Anthraquinones As Inhibitors of Sulfide Production from Sulfate-Reducing Bacteria

Total Page:16

File Type:pdf, Size:1020Kb

Anthraquinones As Inhibitors of Sulfide Production from Sulfate-Reducing Bacteria Europaisches Patentamt 19 European Patent Office Office europeen des brevets © Publication number: 0 525 073 B1 12 EUROPEAN PATENT SPECIFICATION © Date of publication of patent specification © int. ci.5: A01N 35/06, C12Q 1/04, 25.05.94 Bulletin 94/21 C12Q 1/18 © Application number : 91908405.3 © Date of filing : 19.03.91 © International application number : PCT/US91/01734 @ International publication number : WO 91/15954 31.10.91 Gazette 91/25 @ ANTHRAQUINONES AS INHIBITORS OF SULFIDE PRODUCTION FROM SULFATE-REDUCING BACTERIA. © Priority: 18.04.90 US 510763 © Proprietor : E.I. DU PONT DE NEMOURS AND 07.02.91 US 652406 COMPANY 1007 Market Street Wilmington Delaware 19898 (US) @ Date of publication of application 03.02.93 Bulletin 93/05 © Inventor : ANDERSON, Albert Gordon 2410 St. Francis Street (45) Publication of the grant of the patent : Wilmington, DE 19808 (US) 25.05.94 Bulletin 94/21 Inventor : COOLING, Frederick Beiswanger, III 521 Cabot Drive @ Designated Contracting States : Hockessin, DE 19707-0731 (US) AT BE CH DE ES FR GB GR IT LI NL Inventor : ODOM, James Martin 28 Hilltop Road Avondale, PA 19311 (US) © References cited : Inventor : WEIMER, Paul James EP-A- 0 094 721 14 Oxwood Circle CH-A- 505 900 Madison, Wl 53717 (US) CH-A- 614 466 GB-A- 2 155 453 US-A- 4 532 117 © Representative : Jones, Alan John et al CHEMICAL ABSTRACTS, vol. 43, no. 7, 10 April CARPMAELS & RANSFORD 1949, Columbus, Ohio, US; M. ANCHEL: 43 Bloomsbury Square "Identification of the antibiotic substance London, WC1A 2RA (GB) from cassia reticulata as 4,5-dihydroxyanthra- CO quinone-2-carboxylic acid", abstract no. 3062f CO h- o If) CM If) Note : Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been UJ filed until the opposition fee has been paid (Art. 99(1) European patent convention). Jouve, 18, rue Saint-Denis, 75001 PARIS EP 0 525 073 B1 Description FIELD OF THE INVENTION 5 The first aspect of the invention is the novel discovery that many anthraquinones, or the corresponding anthraquinol or tetrahydroanthraquinone derivatives thereof, inhibit sulfide production from sulfate-reducing bacteria and are thus potentially useful chemicals for treating industrial situations where biological sulfide gen- eration is a problem. Examples include the prevention of souring of oil wells with hydrogen sulfide orthe con- tamination of surface operations such as pipelines, and storage tanks with hydrogen sulfide. The second as- 10 pect is the relative specificity of the anthraquinones, anthraquinols ortetrahydroanthraquinones for the proc- ess of respiratory sulfate reduction. This aspect extends the useful application of these inhibitors to situations where only sulfate-reducers should be inhibited, but not other bacterial types, as for example, in sewage treat- ment where bacterial digestion is desirable but sulfide generation is not, or in the utilization of biomass for the generation of fuel gases where hydrogen sulfide is a deleterious contaminant, or in the agricultural sphere 15 where sulfide generation and consequent soil alkalinity may be a problem for rice cultivation. Hereinafter, the term "anthraquinone(s)" as used in this application is defined to include anthraquinone compounds, the corresponding anthraquinol derivatives, the corresponding tetrahydroanthraquinone com- pounds, the corresponding octahydroanthraquinone compounds, and the reduced derivatives thereof. It is proposed that the anthraquinones are a novel treatment for the problem of hydrogen sulfide pollution 20 by virtue of their relatively benign environmental impact, which is due to their relatively specific toxicity for respiratory sulfide generation. As a consequence, these compounds may be useful in treating situations that are incompatible with the use of broad-spectrum biocides. BACKGROUND OF THE INVENTION 25 A recent review by Widdel (1986) in Anaerobic Bacteria in Habitats Other Than Man, pp 157-184, Eds. Barnes and Mead, Blackwell Scientific Publications, includes as sulfate-reducing bacteria the genera: Desul- fovibrio, Desulfotomaculum, Desulfobacter, Desulfobulbus, Desulfococcus, Desulfonema, Desulfosarcina and Thermodesulfobacterium. Significant inter- and even intra-generic differences exist in terms of morphologies, 30 ecological niches, and metabolic capabilities. However, all respiratory sulfate-reducing bacteria are strict anae- robes which are poisoned by oxygen. The preponderance of isolates are eubacterial and classified as Desul- fovibrio although extremely thermophilic archaebacterial sulfate-reducers have been isolated from undersea volcanoes (Stetter et al., 1987 Science 236:822-825). Thus, the term sulfate-reducer encompasses a broad spectrum of organisms across both eubacterial and archaebacterial branches of bacterial phylogeny. 35 The metabolic capabilities of the genus Desulfovibrio reflect the range of available niches. Utilization of sulfate as an electron sink and respiratory substrate is the characteristic and predominant mode of energy gen- eration. However, nitrate, elemental sulfur, f umarate and other sulfur oxy-acids, when present, can also serve in a similar capacity for a few species. These bacteria are specialists adapted to use the metabolic end-prod- ucts of primary degradative bacteria for electron and carbon sources as described by Odom et al., 1981 in 40 Trends in the Biology of Fermentations for Fuels and Chemicals, Eds. Hollaender, Rabson, Rogers, Pietro, Valentine, and Wolfe, Plenum Publishing and Odom etal., 1984 Ann. Rev. Microbiol. 38:551-592. Organic acids such as lactate, formate, and pyruvate, alcohols such as ethanol, and molecular hydrogen are the preferred electron sources for sulfate reduction. Acetate, which is the metabolic end-product of the Desulfovibrio, can be utilized by Desulfobacter as an electron donor with carbon dioxide as the sole end product (Stetter et al., 45 1 987 Science 236:822-825). Thus, the sulfate-reducers can effect total mineralization of organic matter from the level of alcohols and acids to carbon dioxide. The sulfate-reducers play a special role in methane formation as it occurs in sewage treatment and fresh- water bogs. In these situations, where sulfate concentrations are very low, the sulfate-reducer enters into a symbiotic relationship with methane-producing bacteria (methanogen) wherein the sulfate-reducers actually so produce hydrogen from organic acids and alcohols only if the hydrogen is continuously consumed by the me- thanogen. This important process, termed interspecies hydrogen transfer, is a vital link in the food chain from complex polymers to methane (Odom et al., 1981 in Trends in the Biology of Fermentations for Fuels and Chemicals, Eds. Hollaender, Rabson, Rogers, Pietro, Valentine, and Wolfe, Plenum Publishing). The most in- tensively studied aspect has been hydrogen metabolism due to its inherent relationship with methane (fuel) 55 generation from biomass. Similarly, the implication of microbial hydrogen uptake in the phenomenon of anae- robic corrosion of steel according to the theory of cathodic depolarization has stimulated research into the the hydrogen metabolism of sulfate-reducers as well as other microbial types (Von Wolzogen Kuhretal., 1934 Water 18:147-165, Odom etal., 1984 Ann. Rev. Microbiol. 38:551-592, Pankhania etal., 1986 J. Gen. Microbiol. 2 EP 0 525 073 B1 132:3357-3365, and Ringas et al., 1987 Corrosion Engineering 44 #6:386-396). There are currently approximately 130 different industrial biocide products registered with the U.S. En- vironmental Protection Agency which are produced by over a 100 different companies in the U.S. alone. The 5 leading biocides are halogenated compounds, which make up 35% of total sales, while quarternary detergents and phenolics represent 22% of total sales. Organometallic compounds, inorganic compounds, aldehydes, ani- lides, and organosulfur compounds make up the rest of the total. None of the known commercial chemicals are specif ic for sulfate-reducing bacteria, but many have demonstrated effectiveness against sulfate-reducers. Below are discussed some of the more commonly used inhibitors against sulfate-reducing bacteria. 10 Organo-sulfur or sulfur-nitrogen compounds contain some of the more effective industrial biocides against sulfate-reducers. The isothiazoline containing compounds (produced by Rohm & Haas, Inc. under the name "Kathon®") are effective against, but not specific for, sulfate-reducers at 12 ppm (Oil and Gas Journal March 8, 1982, p253). The thiocyanate containing compounds are effective in the range of 5-30 ppm (i.e. "Cytox®"). 2,2-Dibromo-3-nitrilopropionamide (DBNPA) is produced by Nalco, Inc. and is claimed to be particularly ef- 15 fective against sulfate-reducing bacteria at 3-12 ppm. This compound is also a good surfactant and corrosion inhibitor. Recently, Nalco, Inc. has introduced an oilfield biocide claimed to be effective against sulfate-reduc- ers. The product is essentially metronidazole, which is a pharmaceutical originally used to treat Trichosomal infections. The compound is not specific for sulfate-reducers but is claimed to be generally effective against anaerobic bacteria. 20 Acids and aldehydes are also effective inhibitors of sulfate-reducers. Glutaraldehyde is widely used in wa- ter flooding situations at concentrations in the range of 100
Recommended publications
  • Separation of Hydroxyanthraquinones by Chromatography
    Separation of hydroxyanthraquinones by chromatography B. RITTICH and M. ŠIMEK* Research Institute of Animal Nutrition, 691 23 Pohořelice Received 6 May 1975 Accepted for publication 25 August 1975 Chromatographic properties of hydroxyanthraquinones have been examined. Good separation was achieved using new solvent systems for paper and thin-layer chromatography on common and impregnated chromatographic support materials. Commercial reagents were analyzed by the newly-developed procedures. Было изучено хроматографическое поведение гидроксиантрахинонов. Хорошее разделение было достигнуто при использовании предложенных новых хроматографических систем: бумажная хроматография смесью уксусной кислоты и воды на простой бумаге или бумаге импрегнированной оливковым мас­ лом, тонкослойная хроматография на целлюлозе импрегнированной диметилфор- мамидом и на силикагеле без или с импрегнацией щавелевой или борной кислотами. Anthraquinones constitute an important class of organic substances. They are produced industrially as dyes [1] and occur also in natural products [2]. The fact that some hydroxyanthraquinones react with metal cations to give colour chelates has been utilized in analytical chemistry [3]. Anthraquinone and its derivatives can be determined spectrophotometrically [4—6] and by polarography [4]. The determination of anthraquinones is frequently preceded by a chromatographic separation the purpose of which is to prepare a chemically pure substance. For chromatographic separation of anthraquinone derivatives common paper [7—9] and paper impregnated with dimethylformamide or 1-bromonaphthalene has been used [10, 11]. Dyes derived from anthraquinone have also been chromatographed on thin layers of cellulose containing 10% of acetylcellulose [12]. Thin-layer chromatography on silica gel has been applied in the separation of dihydroxyanthraquinones [13], di- and trihydroxycarbox- ylic acids of anthraquinones [14] and anthraquinones occurring in nature [15].
    [Show full text]
  • Adsorption of C.I. Natural Red 4 Onto Spongin Skeleton of Marine Demosponge
    Materials 2015, 8, 96-116; doi:10.3390/ma8010096 OPEN ACCESS materials ISSN 1996-1944 www.mdpi.com/journal/materials Article Adsorption of C.I. Natural Red 4 onto Spongin Skeleton of Marine Demosponge Małgorzata Norman 1, Przemysław Bartczak 1, Jakub Zdarta 1, Włodzimierz Tylus 2, Tomasz Szatkowski 1, Allison L. Stelling 3, Hermann Ehrlich 4 and Teofil Jesionowski 1,* 1 Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, Poznan 60965, Poland; E-Mails: [email protected] (M.N.); [email protected] (P.B.); [email protected] (J.Z.); [email protected] (T.S.) 2 Institute of Inorganic Technology and Mineral Fertilizers, Technical University of Wroclaw, Smoluchowskiego 25, Wroclaw 50372, Poland; E-Mail: [email protected] 3 Department of Mechanical Engineering and Materials Science, Center for Materials Genomics, Duke University, 144 Hudson Hall, Durham, NC 27708, USA; E-Mail: [email protected] 4 Institute of Experimental Physics, Technische Universität Bergakademie Freiberg, Leipziger 23, Freiberg 09599, Germany; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +48-61-665-3720; Fax: +48-61-665-3649. Academic Editor: Harold Freeman Received: 31 August 2014 / Accepted: 18 December 2014 / Published: 29 December 2014 Abstract: C.I. Natural Red 4 dye, also known as carmine or cochineal, was adsorbed onto the surface of spongin-based fibrous skeleton of Hippospongia communis marine demosponge for the first time. The influence of the initial concentration of dye, the contact time, and the pH of the solution on the adsorption process was investigated.
    [Show full text]
  • Downstream Processing of Natural Products: Carminic Acid
    Downstream Processing of Natural Products: Carminic Acid by Rosa Beatriz Cabrera A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy Approved Thesis Committee Prof. Dr. H. Marcelo Fernandez-Lahore Prof. Dr. Georgi Muskhelishvili Prof. Dr. Osvaldo Cascone Prof. Dr. Mathias Winterhalter School of Engineering and Science 26th May 2005 Downstream Processing of Natural Products: Carminic Acid ii NOTE FROM THE AUTHOR Bioprocessing industries increasingly require overlapping skills coming from various disciplines. For products to move form the laboratory to the market demands more than an understanding of biology. Nowadays, understanding of the fundamentals of chemical engineering and their application to large-scale product recovery and purification is a key competitive advantage. The hybridization of the biochemist and the chemical engineer created a new discipline that of bioproduct process designer. When applied to product recovery and purification this is commonly referred as Downstream Processing. This work has been developed in cooperation with an industrial partner interested in the downstream processing of carminic acid, as a natural food colorant. Therefore, some details of the work are not presented here nor published in the open literature since they are considered as industrial secret. Experimental work was performed at both the University of Buenos Aires (Argentina) and the International University Bremen GmbH (Germany). Pilot plant studies were performed at Naturis S.A., Buenos Aires (Argentina). iii ABSTRACT Carminic acid (E 120) is a natural colorant extracted from cochineal e.g., the desiccated bodies of Dactylopius coccus Costa female insects. The major usage of Natural Red lies in the food, cosmetic and pharmaceutical industries.
    [Show full text]
  • Role of Oxidative Stress Ausˇra Nemeikaite˙-Cˇ E˙Niene˙ A, Egle˙ Sergediene˙ B, Henrikas Nivinskasb and Narimantas Cˇ E˙Nasb* a Institute of Immunology, Mole˙Tu˛ Pl
    Cytotoxicity of Natural Hydroxyanthraquinones: Role of Oxidative Stress Ausˇra Nemeikaite˙-Cˇ e˙niene˙ a, Egle˙ Sergediene˙ b, Henrikas Nivinskasb and Narimantas Cˇ e˙nasb* a Institute of Immunology, Mole˙tu˛ Pl. 29, Vilnius 2021, Lithuania b Institute of Biochemistry, Mokslininku˛ St. 12, Vilnius 2600, Lithuania. Fax: 370-2-729196. E-mail: [email protected] * Author for correspondence and reprint requests Z. Naturforsch. 57c, 822Ð827 (2002); received April 29/June 3, 2002 Hydroxyanthraquinones, Cytotoxicity, Oxidative Stress In order to assess the role of oxidative stress in the cytotoxicity of natural hydroxyanthra- quinones, we compared rhein, emodin, danthron, chrysophanol, and carminic acid, and a series of model quinones with available values of single-electron reduction midpoint potential 1 at pH 7.0 (E 7), with respect to their reactivity in the single-electron enzymatic reduction, and their mammalian cell toxicity. The toxicity of model quinones to the bovine leukemia virus-transformed lamb kidney fibroblasts (line FLK), and HL-60, a human promyelocytic 1 leukemia cell line, increased with an increase in their E 7. A close parallelism was found between the reactivity of hydroxyanthraquinones and model quinones with single-electron transferring flavoenzymes ferredoxin: NADP+ reductase and NADPH: cytochrome P-450 reductase, and their cytotoxicity. This points to the importance of oxidative stress in the toxicity of hydroxyanthraquinones in these cell lines, which was further evidenced by the protective effects of desferrioxamine and the antioxidant N,NЈ-diphenyl-p-phenylene di- amine, by the potentiating effects of 1,3-bis-(2-chloroethyl)-1-nitrosourea, and an increase in lipid peroxidation. Introduction somerase II (Müller et al., 1996) and protein ki- Natural 1,8-dihydroxyanthraquinones rhein, nase C (Chan et al., 1993), and the inhibition of danthron, emodin (Fig.
    [Show full text]
  • Glycosides Pharmacognosy Dr
    GLYCOSIDES PHARMACOGNOSY DR. KIBOI Glycosides Glycosides • Glycosides consist of a sugar residue covalently bound to a different structure called the aglycone • The sugar residue is in its cyclic form and the point of attachment is the hydroxyl group of the hemiacetal function. The sugar moiety can be joined to the aglycone in various ways: 1.Oxygen (O-glycoside) 2.Sulphur (S-glycoside) 3.Nitrogen (N-glycoside) 4.Carbon ( Cglycoside) • α-Glycosides and β-glycosides are distinguished by the configuration of the hemiacetal hydroxyl group. • The majority of naturally-occurring glycosides are β-glycosides. • O-Glycosides can easily be cleaved into sugar and aglycone by hydrolysis with acids or enzymes. • Almost all plants that contain glycosides also contain enzymes that bring about their hydrolysis (glycosidases ). • Glycosides are usually soluble in water and in polar organic solvents, whereas aglycones are normally insoluble or only slightly soluble in water. • It is often very difficult to isolate intact glycosides because of their polar character. • Many important drugs are glycosides and their pharmacological effects are largely determined by the structure of the aglycone. • The term 'glycoside' is a very general one which embraces all the many and varied combinations of sugars and aglycones. • More precise terms are available to describe particular classes. Some of these terms refer to: 1.the sugar part of the molecule (e.g. glucoside ). 2.the aglycone (e.g. anthraquinone). 3.the physical or pharmacological property (e.g. saponin “soap-like ”, cardiac “having an action on the heart ”). • Modern system of naming glycosides uses the termination '-oside' (e.g. sennoside). • Although glycosides form a natural group in that they all contain a sugar unit, the aglycones are of such varied nature and complexity that glycosides vary very much in their physical and chemical properties and in their pharmacological action.
    [Show full text]
  • Reviewanthraquinones, the Dr Jekyll and Mr Hyde of the Food Pigment
    Food Research International 65 (2014) 132–136 Contents lists available at ScienceDirect Food Research International journal homepage: www.elsevier.com/locate/foodres Review Anthraquinones, the Dr Jekyll and Mr Hyde of the food pigment family Laurent Dufossé ⁎ Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments, Université de La Réunion, ESIROI Agroalimentaire, Parc Technologique, 2 rue Joseph Wetzell, F-97490 Sainte-Clotilde, Ile de La Réunion, France article info abstract Article history: Anthraquinones constitute the largest group of quinoid pigments with about 700 compounds described. Their Received 28 January 2014 role as food colorants is strongly discussed in the industry and among scientists, due to the 9,10-anthracenedione Received in revised form 9 September 2014 structure, which is a good candidate for DNA interaction, with subsequent positive and/or negative effect(s). Accepted 18 September 2014 Benefits (Dr Jekyll) and inconveniences (Mr Hyde) of three anthraquinones from a plant (madder color), an Available online 28 September 2014 insect (cochineal extract) and filamentous fungi (Arpink Red) are presented in this review. For example excellent Keywords: stability in food formulation and variety of hues are opposed to allergenicity and carcinogenicity. All the anthra- Anthraquinone quinone molecules are not biologically active and research effort is requested for this strange group of food Color pigments. Pigment © 2014 Elsevier Ltd. All rights reserved. Madder Carmine Filamentous fungi Contents 1. Introduction.............................................................
    [Show full text]
  • Natural Hydroxyanthraquinoid Pigments As Potent Food Grade Colorants: an Overview
    Review Nat. Prod. Bioprospect. 2012, 2, 174–193 DOI 10.1007/s13659-012-0086-0 Natural hydroxyanthraquinoid pigments as potent food grade colorants: an overview a,b, a,b a,b b,c b,c Yanis CARO, * Linda ANAMALE, Mireille FOUILLAUD, Philippe LAURENT, Thomas PETIT, and a,b Laurent DUFOSSE aDépartement Agroalimentaire, ESIROI, Université de La Réunion, Sainte-Clotilde, Ile de la Réunion, France b LCSNSA, Faculté des Sciences et des Technologies, Université de La Réunion, Sainte-Clotilde, Ile de la Réunion, France c Département Génie Biologique, IUT, Université de La Réunion, Saint-Pierre, Ile de la Réunion, France Received 24 October 2012; Accepted 12 November 2012 © The Author(s) 2012. This article is published with open access at Springerlink.com Abstract: Natural pigments and colorants are widely used in the world in many industries such as textile dying, food processing or cosmetic manufacturing. Among the natural products of interest are various compounds belonging to carotenoids, anthocyanins, chlorophylls, melanins, betalains… The review emphasizes pigments with anthraquinoid skeleton and gives an overview on hydroxyanthraquinoids described in Nature, the first one ever published. Trends in consumption, production and regulation of natural food grade colorants are given, in the current global market. The second part focuses on the description of the chemical structures of the main anthraquinoid colouring compounds, their properties and their biosynthetic pathways. Main natural sources of such pigments are summarized, followed by discussion about toxicity and carcinogenicity observed in some cases. As a conclusion, current industrial applications of natural hydroxyanthraquinoids are described with two examples, carminic acid from an insect and Arpink red™ from a filamentous fungus.
    [Show full text]
  • Sources of Crude Drug, Plant Families, Biogenesis of Phytochemicals
    1 Sources of Crude Drug, Plant Families, Biogenesis of Phytochemicals SOURCES OF CRUDE DRUG Plant Oldest source of drugs. 25% of the drugs prescribed worldwide come from plants More than 200 drugs considered as basic and essential by the World Health Organisation (WHO) Significant number of synthetic drugs obtained from natural precursors. Example: Digoxin from Digitalis species, quinine and quinidine from Cinchona species, vincristrine and vinblastine from Catharanthus roseus, atropine from Atropa belladonna and morphine and codeine from Papaver somniferum. Animal Second largest source of crude drugs. Example: Honey from honeybee, beeswax from bees, cod liver oil from shark, bufalin from toad, animal pancreas is a source of Insulin, musk oil from musk, spermaceti wax from sperm whale, woolfat from sheep, carminic acid from colchineal, venoms from snake Mineral Highly purified form of naturally occurring mineral substances is used in medicine Example: Sulphur is a key ingredient in certain bacteriostatic drugs, shilajit is used as tonic, calamine is used as anti-itching agent Marine Major part of earth is covered with water bodies and hence bioactive compounds from marine flora and fauna (microorganisms, algae, fungi, invertebrates, and 1 Contd… 2 Pharmacognosy and Phytochemistry: A Companion Handbook vertebrates) have extensive past and present use in the treatment of many diseases Marine Serve as compounds of interest both in their natural form and as templates for synthetic modification. Several molecules isolated from various
    [Show full text]
  • Hemiptera: Coccoidea)
    Journal of Agricultural Science; Vol. 10, No. 4; 2018 ISSN 1916-9752 E-ISSN 1916-9760 Published by Canadian Center of Science and Education Efficacy of Libidibia ferrea var. ferrea and Agave sisalana Extracts against Dactylopius opuntiae (Hemiptera: Coccoidea) Rosineide S. Lopes1, Luciana G. Oliveira1, Antonio F. Costa1, Maria T. S. Correia2, Elza A. Luna-Alves Lima3 & Vera L. M. Lima2 1 Agronomic Institute of Pernambuco (IPA), Recife, Brazil 2 Department of Biochemistry, Federal University of Pernambuco (UFPE), Recife, Brazil 3 Department of Mycology, Federal University of Pernambuco (UFPE), Recife, Brazil Correspondence: Vera L. M. Lima, Departamento de Bioquímica, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n, Cidade Universitária, Recife, PE, CEP: 50670-420, Brazil. Tel: 55-(81)-2126-8576. E-mail: [email protected] Received: December 18, 2017 Accepted: January 24, 2018 Online Published: March 15, 2018 doi:10.5539/jas.v10n4p255 URL: https://doi.org/10.5539/jas.v10n4p255 The research is financed by “Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco” (FACEPE), National Council for Scientific and Technological Development (CNPq), Coordination for the Improvement of Higher Level -or Education- Personnel) (CAPES), and “Banco do Nordeste do Brasil” (BNB). Abstract The carmine cochineal (Dactylopius opuntiae) is an insect-plague of Opuntia ficus-indica palm crops, causing losses in the production of the vegetable used as forage for the Brazilian semiarid animals. The objective of this work was to analyze the efficacy of plant extracts, insecticides and their combination in the control of D. opuntiae. Leaf and pod extracts of Libidibia ferrea var.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 4,746,461 Zielske (45) Date of Patent: May 24, 1988
    United States Patent (19) 11 Patent Number: 4,746,461 Zielske (45) Date of Patent: May 24, 1988 54 METHOD FOR PREPARING 4,041,051 8/1977 Yamado et al. ..................... 260/371 1,4-DIAMINOANTHRAQUINONES AND 4,661,293 4/1987 Zielske ................................ 260/377 INTERMEDIATES THEREOF FOREIGN PATENT DOCUMENTS 75 Inventor: Alfred G. Zielske, Pleasanton, Calif. 2014178 8/1979 United Kingdom................ 260/377 2019870 1 1/1979 United Kingdom ..... ... 260/377 73 Assignee: The Clorox Company, Oakland, Calif. 2100307A 5/1980 United Kingdom ................ 260/377 (21) Appl. No.: 945,906 OTHER PUBLICATIONS 22 Filed: Dec. 23, 1986 Morrison & Boyd, Organic Chemistry, 3rd ed., 1973, pp. 458, 456,527, 528. s Related U.S. Application Data Chemical Abstract, vol. 88, #10498g&h, Schultz et al., 60 Division of Ser. No. 868,884, May 23, 1986, Pat. No. 1978, "Synthesis of Meso-Substituted Hydroxyantha 4,661,293, which is a continuation of Ser. No. 556,835, rones with Laxative Activity Parts I & II' Arch. Dec. 1, 1983, abandoned. Pharm, vol. 310, No. 10, pp. 769-780, 1977. 51 Int. Cl." ...................... C11D 15/02; C11D 13/00 Primary Examiner-Glennon H. Hollrah 52 U.S. C. .................................... 260/370; 260/371; Assistant Examiner-Raymond Covington 260/374 Attorney, Agent, or Firm-Majestic, Gallagher, Parsons 58 Field of Search ............... 260/370, 371, 377, 378, & Siebert 260/374 (57) ABSTRACT (56) References Cited Aminoanthraquinones are generally useful as dyes and U.S. PATENT DOCUMENTS coloring agents. But known methods of synthesizing 2,174,751 10/1939 Koerberle ........................... 260/367 unsymmetrically substituted 1,4-diaminoanthraquinones 2,183,652 12/1939 Lord ............
    [Show full text]
  • Carminic Acid Linked to Silica Nanoparticles As Pigment/Antioxidant Bifunctional Excipient for Pharmaceutical Emulsions
    pharmaceutics Article Carminic Acid Linked to Silica Nanoparticles as Pigment/Antioxidant Bifunctional Excipient for Pharmaceutical Emulsions Francisco Arriagada 1 , Catalina Ugarte 2, Germán Günther 2 , María Angélica Larraín 2 , Víctor Guarnizo-Herrero 3, Santi Nonell 4 and Javier Morales 2,* 1 Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, 5110033 Valdivia, Chile; [email protected] 2 Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 8380494 Santiago, Chile; [email protected] (C.U.); [email protected] (G.G.); [email protected] (M.A.L.) 3 Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain; [email protected] 4 Institut Químic de Sarrià (IQS), Universidad Ramon Llull. Via Augusta 390, 08017 Barcelona, Spain; [email protected] * Correspondence: [email protected] Received: 7 February 2020; Accepted: 8 April 2020; Published: 19 April 2020 Abstract: The incorporation of pigments and natural polyphenols into inorganic matrices, resulting in a hybrid material that improves the resistance and chemical stability of the pigments and the antioxidant capacity of the materials, has been of great interest to the pharmaceutical, chemical and food industries. The aim of this work was to prepare and characterize a bifunctional pigment–antioxidant nanomaterial-based carminic acid-decorated solid core-mesoporous shell silica nanoparticles, evaluating its properties as a pigment, its antioxidant capacity and its properties as a chemical stabilizer of emulsions. The chemical stability of oil-in-water (O/W) Pickering emulsions was evaluated determining the stability of vitamin E solubilized in the oil phase. Carminic acid was attached through the action of coupling ethylcarbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS) agents, and the resulting spherical and homogeneous nanoparticles showed a diameter close to 175 nm.
    [Show full text]
  • Anthraquinones Mireille Fouillaud, Yanis Caro, Mekala Venkatachalam, Isabelle Grondin, Laurent Dufossé
    Anthraquinones Mireille Fouillaud, Yanis Caro, Mekala Venkatachalam, Isabelle Grondin, Laurent Dufossé To cite this version: Mireille Fouillaud, Yanis Caro, Mekala Venkatachalam, Isabelle Grondin, Laurent Dufossé. An- thraquinones. Leo M. L. Nollet; Janet Alejandra Gutiérrez-Uribe. Phenolic Compounds in Food Characterization and Analysis , CRC Press, pp.130-170, 2018, 978-1-4987-2296-4. hal-01657104 HAL Id: hal-01657104 https://hal.univ-reunion.fr/hal-01657104 Submitted on 6 Dec 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Anthraquinones Mireille Fouillaud, Yanis Caro, Mekala Venkatachalam, Isabelle Grondin, and Laurent Dufossé CONTENTS 9.1 Introduction 9.2 Anthraquinones’ Main Structures 9.2.1 Emodin- and Alizarin-Type Pigments 9.3 Anthraquinones Naturally Occurring in Foods 9.3.1 Anthraquinones in Edible Plants 9.3.1.1 Rheum sp. (Polygonaceae) 9.3.1.2 Aloe spp. (Liliaceae or Xanthorrhoeaceae) 9.3.1.3 Morinda sp. (Rubiaceae) 9.3.1.4 Cassia sp. (Fabaceae) 9.3.1.5 Other Edible Vegetables 9.3.2 Microbial Consortia Producing Anthraquinones,
    [Show full text]