.
    [Show full text]
  • Stories of the Sky Islands: Exhibit Development Resource Guide for Biology and Geology at Chiricahua National Monument and Coronado National Memorial
    Stories of the Sky Islands: Exhibit Development Resource Guide for Biology and Geology at Chiricahua National Monument and Coronado National Memorial Prepared for the National Park Service under terms of Cooperative Ecosystems Studies Unit Agreement H1200-05-0003 Task Agreement J8680090020 Prepared by Adam M. Hudson,1 J. Jesse Minor,2,3 Erin E. Posthumus4 In cooperation with the Arizona State Museum The University of Arizona Tucson, AZ Beth Grindell, Principal Investigator May 17, 2013 1: Department of Geosciences, University of Arizona ([email protected]) 2: School of Geography and Development, University of Arizona ([email protected]) 3: Laboratory of Tree-Ring Research, University of Arizona 4: School of Natural Resources and the Environment, University of Arizona ([email protected]) Table of Contents Introduction ........................................................................................................................3 Beth Grindell, Ph.D. Ch. 1: Current research and information for exhibit development on the geology of Chiricahua National Monument and Coronado National Memorial, Southeast Arizona, USA..................................................................................................................................... 5 Adam M. Hudson, M.S. Section 1: Geologic Time and the Geologic Time Scale ..................................................5 Section 2: Plate Tectonic Evolution and Geologic History of Southeast Arizona .........11 Section 3: Park-specific Geologic History – Chiricahua
    [Show full text]
  • Deer Creek Mine Closure Water Pipeline Updated Wildlife Resources Report Table of Contents
    DEER CREEK MINE CLOSURE WATER PIPELINE UPDATED WILDLIFE RESOURCES REPORT Reviewed by: � Date �� k::V"t-- Dana Truman, Wildlife Biologist; BLM 1 2017 Deer Creek Mine Closure Water Pipeline Updated Wildlife Resources Report Table of Contents INTRODUCTION .......................................................................................................................... 1 PROJECT DESCRIPTION ........................................................................................................... 1 Project Location ........................................................................................................................ 1 Summary of the Proposed Action ............................................................................................ 1 Proposed Project Area/Existing Environment ....................................................................... 2 Description of the Alternatives................................................................................................. 4 EVALUATED SPECIES INFORMATION ................................................................................. 4 Sensitive Plant, Wildlife and Fish Species ............................................................................... 4 Management Indicator Species ................................................................................................ 4 Migratory Birds ......................................................................................................................... 5 ENVIRONMENTAL BASELINE ................................................................................................
    [Show full text]
  • Phylogenetic and Phenetic Systematics of The
    195 PHYLOGENETICAND PHENETICSYSTEMATICS OF THE OPISTHOP0ROUSOLIGOCHAETA (ANNELIDA: CLITELLATA) B.G.M. Janieson Departnent of Zoology University of Queensland Brisbane, Australia 4067 Received September20, L977 ABSTMCT: The nethods of Hennig for deducing phylogeny have been adapted for computer and a phylogran has been constructed together with a stereo- phylogran utilizing principle coordinates, for alL farnilies of opisthopor- ous oligochaetes, that is, the Oligochaeta with the exception of the Lunbriculida and Tubificina. A phenogran based on the sane attributes conpares unfavourably with the phyLogralnsin establishing an acceptable classification., Hennigrs principle that sister-groups be given equal rank has not been followed for every group to avoid elevation of the more plesionorph, basal cLades to inacceptabl.y high ranks, the 0ligochaeta being retained as a Subclass of the class Clitellata. Three orders are recognized: the LumbricuLida and Tubificida, which were not conputed and the affinities of which require further investigation, and the Haplotaxida, computed. The Order Haplotaxida corresponds preciseLy with the Suborder Opisthopora of Michaelsen or the Sectio Diplotesticulata of Yanaguchi. Four suborders of the Haplotaxida are recognized, the Haplotaxina, Alluroidina, Monil.igastrina and Lunbricina. The Haplotaxina and Monili- gastrina retain each a single superfanily and fanily. The Alluroidina contains the superfamiJ.y All"uroidoidea with the fanilies Alluroididae and Syngenodrilidae. The Lurnbricina consists of five superfaniLies.
    [Show full text]