A Study on Capillary Flow Under the Effect of Dynamic Wetting

Total Page:16

File Type:pdf, Size:1020Kb

A Study on Capillary Flow Under the Effect of Dynamic Wetting Journal of JSEM, Vol.10, Special Issue (2010) 62-66 Copyright Ⓒ 2010 JSEM A Study on Capillary Flow under the Effect of Dynamic Wetting Kenji KATOH1, Tatsuro WAKIMOTO1 and Sinichiro NITTA1 1 Department of Mechanical Engineering, Osaka City University, Osaka 558-8585, Japan (Received 29 January 2010; received in revised form 17 April 2010; accepted 12 June 2010) Abstract those theories have succeeded in some degree to explain the A theoretical model was proposed to consider the dynamic experimental results for the velocity dependence of contact contact angle from a macroscopic viewpoint. A slight angles, it is still not clear whether they represent the correct convex profile of liquid surface is assumed to avoid the mechanism of dynamic wetting or not. divergence of viscous stress near the three-phase contact line If we consider the wetting phenomenon on a real solid on the wall. The theoretical results of the dynamic contact surface with roughness or defects with much larger scale angle are dependent on the parameter ε, i.e., the ratio of than molecules, it seems natural that the behavior of surface area occupied by the defects on the solid surface. apparent contact angle should be controlled mainly by the The movement of liquid column in a capillary is investigated macroscopic characteristics on the solid surface. In this experimentally. The modified Lucas-Washburn equation report, first a theoretical model is proposed to estimate the including the effect of dynamic wetting represents well the dynamic contact angle from a macroscopic viewpoint. In measured results. The theoretical model can approximate the order to discuss the velocity dependence of contact angles, measured dynamic contact angles within the experimental the viscous stress is estimated during the stick-slip motion uncertainty. of the contact line between the defects on the solid surface. Next we discuss the behavior of liquid column in a Key words capillary tube as the real system influenced by the dynamic Capillary Tube, Dynamic Wetting, Contact Angle, Surface wetting. The capillary phenomenon is related to many Tension, Viscous Stress applications in science, industry and daily life, e.g., the movement of liquid in a small gap in heat pipes, the rise of 1. Introduction blood in the blood sugar level sensor, and so on. However The wetting behavior between solid and liquid phases has very few reports have investigated the liquid motion in the an important topic in various engineering fields treating capillary based on a systematic experiment to measure small amount of liquid on a solid surface. When the three- precisely the behavior of the liquid column or the dynamic phase contact line at the tip of the liquid surface on the solid contact angle [2,3,4]. In this report, the liquid height and the wall moves with a finite velocity, one can observe that the dynamic contact angle are measured simultaneously in a contact angle changes with the velocity. When the capillary glass capillary. The results are compared with the modified number, i.e., the ratio between viscous force and surface Lucas-Washburn equation for the movement of liquid tension is larger than roughly 10-4 at which the velocity may column including the effect of dynamic wetting. The be typically 0.1 mm/s, the effect of dynamic wetting should theoretical model for the dynamic contact angle proposed be taken into consideration to discuss the liquid motion on here is validated through comparison with the measured the solid surface. Many theoretical or experimental studies results in this experiment. have discussed the velocity dependence on the contact angle [1,2]. There are two kinds of theoretical models to express 2. Theoretical Consideration the dynamic contact angle, one of which is called 2.1 Dynamic contact angle hydrodynamic model to consider the viscous dissipation in Based on the hydrodynamic model stated in section 1, Cox the wedge of liquid near the contact line, and the other is discussed the dynamic wetting and obtained the following called molecular kinetic theory (MKT) to consider the relation for the dynamic contact angle [5]. molecular movement at the contact line [1,2]. In the former 3 3/1 model, the liquid motion is analyzed from the theory of d ()θθ 9 ⋅+= CaD (1) fluid dynamics under the assumption of slip condition at the contact line. In order to avoid stress divergence at the where θd and θ indicate the dynamic contact angle and the contact line where the thickness of liquid layer becomes static contact angle, respectively. D is an experimental constant defined as: zero, the no-slip condition is discarded and the slip length is introduced so that the integral of viscous stress on the wall ⎛ L ⎞ can be determined. The dynamic contact angle is then D = ln⎜ ⎟ (2) S related to the viscous force. In the latter, back or forward ⎝ ⎠ jump of liquid molecules at the contact line is considered where L is the typical length scale of the system and S is the based on the Frenkel-Eyring theory of liquid transport slip length. In Eq. (1), Ca is the capillary number defined which is applied to the determination of viscosity and so on. as: The excess surface tension caused by the contact angle μU change was related to the statistical average of molecular Ca = (3) motion, i.e., the macroscopic velocity. Both models include σ some properties relating to molecular length scale. Although -- -- Journal of JSEM, Vol.10, Special Issue (2010) μ, U and σ indicate viscosity, velocity of contact line and the defect. Since very large wall shear stress concentrates surface tension, respectively. Cox discussed the liquid flow mainly near the contact line, the resultant of frictional force near the contact line separately in three regions, i.e., inner may be estimated in the region of λ, the characteristic region where the slip condition is applied, intermediate distance between defects as shown in Fig. 1(b). de Gennes region and outer region of macroscopic scale. Equation (1) calculated the viscous dissipation in the straight wedge was derived from the solution obtained by the method of region near the contact line, which has often been treated as matching asymptotic expansions. Here, we try to propose an the lubrication problem [8]. When the wall shear stress is approximate model to discuss the dynamic wetting on the integrated, the slip length should be introduced to avoid the solid surface having roughness or defect whose scale is stress divergence at the contact line. If we consider the much larger than the microscopic slip length irreversible slip motion, the contact angle may be different Figure 1 shows the schematic of contact line from the static equilibrium angle at the edge of the contact movement on the solid surface with defects such as line. In the present model, a slight convex profile of liquid roughness or patch of adsorbed foreign molecules. Although surface is assumed instead of the straight line as shown in we consider the receding of the contact line as shown in Fig. Fig. 1(b). The origin of the coordinate system is taken at the 1, the mechanism discussed below can be directly applied to edge of the defect. x and y coordinates are taken in the the advancing case. In the practical wetting behavior, it is horizontal and the wall-normal directions, respectively. The usually observed that the contact line movement is not liquid surface profile b(x) is approximated by the following continuous but shows a stick-slip type behavior even in the expression as: macroscopically quasi-static movement, i.e., the contact line 1−ε is once trapped at the defect as shown in Fig. 1, then it b ⎛ x − ε ⎞ = tanθ ⎜ ⎟ (4) moves irreversibly with a finite velocity to the next defect d ⎜ ⎟ λ ⎝ 1− ε ⎠ [6]. When the contact line is trapped at the defect, the liquid surface is distorted and some excess work is necessary to where x≡ x / λ and ε is the ratio occupied by the defect. move over the defect. This energy is dissipated during the The above profile satisfies the following geometrical slip motion and is considered as the cause of the contact conditions. angle hysteresis (i.e., the static contact angle is dependent on the moving direction of the contact line) [7]. When the b db x=ε : b = 0, x =1 : = tanθ , = tanθ , (5) contact line moves with a macroscopically finite velocity U, λ d dx d U is just added to the slip velocity during the irreversible motion, which leads to the increases of viscous drag on the Equation (4) means that the liquid surface is assumed to be wall τW, compared with the quasi-static case. In the present distorted by ελ, i.e., the scale of defect. The velocity model, this drag increase is related to the difference distribution u(y) in the liquid is simply approximated by the between the static and the dynamic contact angles. following equation to satisfy the boundary conditions at the As shown in Fig. 1(b), the viscous drag is estimated wall and the liquid surface. during the slip motion after the contact line is released from u 3 2 =⎜⎛2y − y ⎟⎞ (6) U 2 ⎝ ⎠ where y≡ y/ b . The force balance on the area ABC shown in Fig. 1(b) is now considered. The solid-gas and solid-liquid interfacial tensions, σ S and σ SL act on the contact line A while the liquid-gas surface tension σ acts on the liquid surface at C with the dynamic contact angle θ d as shown in the figure. (a) Movement of contact line Since the Reynolds number should be quite small, the influence of inertial force can be neglected.
Recommended publications
  • Capillary Surface Interfaces, Volume 46, Number 7
    fea-finn.qxp 7/1/99 9:56 AM Page 770 Capillary Surface Interfaces Robert Finn nyone who has seen or felt a raindrop, under physical conditions, and failure of unique- or who has written with a pen, observed ness under conditions for which solutions exist. a spiderweb, dined by candlelight, or in- The predicted behavior is in some cases in strik- teracted in any of myriad other ways ing variance with predictions that come from lin- with the surrounding world, has en- earizations and formal expansions, sufficiently so Acountered capillarity phenomena. Most such oc- that it led to initial doubts as to the physical va- currences are so familiar as to escape special no- lidity of the theory. In part for that reason, exper- tice; others, such as the rise of liquid in a narrow iments were devised to determine what actually oc- tube, have dramatic impact and became scientific curs. Some of the experiments required challenges. Recorded observations of liquid rise in microgravity conditions and were conducted on thin tubes can be traced at least to medieval times; NASA Space Shuttle flights and in the Russian Mir the phenomenon initially defied explanation and Space Station. In what follows we outline the his- came to be described by the Latin word capillus, tory of the problems and describe some of the meaning hair. current theory and relevant experimental results. It became clearly understood during recent cen- The original attempts to explain liquid rise in a turies that many phenomena share a unifying fea- capillary tube were based on the notion that the ture of being something that happens whenever portion of the tube above the liquid was exerting two materials are situated adjacent to each other a pull on the liquid surface.
    [Show full text]
  • Hydrostatic Shapes
    7 Hydrostatic shapes It is primarily the interplay between gravity and contact forces that shapes the macroscopic world around us. The seas, the air, planets and stars all owe their shape to gravity, and even our own bodies bear witness to the strength of gravity at the surface of our massive planet. What physics principles determine the shape of the surface of the sea? The sea is obviously horizontal at short distances, but bends below the horizon at larger distances following the planet’s curvature. The Earth as a whole is spherical and so is the sea, but that is only the first approximation. The Moon’s gravity tugs at the water in the seas and raises tides, and even the massive Earth itself is flattened by the centrifugal forces of its own rotation. Disregarding surface tension, the simple answer is that in hydrostatic equi- librium with gravity, an interface between two fluids of different densities, for example the sea and the atmosphere, must coincide with a surface of constant ¡A potential, an equipotential surface. Otherwise, if an interface crosses an equipo- ¡ A ¡ A tential surface, there will arise a tangential component of gravity which can only ¡ ©¼AAA be balanced by shear contact forces that a fluid at rest is unable to supply. An ¡ AAA ¡ g AUA iceberg rising out of the sea does not obey this principle because it is solid, not ¡ ? A fluid. But if you try to build a little local “waterberg”, it quickly subsides back into the sea again, conforming to an equipotential surface. Hydrostatic balance in a gravitational field also implies that surfaces of con- A triangular “waterberg” in the sea.
    [Show full text]
  • The Shape of a Liquid Surface in a Uniformly Rotating Cylinder in the Presence of Surface Tension
    Acta Mech DOI 10.1007/s00707-013-0813-6 Vlado A. Lubarda The shape of a liquid surface in a uniformly rotating cylinder in the presence of surface tension Received: 25 September 2012 / Revised: 24 December 2012 © Springer-Verlag Wien 2013 Abstract The free-surface shape of a liquid in a uniformly rotating cylinder in the presence of surface tension is determined before and after the onset of dewetting at the bottom of the cylinder. Two scenarios of liquid withdrawal from the bottom are considered, with and without deposition of thin film behind the liquid. The governing non-linear differential equations for the axisymmetric liquid shapes are solved numerically by an iterative procedure similar to that used to determine the equilibrium shape of a liquid drop deposited on a solid substrate. The numerical results presented are for cylinders with comparable radii to the capillary length of liquid in the gravitational or reduced gravitational fields. The capillary effects are particularly pronounced for hydrophobic surfaces, which oppose the rotation-induced lifting of the liquid and intensify dewetting at the bottom surface of the cylinder. The free-surface shape is then analyzed under zero gravity conditions. A closed-form solution is obtained in the rotation range before the onset of dewetting, while an iterative scheme is applied to determine the liquid shape after the onset of dewetting. A variety of shapes, corresponding to different contact angles and speeds of rotation, are calculated and discussed. 1 Introduction The mechanics of rotating fluids is an important part of the analysis of numerous scientific and engineering problems.
    [Show full text]
  • Artificial Viscosity Model to Mitigate Numerical Artefacts at Fluid Interfaces with Surface Tension
    Computers and Fluids 143 (2017) 59–72 Contents lists available at ScienceDirect Computers and Fluids journal homepage: www.elsevier.com/locate/compfluid Artificial viscosity model to mitigate numerical artefacts at fluid interfaces with surface tension ∗ Fabian Denner a, , Fabien Evrard a, Ricardo Serfaty b, Berend G.M. van Wachem a a Thermofluids Division, Department of Mechanical Engineering, Imperial College London, Exhibition Road, London, SW7 2AZ, United Kingdom b PetroBras, CENPES, Cidade Universitária, Avenida 1, Quadra 7, Sala 2118, Ilha do Fundão, Rio de Janeiro, Brazil a r t i c l e i n f o a b s t r a c t Article history: The numerical onset of parasitic and spurious artefacts in the vicinity of fluid interfaces with surface ten- Received 21 April 2016 sion is an important and well-recognised problem with respect to the accuracy and numerical stability of Revised 21 September 2016 interfacial flow simulations. Issues of particular interest are spurious capillary waves, which are spatially Accepted 14 November 2016 underresolved by the computational mesh yet impose very restrictive time-step requirements, as well as Available online 15 November 2016 parasitic currents, typically the result of a numerically unbalanced curvature evaluation. We present an Keywords: artificial viscosity model to mitigate numerical artefacts at surface-tension-dominated interfaces without Capillary waves adversely affecting the accuracy of the physical solution. The proposed methodology computes an addi- Parasitic currents tional interfacial shear stress term, including an interface viscosity, based on the local flow data and fluid Surface tension properties that reduces the impact of numerical artefacts and dissipates underresolved small scale inter- Curvature face movements.
    [Show full text]
  • Capillarity and Dynamic Wetting Andreas Carlson
    Capillarity and dynamic wetting by Andreas Carlson March 2012 Technical Reports Royal Institute of Technology Department of Mechanics SE-100 44 Stockholm, Sweden Akademisk avhandling som med tillst˚and av Kungliga Tekniska H¨ogskolan i Stockholm framl¨agges till offentlig granskning f¨or avl¨aggande av teknologie doktorsexamen fredagen den 23 mars 2012 kl 10.00 i Salongen, Biblioteket, Kungliga Tekniska H¨ogskolan, Osquars Backe 25, Stockholm. c Andreas Carlson 2012 E-PRINT, Stockholm 2012 iii Capillarity and dynamic wetting Andreas Carlson 2012 Linn´eFLOW Centre, KTH Mechanics SE-100 44 Stockholm, Sweden Abstract In this thesis capillary dominated two{phase flow is studied by means of nu- merical simulations and experiments. The theoretical basis for the simulations consists of a phase field model, which is derived from the system's thermody- namics, and coupled with the Navier Stokes equations. Two types of interfacial flow are investigated, droplet dynamics in a bifurcating channel and sponta- neous capillary driven spreading of drops. Microfluidic and biomedical applications often rely on a precise control of droplets as they traverse through complicated networks of bifurcating channels. Three{dimensional simulations of droplet dynamics in a bifurcating channel are performed for a set of parameters, to describe their influence on the resulting droplet dynamics. Two distinct flow regimes are identified as the droplet in- teracts with the tip of the channel junction, namely, droplet splitting and non- splitting. A flow map based on droplet size and Capillary number is proposed to predict whether the droplet splits or not in such a geometry. A commonly occurring flow is the dynamic wetting of a dry solid substrate.
    [Show full text]
  • Energy Dissipation Due to Viscosity During Deformation of a Capillary Surface Subject to Contact Angle Hysteresis
    Physica B 435 (2014) 28–30 Contents lists available at ScienceDirect Physica B journal homepage: www.elsevier.com/locate/physb Energy dissipation due to viscosity during deformation of a capillary surface subject to contact angle hysteresis Bhagya Athukorallage n, Ram Iyer Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409, USA article info abstract Available online 25 October 2013 A capillary surface is the boundary between two immiscible fluids. When the two fluids are in contact Keywords: with a solid surface, there is a contact line. The physical phenomena that cause dissipation of energy Capillary surfaces during a motion of the contact line are hysteresis in the contact angle dynamics, and viscosity of the Contact angle hysteresis fluids involved. Viscous dissipation In this paper, we consider a simplified problem where a liquid and a gas are bounded between two Calculus of variations parallel plane surfaces with a capillary surface between the liquid–gas interface. The liquid–plane Two-point boundary value problem interface is considered to be non-ideal, which implies that the contact angle of the capillary surface at – Navier Stokes equation the interface is set-valued, and change in the contact angle exhibits hysteresis. We analyze a two-point boundary value problem for the fluid flow described by the Navier–Stokes and continuity equations, wherein a capillary surface with one contact angle is deformed to another with a different contact angle. The main contribution of this paper is that we show the existence of non-unique classical solutions to this problem, and numerically compute the dissipation.
    [Show full text]
  • Electrohydrodynamic Settling of Drop in Uniform Electric Field at Low and Moderate Reynolds Numbers
    Electrohydrodynamic settling of drop in uniform electric field at low and moderate Reynolds numbers Nalinikanta Behera1, Shubhadeep Mandal2 and Suman Chakraborty1,a 1Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur,West Bengal- 721302, India 2Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, D-37077 G¨ottingen, Germany Dynamics of a liquid drop falling through a quiescent medium of another liquid is investigated in external uniform electric field. The electrohydrodynamics of a drop is governed by inherent deformability of the drop (defined by capillary number), the electric field strength (defined by Masson number) and the surface charge convection (quantified by electric Reynolds number). Surface charge convection generates nonlinearilty in a electrohydrodynamics problem by coupling the electric field and flow field. In Stokes limit, most existing theoretical models either considered weak charge convection or weak electric field to solve the problem. In the present work, gravitational settling of the drop is investigated analytically and numerically in Stokes limit considering significant electric field strength and surface charge convection. Drop deformation accurate upto higher order is calculated analytically in small deformation regime. Our theoretical results show excellent agreement with the numerical and shows improvement over previous theoretical models. For drops falling with moderate Reynolds number, the effect of Masson number on transient drop dynamics is studied for (i) perfect dielectric drop in perfect dielectric medium (ii) leaky dielectric drop in the leaky dielectric medium. For the latter case transient deformation and velocity obtained for significant charge convection is compared with that of absence in charge convection which is the novelty of our study.
    [Show full text]
  • Arxiv:1808.01401V1 [Math.NA] 4 Aug 2018 Failure in Manufacturing Microelectromechanical Systems Devices, Is Caused by an Interfacial Tension [53]
    A CONTINUATION METHOD FOR COMPUTING CONSTANT MEAN CURVATURE SURFACES WITH BOUNDARY N. D. BRUBAKER∗ Abstract. Defined mathematically as critical points of surface area subject to a volume constraint, con- stant mean curvatures (CMC) surfaces are idealizations of interfaces occurring between two immiscible fluids. Their behavior elucidates phenomena seen in many microscale systems of applied science and engineering; however, explicitly computing the shapes of CMC surfaces is often impossible, especially when the boundary of the interface is fixed and parameters, such as the volume enclosed by the surface, vary. In this work, we propose a novel method for computing discrete versions of CMC surfaces based on solving a quasilinear, elliptic partial differential equation that is derived from writing the unknown surface as a normal graph over another known CMC surface. The partial differential equation is then solved using an arc-length continuation algorithm, and the resulting algorithm produces a continuous family of CMC surfaces for varying volume whose physical stability is known. In addition to providing details of the algorithm, various test examples are presented to highlight the efficacy, accuracy and robustness of the proposed approach. Keywords. constant mean curvature, interface, capillary surface, symmetry-breaking bifurcation, arc- length continuation AMS subject classifications. 49K20, 53A05, 53A10, 76B45 1. Introduction Determining the behavior of an interface between nonmixing phases is crucial for under- standing the onset of phenomena in many microscale systems. For example, interfaces induce capillary action in tubules [23], produce beading in microfluidics [24], and change the wetting properties of patterned substrates [34]. Additionally, stiction, the leading cause of arXiv:1808.01401v1 [math.NA] 4 Aug 2018 failure in manufacturing microelectromechanical systems devices, is caused by an interfacial tension [53].
    [Show full text]
  • Statics and Dynamics of Capillary Bridges
    Colloids and Surfaces A: Physicochem. Eng. Aspects 460 (2014) 18–27 Contents lists available at ScienceDirect Colloids and Surfaces A: Physicochemical and Engineering Aspects j ournal homepage: www.elsevier.com/locate/colsurfa Statics and dynamics of capillary bridges a,∗ b Plamen V. Petkov , Boryan P. Radoev a Sofia University “St. Kliment Ohridski”, Faculty of Chemistry and Pharmacy, Department of Physical Chemistry, 1 James Bourchier Boulevard, 1164 Sofia, Bulgaria b Sofia University “St. Kliment Ohridski”, Faculty of Chemistry and Pharmacy, Department of Chemical Engineering, 1 James Bourchier Boulevard, 1164 Sofia, Bulgaria h i g h l i g h t s g r a p h i c a l a b s t r a c t • The study pertains both static and dynamic CB. • The analysis of static CB emphasis on the ‘definition domain’. • Capillary attraction velocity of CB flattening (thinning) is measured. • The thinning is governed by capillary and viscous forces. a r t i c l e i n f o a b s t r a c t Article history: The present theoretical and experimental investigations concern static and dynamic properties of cap- Received 16 January 2014 illary bridges (CB) without gravity deformations. Central to their theoretical treatment is the capillary Received in revised form 6 March 2014 bridge definition domain, i.e. the determination of the permitted limits of the bridge parameters. Concave Accepted 10 March 2014 and convex bridges exhibit significant differences in these limits. The numerical calculations, presented Available online 22 March 2014 as isogones (lines connecting points, characterizing constant contact angle) reveal some unexpected features in the behavior of the bridges.
    [Show full text]
  • Arxiv:2103.12893V1 [Physics.Flu-Dyn] 23 Mar 2021 (Brine), Thus Creating a Two-Phase flow System
    Dynamic wetting effects in finite mobility ratio Hele-Shaw flow S.J. Jackson, D. Stevens, D. Giddings, and H. Power∗ Faculty of Engineering, Division of Energy and Sustainability, University of Nottingham, UK (Dated: July 21, 2015) In this paper we study the effects of dynamic wetting on the immiscible displacement of a high viscosity fluid subject to the radial injection of a less viscous fluid in a Hele-Shaw cell. The dis- placed fluid can leave behind a trailing film that coats the cell walls, dynamically affecting the pressure drop at the fluid interface. By considering the non-linear pressure drop in a boundary element formulation, we construct a Picard scheme to iteratively predict the interfacial velocity and subsequent displacement in finite mobility ratio flow regimes. Dynamic wetting delays the onset of finger bifurcation in the late stages of interfacial growth, and at high local capillary numbers can alter the fundamental mode of bifurcation, producing vastly different finger morphologies. In low mobility ratio regimes, we see that finger interaction is reduced and characteristic finger breaking mechanisms are delayed but never fully inhibited. In high mobility ratio regimes, finger shielding is reduced when dynamic wetting is present. Finger bifurcation is delayed which allows the primary fingers to advance further into the domain before secondary fingers are generated, reducing the level of competition. I. INTRODUCTION der of 50◦C, pressure ranging from 10 to 20 MPa and having a density between 0.4 to 0.8 times that of the During the displacement of a high viscosity fluid surrounding brine. The mobility ratio between the by a low viscosity fluid, perturbations along the in- CO2 and brine is of order 10.
    [Show full text]
  • Georgia Institute of Technology in Partial Fulfillment Of
    M INVESTIGATION OF CAPILLARY SPREADING POWER OF EISJLSI01IS J A THESIS Presentad to the Faculty of the Division of Graduate Student: Georgia Institute of Technology In Partial Fulfillment of the Requirements for the Degree Master of Science in Chemical Engineering fey Boiling Gay Braviley September 19/49 0752fl rt 9 AN INVESTIGATION OF CAPILLARY SPREADING POWER OP EMULSIONS Approved: ^i S'-"—y<c\-— /. ./ J Date Approved by Chairman &, \j^e^^cZt^u^ <C~*Si. ^g*i #q t AC XBQRLgDGSWTS The author wishes to express his appreciation to the personnel of Southern Sizing Company for making this study possible. To Dr. J» M« DallaValle, my advisor, I am most deeply indebted for his suggestion of the study and his valuable guidance and interest in the problem. SABLE OF CONTENTS CHAPTER PAGE I. INTRODUCTION AMD SCOPE OF THE PROBLEM 1 II. REVIEW OF THE LITERATURE 3 Capillary Flow 3 Surface Tension 5 Wotting, Spreading, and Penetration 6 III. EQUIPMT 7 Selection 7 Description and Operation 8 IV. SELECTION, STABILITY, AND PHYSICAL PROPERTIES OF EMULSIONS . , 11 V. CAPILLARY SPREADING POWER 19 Development of Equations* •••••••• • 19 Effect of Temperature •• ••••• 26 Effect of Emulsion Concentration • 26 VI. SUT«RY £SB CONCLUSIONS 29 Summary 29 Conclusions •••••••••.••••••••••••• 30 BIBLIOGRAPHY 3J APPMDIX „ 36 * LIST OF TABLES TABLES PAGE I. Physical Properties of Test Emulsion 13 II. Time of Capillary Plow vs. Viscosity-Surface Tension Ratio •••• • • 21 III. Time of Capillary Plow vs. Concentration and Temperature #••.••••»••••••••••••*• ho IV. Variation of Physical Properties of Test Emulsion with Temperature ••••• •• hi V. Variation of Physical Properties of Test Emulsion with Concentration •••••••••••• •• i\Z ' LIST OP FIGURES FIGURES PAGE 1.
    [Show full text]
  • Sharp-Interface Limit for the Navier–Stokes–Korteweg Equations
    Sharp-Interface Limit for the Navier–Stokes–Korteweg Equations Dissertation zur Erlangung des Doktorgrades vorgelegt von Johannes Daube an der Fakult¨at f¨ur Mathematik und Physik der Albert-Ludwigs-Universit¨at Freiburg Februar 2017 Dekan: Prof. Dr. Gregor Herten 1. Gutachter: Prof. Dr. Dietmar Kr¨oner 2. Gutachter: Prof. Dr. Helmut Abels Datum der m¨undlichen Pr¨ufung: 09.11.2016 Contents Abstract v Acknowledgements vii List of Symbols ix 1 Introduction 1 1.1 PhaseTransitions................................ 1 1.2 CapillaryEffects ................................. 2 1.3 Sharp- and Diffuse-Interface Models and the Sharp-Interface Limit . 3 1.4 The Navier–Stokes–Korteweg Model . .... 4 1.5 TheStaticCase.................................. 10 1.6 ExistingResults ................................. 13 1.7 NewContributions ................................ 16 1.8 Outline ...................................... 16 2 Mathematical Background 19 2.1 Notation...................................... 19 2.2 Measures ..................................... 26 2.3 Functions of Bounded Variation . 30 3 The Diffuse-Interface Model 35 3.1 The Double-Well Potential . 35 3.2 TheNotionofWeakSolutions. 37 3.3 APrioriEstimates ................................ 43 3.4 CompactnessofWeakSolutions. 56 3.5 LimitingInterfaces .............................. 60 3.6 Remarks...................................... 63 4 The Sharp-Interface Model 67 4.1 Two-Phase Incompressible Navier–Stokes Equations with Surface Tension . 67 4.2 Hypersurfaces................................... 70
    [Show full text]