Morphological Variation in Gallotia Atlantica from the Volcanic Island of Lanzarote: Subspecies Designations and Recent Lava flows

Total Page:16

File Type:pdf, Size:1020Kb

Morphological Variation in Gallotia Atlantica from the Volcanic Island of Lanzarote: Subspecies Designations and Recent Lava flows Blackwell Science, LtdOxford, UKBIJBiological Journal of the Linnean Society0024-4066The Linnean Society of London, 2005? 2005 85? 395406 Original Article MORPHOLOGICAL VARIATION IN GALLOTIA ATLANTICA Biological Journal of the Linnean Society, 2005, 85, 395–406. With 5 figures Morphological variation in Gallotia atlantica from the volcanic island of Lanzarote: subspecies designations and recent lava flows PAUL BLOOR and RICHARD P. BROWN* School of Biological & Earth Sciences, Liverpool John Moores University, Byrom St., Liverpool L3 3AF, UK Received 29 February 2004; accepted for publication 27 September 2004 A detailed uni- and multivariate analysis of within-island geographical variation in scalation and body dimensions of the lacertid lizard, Gallotia atlantica, from Lanzarote (and two neighbouring offshore islets) was carried out. Two main morphological groupings were detected: four populations clustered within a putative malpaís group, i.e. from relatively recent volcanic lava fields (seven populations were sampled from these areas), while the other 19 popu- lations (including the three remaining malpaís populations, and those from the offshore islets of Montaña Clara and Alegranza) also clustered together. Thus, while there is a tendency for occupation of malpaís areas to be related to morphological variation, this model does have some inconsistencies. The differentiated malpaís group comprises populations from two geographically isolated areas, one from the central-western part of the island (Timanfaya) and the other from the north (Malpaís de la Corona). The divergence of these populations is considered to have arisen recently, rather than their being relicts of an ancient, formerly widespread, lineage. The morphological variation par- tially supports the previous use of two different subspecies to describe the within-island variation. However, if such a scheme were applied then one of the subspecies would need to encompass populations from the geographically separated southern Timanfaya and Malpaís de la Corona areas, as opposed to just the latter. We reject previous observations that either malpaís individuals in general, or those corresponding to the north-eastern subspecies, are larger than individuals from other areas. The pattern of morphological variation of G. atlantica within Lanzarote is less pronounced but shows some similarities with patterns of morphological variation in lizards from neighbouring islands. © 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 85, 395–406. ADDITIONAL KEYWORDS: Canary Islands – evolution – lizard – morphology – population – volcano. INTRODUCTION Lanzarote is found in the north-east of the archipel- ago and is one of the oldest islands. It has a surface The Canary Islands, an oceanic group of seven main area of 846 km2 and rises to a maximum altitude of islands and several smaller islets, have become a 670 m towards the north at Peñas de Chache. It is gen- model region for studies of both between- and within- erally arid, with an annual rainfall of less than island patterns of geographical variation, particularly 200 mm in most areas, although slightly higher in lizards (e.g. Brown, Campos-Delgado & Pestano, rainfall is found around the aforementioned peak. 2000; Gübitz, Thorpe & Malhotra, 2000; Juan et al., The most striking ecological heterogeneity within the 2000, and references therein; Pestano & Brown, 1999; island is not due to variation in rainfall and altitude, Richard & Thorpe, 2001; Thorpe & Richard, 2001). as on the nearby islands of Tenerife and Gran Canaria The islands lie between 110 and 500 km off the coast (Thorpe & Brown, 1989; Brown, Thorpe & Báez, 1991), of north-west Africa and were independently formed but rather the different habitat types produced by by volcanic eruptions from the ocean floor over the expanses of solidified lava from relatively recent erup- past 20 Myr. P. BLOOR and R. P. BROWN tions (Fig. 1). Recent lava flows have given rise to malpaís (bad- *Corresponding author. E-mail: [email protected] lands) habitats. These are found in the central-west © 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 85, 395–406 395 396 P. BLOOR and R. P. BROWN Gallotia atlantica is known to exhibit considerable S30 Alegranza morphological variation in size, body proportions and N scalation, as well as coloration and colour pattern (Bischoff, 1985a, b; Castroviejo, Mateo & Collado, 1985; Thorpe, 1985), the extent of which has re- Montaña Clara S29 sulted in the description of numerous subspecies. La Graciosa G. a. atlantica has been assigned to populations from the main island of Lanzarote and its northern S2 offshore islets (Bischoff, 1985a; Castroviejo et al., 1985), G. a. laurae to populations from north-eastern S26 Lanzarote (Castroviejo et al., 1985), and G. a. ibagnezi S9 to the northern-most islet of Alegranza (Castroviejo et al., 1985). Of these, the widespread northern Lanzarote S7 S8 S4 (G. a. atlantica) and north-eastern Lanzarote S18 (G. a. laurae) subspecies are generally accepted S14 as conventional subspecies categories, while S20 S13 S12 G. a. ibagnezi tends to be regarded as G. a. atlantica S11 S5 (López-Jurado, Mateo & Geniez, 1995). S10 S19 S6 Castroviejo et al. (1985) believed that the S17 G. a. laurae subspecies designation was justified for S1 S15 S3 populations from the lavas of Malpaís de la Corona and those found to the south-east of Haría based on morphological differentiation. However, Bischoff S16 5 km (1985a) preferred a single widespread northern (G. a. atlantica) subspecies. More recently, López- Jurado & Mateo (1992) appear to relate the distribu- Figure 1. Distribution of sampling sites of Gallotia atlan- tion of G. a. laurae to areas of malpaís, and there is tica in Lanzarote and nearby islets. Site names and sample some evidence to support the similarity of individuals details are given in the Appendix. Shaded areas represent (primarily size, coloration and markings) from El the main regions covered by relatively recent lava flows in Mojón and El Golfo in the Timanfaya area with the central-western (Timanfaya) and north-eastern Lanzarote. G. a. laurae (Malpaís de la Corona) subspecies (López- Sites are indicated using circles, except for Malpaís de la Jurado & Mateo, 1992; López-Jurado et al., 1995). Corona (squares) and Timanfaya (triangles). Sites within These studies also indicate that individuals associ- the latter, although ostensibly close in some cases (e.g. ated with recent volcanic habitats attain adult body S12-14), were all from different exclusive ‘islets’ within the sizes considerably greater than those from other parts lava fields. of Lanzarote (Castroviejo et al., 1985; López-Jurado & Mateo, 1992). Unfortunately, most of these proposals have been made on the basis of qualitative compari- (Timanfaya) and north-east of the island (Malpaís de la sons, and/or only partial sampling of the island. Thus Corona). The former was formed by lava flows from the actual pattern of geographical variation, its poten- volcanic activity in the eighteenth and nineteenth tial causes, and the validity and utility of proposed centuries and contains several isolated areas (known taxonomic designations are still difficult to assess. locally as ‘islets’) that were not covered during these This paper provides a quantitative analysis of mor- eruptions (Carracedo, Badiola & Soler, 1992). Malpaís phological variation in G. atlantica from Lanzarote de la Corona is considerably older (although still recent based on a sampling regime that encompasses the full in geological terms), with lavas being dated at about extent of morphological variation throughout the 21 ka (Carracedo et al., 2003) and is consequently in a island and associated islets. more advanced state of ecological succession. The unique biophysical conditions prevailing on the recent lava fields suggest that they represent novel MATERIAL AND METHODS and harsh environments to colonizing populations. The lacertid lizard G. atlantica (Peters & Doria, 1882), SITES AND SPECIMENS is quite abundant throughout most of the island, but is Adult lizards (N = 460) were captured and subse- rare/absent on the Timanfaya lava fields (although quently measured between August and September present on the ‘islets’ within Timanfaya). Generally 1999, and in October 2002. Only adult animals (ten lower densities are found on Malpaís de la Corona. males and ten females from each site) were retained © 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 85, 395–406 MORPHOLOGICAL VARIATION IN GALLOTIA ATLANTICA 397 for measurement due to the difficulties of sexing a ruler and HL measured to the nearest 0.1 mm using younger individuals in the field. An individual was Vernier callipers. considered adult if it had a body size (snout-vent All bilateral characters were recorded from the length) approaching or greater than the minimum size right-hand side of the individual to avoid the influence at sexual maturity documented for the northern of fluctuating asymmetry, and characters were re- (G. a. atlantica) subspecies: 59.5 mm for males and corded sequentially for each individual to minimize 57.0 mm for females (Molina-Borja, 2003). Sex was measuring error. FBW and SBW were approximated if established by hemipenal inversion, with palpation of the upper-lateral blotches had merged (males only). the abdomen used to identify gravid females. Each character was recorded twice, with a third mea- The 21 capture sites within
Recommended publications
  • Exploring the Host Specificity and Diversity of Haemogregarines in the Canary Islands Beatriz Tomé1,2*, Ana Pereira1,2, Fátima Jorge3, Miguel A
    Tomé et al. Parasites & Vectors (2018) 11:190 https://doi.org/10.1186/s13071-018-2760-5 RESEARCH Open Access Along for the ride or missing it altogether: exploring the host specificity and diversity of haemogregarines in the Canary Islands Beatriz Tomé1,2*, Ana Pereira1,2, Fátima Jorge3, Miguel A. Carretero1, D. James Harris1 and Ana Perera1 Abstract Background: Host-parasite relationships are expected to be strongly shaped by host specificity, a crucial factor in parasite adaptability and diversification. Because whole host communities have to be considered to assess host specificity, oceanic islands are ideal study systems given their simplified biotic assemblages. Previous studies on insular parasites suggest host range broadening during colonization. Here, we investigate the association between one parasite group (haemogregarines) and multiple sympatric hosts (of three lizard genera: Gallotia, Chalcides and Tarentola) in the Canary Islands. Given haemogregarine characteristics and insular conditions, we hypothesized low host specificity and/or occurrence of host-switching events. Methods: A total of 825 samples were collected from the three host taxa inhabiting the seven main islands of the Canarian Archipelago, including locations where the different lizards occurred in sympatry. Blood slides were screened to assess prevalence and parasitaemia, while parasite genetic diversity and phylogenetic relationships were inferred from 18S rRNA gene sequences. Results: Infection levels and diversity of haplotypes varied geographically and across host groups. Infections were found in all species of Gallotia across the seven islands, in Tarentola from Tenerife, La Gomera and La Palma, and in Chalcides from Tenerife, La Gomera and El Hierro. Gallotia lizards presented the highest parasite prevalence, parasitaemia and diversity (seven haplotypes), while the other two host groups (Chalcides and Tarentola) harbored one haplotype each, with low prevalence and parasitaemia levels, and very restricted geographical ranges.
    [Show full text]
  • Digestive Ecology of Two Omnivorous Canarian Lizard Species
    Digestiveecology of two omnivorous Canarian lizardspecies (Gallotia,Lacertidae) AlfredoV alido 1,ManuelNogales Departamento deBiología Animal (Zoología), Universidadde La Laguna,E-38206, Tenerife, Canary Islands, Spain 1Authorfor reprint request; current address: Dept. of Ecologyand Genetics, AarhusUniversity, Ny Munkegade Building540 DK-8000 Aarhus C, Denmark e-mail: [email protected] Abstract. Omnivorousendemic Canarianlacertids ( Gallotiaatlantica and G. galloti)donotpresent any speci c digestiveand physiological adaptations to herbivorous diet, compared to species andpopulations with a different degree ofherbivory in the Canarian archipelago. The only characteristics thatcould be related tothe type of diet were thenumber of cusps per tooth (between species) andthe number of small stonescontained in droppings (between species andpopulations). The rest ofmeasured traits were correlated withlizard size andfor this reason G. galloti has longerintestines, heavier stomachs andlivers, more teethand cusps, and longer gut passage. These data suggestthat body size isamajor determinantof the reliance onplant food (mainly eshyfruits) in these lizards andfacilitates mutualisticinteractions with eshy-fruitedplant species. Introduction Structuraland functional adaptations of the digestive system for optimalprocessing of plantmatter have been described for severalomnivorous and herbivorous vertebrates (see reviewsin Lö nnberg, 1902; Ziswiler and Farner, 1972; Skoczylas, 1978; Chivers and Hladik,1980; Guard, 1980; Sibly, 1981; Jordano,
    [Show full text]
  • A Phylogenetic History of the Tenerife Skink Chalcides Viridanus: a Multi-Locus Coalescent Approach
    A Phylogenetic History of the Tenerife Skink Chalcides viridanus: A multi-locus Coalescent Approach Matthew Woods A thesis submitted in partial fulfilment of the requirements of Liverpool John Moores University for the degree of Masters of Philosophy. March 2015 Abstract Previous studies on the Tenerife skink Chalcides viridanus found clear links between observed within-island cladogenesis and the geological history of the island. Since these studies there have been many advances in conceptual, numerical and methodological approaches in phylogenetic analyses. This study aims to revisit the phylogeography of the Tenerife skink, using more current *BEAST analysis techniques, and attempt to resolve some unanswered questions about population history of this species. Specifically, using previously unused nuclear gene markers to obtain a more robust phylogeographical history of the species, using new techniques to estimate whether any historic changes in population size can be linked to known geological events and whether there is enough evidence to reclassify any discovered genetic clades as distinct species. A multi-locus approach was undertaken, using more informative mtDNA gene fragments (Cyt- b & ND1 & 2, totalling 1566bp) as well as the sequencing of 5 nuclear loci (PRLR-555bp, Rag- 1-761bp, RELN-583bp, EXPH-796bp and SELT-414bp). These sequences were combined with the latest Bayesian methods to estimate divergence times, historical changes in population structure and infer species boundaries. Results from the BAPS and *BEAST analyses identified three main population groups within the island, the geographical distribution of two of which were restricted to the areas representing the ancient precursor islands Teno & Anaga in the North West and North East of Tenerife, respectively.
    [Show full text]
  • Gallotia Caesaris, Lacertidae) from Different Habitats Author(S): M
    Sexual Size and Shape Dimorphism Variation in Caesar's Lizard (Gallotia caesaris, Lacertidae) from Different Habitats Author(s): M. Molina-Borja, M. A. Rodríguez-Domínguez, C. González-Ortega, and M. L. Bohórquez-Alonso Source: Journal of Herpetology, 44(1):1-12. 2010. Published By: The Society for the Study of Amphibians and Reptiles DOI: 10.1670/08-266.1 URL: http://www.bioone.org/doi/full/10.1670/08-266.1 BioOne (www.bioone.org) is an electronic aggregator of bioscience research content, and the online home to over 160 journals and books published by not-for-profit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Journal of Herpetology, Vol. 44, No. 1, pp. 1–12, 2010 Copyright 2010 Society for the Study of Amphibians and Reptiles Sexual Size and Shape Dimorphism Variation in Caesar’s Lizard (Gallotia caesaris, Lacertidae) from Different Habitats 1,2 3 3 M. MOLINA-BORJA, M. A. RODRI´GUEZ-DOMI´NGUEZ, C. GONZA´ LEZ-ORTEGA, AND 1 M. L. BOHO´ RQUEZ-ALONSO 1Laboratorio Etologı´a, Departamento Biologı´a Animal, Facultad Biologı´a, Universidad La Laguna, Tenerife, Canary Islands, Spain 3Centro Reproduccio´n e Investigacio´n del lagarto gigante de El Hierro, Frontera, El Hierro, Canary Islands, Spain ABSTRACT.—We compared sexual dimorphism of body and head traits from adult lizards of populations of Gallotia caesaris living in ecologically different habitats of El Hierro and La Gomera.
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • Parasite Local Maladaptation in the Canarian Lizard Gallotia Galloti (Reptilia: Lacertidae) Parasitized by Haemogregarian Blood Parasite
    Parasite local maladaptation in the Canarian lizard Gallotia galloti (Reptilia: Lacertidae) parasitized by haemogregarian blood parasite A. OPPLIGER,* R. VERNET &M.BAEZà *Zoological Museum, Winterthurerstrasse 190, 8057 ZuÈ rich, Switzerland Laboratoire d'Ecologie, Ecole Normale SupeÂrieure, 46 rue d'Ulm, 75230 Paris, Cedex 05 France àDepartment of Zoology, University of La Laguna, Tenerife, Canary Islands, Spain Keywords: Abstract cross-infection; Biologists commonly assume that parasites are locally adapted since they have host±parasite coevolution; shorter generation times and higher fecundity than their hosts, and therefore lizard; evolve faster in the arms race against the host's defences. As a result, parasites local adaptation. should be better able to infect hosts within their local population than hosts from other allopatric populations. However, recent mathematical modelling has demonstrated that when hosts have higher migration rates than parasites, hosts may diversify their genes faster than parasites and thus parasites may become locally maladapted. This new model was tested on the Canarian endemic lizard and its blood parasite (haemogregarine genus). In this host± parasite system, hosts migrate more than parasites since lizard offspring typically disperse from their natal site soon after hatching and without any contact with their parents who are potential carriers of the intermediate vector of the blood parasite (a mite). Results of cross-infection among three lizard populations showed that parasites were better at infecting individuals from allopatric populations than individuals from their sympatric population. This suggests that, in this host±parasite system, the parasites are locally maladapted to their host. ef®cient in infecting hosts from their native population, Introduction i.e.
    [Show full text]
  • Gallotia Galloti Palmae, Fam
    CITE THIS ARTCILE AS “IN PRESS” Basic and Applied Herpetology 00 (0000) 000-000 Chemical discrimination of pesticide-treated grapes by lizards (Gallotia galloti palmae, Fam. Lacertidae) Nieves Rosa Yanes-Marichal1, Angel Fermín Francisco-Sánchez1, Miguel Molina-Borja2* 1 Laboratorio de Agrobiología, Cabildo Insular de La Palma. 2 Grupo Etología y Ecología del Comportamiento, Departamento de Biología Animal, Facultad de Biología, Universidad de La Laguna, 38206 La Laguna, Tenerife, Canary Islands. * Correspondence: Phone: +34 922318341, Fax: +34 922318311, Email: [email protected] Received: 14 November 2016; returned for review: 1 December 2016; accepted 3 January 2017 Lizards from the Canary Islands may act as pests of several cultivated plants. As a case in point, vineyard farmers often complain about the lizards’ impact on grapes. Though no specific pesticide is used for lizards, several pesticides are used in vineyards to control for insects, fungi, etc. We therefore tested whether lizards (Gallotia galloti palmae) could detect and discriminate pesticide- treated from untreated grapes. To answer this question, we performed experiments with adults of both sexes obtained from three localities in La Palma Island. Two of them were a vineyard and a banana plantation that had been treated with pesticides and the other one was in a natural (untreated) site. In the laboratory, lizards were offered simultaneously one untreated (water sprayed) and one treated (with Folithion 50 LE, diluted to 0.1%) grape placed on small plates. The behaviour of the lizards towards the fruits was filmed and subsequently quantified by means of their tongue-flick, licks or bite rates to each of the grapes.
    [Show full text]
  • Evolution and Biogeography of the Genus Tarentola (Sauria: Gekkonidae) in the Canary Islands, Inferred from Mitochondrial DNA Sequences
    0 Birkhfiuser Verlag, Base], 1998 J. evol. biol. I I (1998) 481 494 1010-061X/98/040481-14 $ 1.50 +0.20/O 1 Journal of Evolutionary Biology Evolution and biogeography of the genus Tarentola (Sauria: Gekkonidae) in the Canary Islands, inferred from mitochondrial DNA sequences M. Nogales,’ M. Lopez,’ J. Jimenez-Asensio,2 J. M. Larruga,’ M. Hernandez’,* and P. Gonzalez2 1Department of Zoology, University oJ’ La Lugunu, E-38271 Tenerijk, Cunury Islunds, Spain 2Department of’ Genetics, University of La Laguna, E-38271 Tenerijk, &nary Islands, Spain, e-mail address: [email protected] Key brords: mtDNA; Turentolu; Gekkonidae, phylogeny; biogeography; Canary Islands. Abstract Sequences from fragments of the 12s ribosomal RNA and cytochrome b mito- chondrial genes were used to analyze phylogenetic relationships among geckos of genus Turentolu from the Canary Islands. A surprisingly high level of within island differentiation was found in T. delulundii in Tenerife and T. boettgeri in Gran Canaria. Molecular differentiation between populations of T. ungustimentulis on Lanzarote and Fuerteventura, and between Moroccan and Iberian Peninsula T. muuritunicu, also indicate that at least two subspecies should be recognized within each of them. Phylogenetic relationships among these species reveals a higher level of differentiation and a more complex colonization pattern than those found for the endemic genus Gullotiu. Lack of evidence for the presence of T. boettgeri bischoffi on the island of Madeira does not seem to support the origin of T. delulundii, T. gomerensis and the canarian subspecies of T, boettgeri from this island, whereas molecular data confirms that T. ungustimentulis is a sister species of the continental T.
    [Show full text]
  • The Canary Islands
    The Canary Islands Naturetrek Tour Report 6 - 13 March 2009 Indian Red Admiral – Vanessa indica vulcania Canary Islands Cranesbill – Geranium canariense Fuerteventura Sea Daisy – Nauplius sericeus Aeonium urbicum - Tenerife Euphorbia handiensis - Fuerteventura Report compiled by Tony Clarke with images by kind courtesy of Ken Bailey Naturetrek Cheriton Mill Cheriton Alresford Hampshire SO24 0NG England T: +44 (0)1962 733051 F: +44 (0)1962 736426 E: [email protected] W: www.naturetrek.co.uk Tour Report The Canary Islands Tour Leader: Tony Clarke (tour leader and naturalist) Tour Participants: Phil Haywood Hazel Haywood Peter Barrett Charles Wade Ken Bailey Day 1 Friday 6th March The arrival time of the group meant that we had enough time to do some birding in the afternoon and so we drove up from the airport, through Vilaflor to the Zona Recreativa de Las Lajas. This is probably the most well known location on Tenerife as it is where most people see their first Blue Chaffinches and we were not to be disappointed. Also at this location we saw the only Great Spotted Woodpecker of the tour plus a few Canaries, a Tenerife Kinglet and a few African Blue Tits. After departing from Las Lajas we continued climbing and entered the Las Cañadas National Park which is a spectacular drive through volcanic scenery. On the drive we encountered quite a few endemic plants including Pinus canariensis and Spartocytisus supranubius that were common and easily recognized and Echium wildpretii, Pterocephalus lasiospermus, Descurainia bourgaeana and Argyranthemum teneriffae which were rather unimpressive as they were not yet flowering but we were compensated by the fabulous views across the ancient caldera.
    [Show full text]
  • The New Mode of Thought of Vertebrates' Evolution
    etics & E en vo g lu t lo i y o h n a P r f y Journal of Phylogenetics & Kupriyanova and Ryskov, J Phylogen Evolution Biol 2014, 2:2 o B l i a o n l r o DOI: 10.4172/2329-9002.1000129 u g o y J Evolutionary Biology ISSN: 2329-9002 Short Communication Open Access The New Mode of Thought of Vertebrates’ Evolution Kupriyanova NS* and Ryskov AP The Institute of Gene Biology RAS, 34/5, Vavilov Str. Moscow, Russia Abstract Molecular phylogeny of the reptiles does not accept the basal split of squamates into Iguania and Scleroglossa that is in conflict with morphological evidence. The classical phylogeny of living reptiles places turtles at the base of the tree. Analyses of mitochondrial DNA and nuclear genes join crocodilians with turtles and places squamates at the base of the tree. Alignment of the reptiles’ ITS2s with the ITS2 of chordates has shown a high extent of their similarity in ancient conservative regions with Cephalochordate Branchiostoma floridae, and a less extent of similarity with two Tunicata, Saussurea tunicate, and Rinodina tunicate. We have performed also an alignment of ITS2 segments between the two break points coming into play in 5.8S rRNA maturation of Branchiostoma floridaein pairs with orthologs from different vertebrates where it was possible. A similarity for most taxons fluctuates between about 50 and 70%. This molecular analysis coupled with analysis of phylogenetic trees constructed on a basis of manual alignment, allows us to hypothesize that primitive chordates being the nearest relatives of simplest vertebrates represent the real base of the vertebrate phylogenetic tree.
    [Show full text]
  • Amphibians and Reptiles of the Mediterranean Basin
    Chapter 9 Amphibians and Reptiles of the Mediterranean Basin Kerim Çiçek and Oğzukan Cumhuriyet Kerim Çiçek and Oğzukan Cumhuriyet Additional information is available at the end of the chapter Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.70357 Abstract The Mediterranean basin is one of the most geologically, biologically, and culturally complex region and the only case of a large sea surrounded by three continents. The chapter is focused on a diversity of Mediterranean amphibians and reptiles, discussing major threats to the species and its conservation status. There are 117 amphibians, of which 80 (68%) are endemic and 398 reptiles, of which 216 (54%) are endemic distributed throughout the Basin. While the species diversity increases in the north and west for amphibians, the reptile diversity increases from north to south and from west to east direction. Amphibians are almost twice as threatened (29%) as reptiles (14%). Habitat loss and degradation, pollution, invasive/alien species, unsustainable use, and persecution are major threats to the species. The important conservation actions should be directed to sustainable management measures and legal protection of endangered species and their habitats, all for the future of Mediterranean biodiversity. Keywords: amphibians, conservation, Mediterranean basin, reptiles, threatened species 1. Introduction The Mediterranean basin is one of the most geologically, biologically, and culturally complex region and the only case of a large sea surrounded by Europe, Asia and Africa. The Basin was shaped by the collision of the northward-moving African-Arabian continental plate with the Eurasian continental plate which occurred on a wide range of scales and time in the course of the past 250 mya [1].
    [Show full text]
  • Variação Geográfica Na Morfologia De Gymnodactylus Amarali (Squamata, Gekkonidae)
    Universidade de Brasília Instituto de Ciências Biológicas Departamento de Ecologia Variação Geográfica na Morfologia de Gymnodactylus amarali (Squamata, Gekkonidae) Fabricius Maia Chaves Bicalho Domingos Brasília-DF 2009 Livros Grátis http://www.livrosgratis.com.br Milhares de livros grátis para download. Universidade de Brasília Instituto de Ciências Biológicas Departamento de Ecologia Variação Geográfica na Morfologia de Gymnodactylus amarali (Squamata, Gekkonidae) Fabricius Maia Chaves Bicalho Domingos Orientador: Guarino Rinaldi Colli, Ph.D. Dissertação apresentada ao Instituto de Ciências Biológicas da Universidade de Brasília como parte dos requisitos necessários para a obtenção do Título de Mestre em Ecologia Brasília-DF 2009 i FABRICIUS MAIA CHAVES BICALHO DOMINGOS Variação Geográfica na Morfologia de Gymnodactylus amarali (Squamata, Phyllodactylidae) Dissertação realizada com o apoio financeiro do Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) e da Fundação de Apoio à Pesquisa do Distrito Federal (FAPDF) e aprovada junto ao Programa de Pós Graduação em Ecologia da Universidade de Brasília como requisito parcial para obtenção do título de Mestre em Ecologia. Banca Examinadora: ________________________________ Dr. Guarino Rinaldi Colli Departamento de Zoologia, UnB (Orientador, Presidente da Banca Examinadora) ________________________________ Dr. Kátia Cristina Machado Pellegrino Departamento de Ciências Biológicas, UNIFESP (Membro Titular da Banca Examinadora) ________________________________ Dr. Reginaldo
    [Show full text]