ALGEBRAIC COBORDISM I Contents 0. Introduction : Chern Classes And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Relation of Cobordism to K-Theories
The Relation of Cobordism to K-Theories PhD student seminar winter term 2006/07 November 7, 2006 In the current winter term 2006/07 we want to learn something about the different flavours of cobordism theory - about its geometric constructions and highly algebraic calculations using spectral sequences. Further we want to learn the modern language of Thom spectra and survey some levels in the tower of the following Thom spectra MO MSO MSpin : : : Mfeg: After that there should be time for various special topics: we could calculate the homology or homotopy of Thom spectra, have a look at the theorem of Hartori-Stong, care about d-,e- and f-invariants, look at K-, KO- and MU-orientations and last but not least prove some theorems of Conner-Floyd type: ∼ MU∗X ⊗MU∗ K∗ = K∗X: Unfortunately, there is not a single book that covers all of this stuff or at least a main part of it. But on the other hand it is not a big problem to use several books at a time. As a motivating introduction I highly recommend the slides of Neil Strickland. The 9 slides contain a lot of pictures, it is fun reading them! • November 2nd, 2006: Talk 1 by Marc Siegmund: This should be an introduction to bordism, tell us the G geometric constructions and mention the ring structure of Ω∗ . You might take the books of Switzer (chapter 12) and Br¨oker/tom Dieck (chapter 2). Talk 2 by Julia Singer: The Pontrjagin-Thom construction should be given in detail. Have a look at the books of Hirsch, Switzer (chapter 12) or Br¨oker/tom Dieck (chapter 3). -
Characteristic Classes and K-Theory Oscar Randal-Williams
Characteristic classes and K-theory Oscar Randal-Williams https://www.dpmms.cam.ac.uk/∼or257/teaching/notes/Kthy.pdf 1 Vector bundles 1 1.1 Vector bundles . 1 1.2 Inner products . 5 1.3 Embedding into trivial bundles . 6 1.4 Classification and concordance . 7 1.5 Clutching . 8 2 Characteristic classes 10 2.1 Recollections on Thom and Euler classes . 10 2.2 The projective bundle formula . 12 2.3 Chern classes . 14 2.4 Stiefel–Whitney classes . 16 2.5 Pontrjagin classes . 17 2.6 The splitting principle . 17 2.7 The Euler class revisited . 18 2.8 Examples . 18 2.9 Some tangent bundles . 20 2.10 Nonimmersions . 21 3 K-theory 23 3.1 The functor K ................................. 23 3.2 The fundamental product theorem . 26 3.3 Bott periodicity and the cohomological structure of K-theory . 28 3.4 The Mayer–Vietoris sequence . 36 3.5 The Fundamental Product Theorem for K−1 . 36 3.6 K-theory and degree . 38 4 Further structure of K-theory 39 4.1 The yoga of symmetric polynomials . 39 4.2 The Chern character . 41 n 4.3 K-theory of CP and the projective bundle formula . 44 4.4 K-theory Chern classes and exterior powers . 46 4.5 The K-theory Thom isomorphism, Euler class, and Gysin sequence . 47 n 4.6 K-theory of RP ................................ 49 4.7 Adams operations . 51 4.8 The Hopf invariant . 53 4.9 Correction classes . 55 4.10 Gysin maps and topological Grothendieck–Riemann–Roch . 58 Last updated May 22, 2018. -
Algebraic Cobordism
Algebraic Cobordism Marc Levine January 22, 2009 Marc Levine Algebraic Cobordism Outline I Describe \oriented cohomology of smooth algebraic varieties" I Recall the fundamental properties of complex cobordism I Describe the fundamental properties of algebraic cobordism I Sketch the construction of algebraic cobordism I Give an application to Donaldson-Thomas invariants Marc Levine Algebraic Cobordism Algebraic topology and algebraic geometry Marc Levine Algebraic Cobordism Algebraic topology and algebraic geometry Naive algebraic analogs: Algebraic topology Algebraic geometry ∗ ∗ Singular homology H (X ; Z) $ Chow ring CH (X ) ∗ alg Topological K-theory Ktop(X ) $ Grothendieck group K0 (X ) Complex cobordism MU∗(X ) $ Algebraic cobordism Ω∗(X ) Marc Levine Algebraic Cobordism Algebraic topology and algebraic geometry Refined algebraic analogs: Algebraic topology Algebraic geometry The stable homotopy $ The motivic stable homotopy category SH category over k, SH(k) ∗ ∗;∗ Singular homology H (X ; Z) $ Motivic cohomology H (X ; Z) ∗ alg Topological K-theory Ktop(X ) $ Algebraic K-theory K∗ (X ) Complex cobordism MU∗(X ) $ Algebraic cobordism MGL∗;∗(X ) Marc Levine Algebraic Cobordism Cobordism and oriented cohomology Marc Levine Algebraic Cobordism Cobordism and oriented cohomology Complex cobordism is special Complex cobordism MU∗ is distinguished as the universal C-oriented cohomology theory on differentiable manifolds. We approach algebraic cobordism by defining oriented cohomology of smooth algebraic varieties, and constructing algebraic cobordism as the universal oriented cohomology theory. Marc Levine Algebraic Cobordism Cobordism and oriented cohomology Oriented cohomology What should \oriented cohomology of smooth varieties" be? Follow complex cobordism MU∗ as a model: k: a field. Sm=k: smooth quasi-projective varieties over k. An oriented cohomology theory A on Sm=k consists of: D1. -
New Ideas in Algebraic Topology (K-Theory and Its Applications)
NEW IDEAS IN ALGEBRAIC TOPOLOGY (K-THEORY AND ITS APPLICATIONS) S.P. NOVIKOV Contents Introduction 1 Chapter I. CLASSICAL CONCEPTS AND RESULTS 2 § 1. The concept of a fibre bundle 2 § 2. A general description of fibre bundles 4 § 3. Operations on fibre bundles 5 Chapter II. CHARACTERISTIC CLASSES AND COBORDISMS 5 § 4. The cohomological invariants of a fibre bundle. The characteristic classes of Stiefel–Whitney, Pontryagin and Chern 5 § 5. The characteristic numbers of Pontryagin, Chern and Stiefel. Cobordisms 7 § 6. The Hirzebruch genera. Theorems of Riemann–Roch type 8 § 7. Bott periodicity 9 § 8. Thom complexes 10 § 9. Notes on the invariance of the classes 10 Chapter III. GENERALIZED COHOMOLOGIES. THE K-FUNCTOR AND THE THEORY OF BORDISMS. MICROBUNDLES. 11 § 10. Generalized cohomologies. Examples. 11 Chapter IV. SOME APPLICATIONS OF THE K- AND J-FUNCTORS AND BORDISM THEORIES 16 § 11. Strict application of K-theory 16 § 12. Simultaneous applications of the K- and J-functors. Cohomology operation in K-theory 17 § 13. Bordism theory 19 APPENDIX 21 The Hirzebruch formula and coverings 21 Some pointers to the literature 22 References 22 Introduction In recent years there has been a widespread development in topology of the so-called generalized homology theories. Of these perhaps the most striking are K-theory and the bordism and cobordism theories. The term homology theory is used here, because these objects, often very different in their geometric meaning, Russian Math. Surveys. Volume 20, Number 3, May–June 1965. Translated by I.R. Porteous. 1 2 S.P. NOVIKOV share many of the properties of ordinary homology and cohomology, the analogy being extremely useful in solving concrete problems. -
Floer Homology, Gauge Theory, and Low-Dimensional Topology
Floer Homology, Gauge Theory, and Low-Dimensional Topology Clay Mathematics Proceedings Volume 5 Floer Homology, Gauge Theory, and Low-Dimensional Topology Proceedings of the Clay Mathematics Institute 2004 Summer School Alfréd Rényi Institute of Mathematics Budapest, Hungary June 5–26, 2004 David A. Ellwood Peter S. Ozsváth András I. Stipsicz Zoltán Szabó Editors American Mathematical Society Clay Mathematics Institute 2000 Mathematics Subject Classification. Primary 57R17, 57R55, 57R57, 57R58, 53D05, 53D40, 57M27, 14J26. The cover illustrates a Kinoshita-Terasaka knot (a knot with trivial Alexander polyno- mial), and two Kauffman states. These states represent the two generators of the Heegaard Floer homology of the knot in its topmost filtration level. The fact that these elements are homologically non-trivial can be used to show that the Seifert genus of this knot is two, a result first proved by David Gabai. Library of Congress Cataloging-in-Publication Data Clay Mathematics Institute. Summer School (2004 : Budapest, Hungary) Floer homology, gauge theory, and low-dimensional topology : proceedings of the Clay Mathe- matics Institute 2004 Summer School, Alfr´ed R´enyi Institute of Mathematics, Budapest, Hungary, June 5–26, 2004 / David A. Ellwood ...[et al.], editors. p. cm. — (Clay mathematics proceedings, ISSN 1534-6455 ; v. 5) ISBN 0-8218-3845-8 (alk. paper) 1. Low-dimensional topology—Congresses. 2. Symplectic geometry—Congresses. 3. Homol- ogy theory—Congresses. 4. Gauge fields (Physics)—Congresses. I. Ellwood, D. (David), 1966– II. Title. III. Series. QA612.14.C55 2004 514.22—dc22 2006042815 Copying and reprinting. Material in this book may be reproduced by any means for educa- tional and scientific purposes without fee or permission with the exception of reproduction by ser- vices that collect fees for delivery of documents and provided that the customary acknowledgment of the source is given. -
On the Bordism Ring of Complex Projective Space Claude Schochet
proceedings of the american mathematical society Volume 37, Number 1, January 1973 ON THE BORDISM RING OF COMPLEX PROJECTIVE SPACE CLAUDE SCHOCHET Abstract. The bordism ring MUt{CPa>) is central to the theory of formal groups as applied by D. Quillen, J. F. Adams, and others recently to complex cobordism. In the present paper, rings Et(CPm) are considered, where E is an oriented ring spectrum, R=7rt(£), andpR=0 for a prime/». It is known that Et(CPcc) is freely generated as an .R-module by elements {ßT\r^0}. The ring structure, however, is not known. It is shown that the elements {/VI^O} form a simple system of generators for £t(CP°°) and that ßlr=s"rß„r mod(/?j, • • • , ßvr-i) for an element s e R (which corre- sponds to [CP"-1] when E=MUZV). This may lead to information concerning Et(K(Z, n)). 1. Introduction. Let E he an associative, commutative ring spectrum with unit, with R=n*E. Then E determines a generalized homology theory £* and a generalized cohomology theory E* (as in G. W. White- head [5]). Following J. F. Adams [1] (and using his notation throughout), assume that E is oriented in the following sense : There is given an element x e £*(CPX) such that £*(S2) is a free R- module on i*(x), where i:S2=CP1-+CP00 is the inclusion. (The Thom-Milnor spectrum MU which yields complex bordism theory and cobordism theory satisfies these hypotheses and is of seminal interest.) By a spectral sequence argument and general nonsense, Adams shows: (1.1) E*(CP ) is the graded ring of formal power series /?[[*]]. -
K-Theory and Characteristic Classes in Topology and Complex Geometry (A Tribute to Atiyah and Hirzebruch)
K-theory and characteristic classes in topology and complex geometry (a tribute to Atiyah and Hirzebruch) Claire Voisin CNRS, Institut de math´ematiquesde Jussieu CMSA Harvard, May 25th, 2021 Plan of the talk I. The early days of Riemann-Roch • Characteristic classes of complex vector bundles • Hirzebruch-Riemann-Roch. Ref. F. Hirzebruch. Topological Methods in Algebraic Geometry (German, 1956, English 1966) II. K-theory and cycle class • The Atiyah-Hirzebruch spectral sequence and cycle class with integral coefficients. • Resolutions and Chern classes of coherent sheaves Ref. M. Atiyah, F. Hirzebruch. Analytic cycles on complex manifolds (1962) III. Later developments on the cycle class • Complex cobordism ring. Kernel and cokernel of the cycle class map. • Algebraic K-theory and the Bloch-Ogus spectral sequence The Riemann-Roch formula for curves • X= compact Riemann surface (= smooth projective complex curve). E ! X a holomorphic vector bundle on X. •E the sheaf of holomorphic sections of E. Sheaf cohomology H0(X; E)= global sections, H1(X; E) (eg. computed as Cˇech cohomology). Def. (holomorphic Euler-Poincar´echaracteristic) χ(X; E) := h0(X; E) − h1(X; E). • E has a rank r and a degree deg E = deg (det E) := e(det E). • X has a genus related to the topological Euler-Poincar´echaracteristic: 2 − 2g = χtop(X). • Hopf formula: 2g − 2 = deg KX , where KX is the canonical bundle (dual of the tangent bundle). Thm. (Riemann-Roch formula) χ(X; E) = deg E + r(1 − g) Sketch of proof Sketch of proof. (a) Reduction to line bundles: any E has a filtration by subbundles Ei such that Ei=Ei+1 is a line bundle. -
Bordism and Cobordism
[ 200 ] BORDISM AND COBORDISM BY M. F. ATIYAH Received 28 March 1960 Introduction. In (10), (11) Wall determined the structure of the cobordism ring introduced by Thorn in (9). Among Wall's results is a certain exact sequence relating the oriented and unoriented cobordism groups. There is also another exact sequence, due to Rohlin(5), (6) and Dold(3) which is closely connected with that of Wall. These exact sequences are established by ad hoc methods. The purpose of this paper is to show that both these sequences are ' cohomology-type' exact sequences arising in the well-known way from mappings into a universal space. The appropriate ' cohomology' theory is constructed by taking as universal space the Thom complex MS0(n), for n large. This gives rise to (oriented) cobordism groups MS0*(X) of a space X. We consider also a 'singular homology' theory based on differentiable manifolds, and we define in this way the (oriented) bordism groups MS0*{X) of a space X. The justification for these definitions is that the main theorem of Thom (9) then gives a 'Poincare duality' isomorphism MS0*(X) ~ MSO^(X) for a compact oriented differentiable manifold X. The usual generalizations to manifolds which are open and not necessarily orientable also hold (Theorem (3-6)). The unoriented corbordism group jV'k of Thom enters the picture via the iso- k morphism (4-1) jrk ~ MS0*n- (P2n) (n large), where P2n is real projective 2%-space. The exact sequence of Wall is then just the cobordism sequence for the triad P2n, P2»-i> ^2n-2> while the exact sequence of Rohlin- Dold is essentially the corbordism sequence of the pair P2n, P2n_2. -
On the Motivic Spectra Representing Algebraic Cobordism and Algebraic K-Theory
Documenta Math. 359 On the Motivic Spectra Representing Algebraic Cobordism and Algebraic K-Theory David Gepner and Victor Snaith Received: September 9, 2008 Communicated by Lars Hesselholt Abstract. We show that the motivic spectrum representing alge- braic K-theory is a localization of the suspension spectrum of P∞, and similarly that the motivic spectrum representing periodic alge- braic cobordism is a localization of the suspension spectrum of BGL. In particular, working over C and passing to spaces of C-valued points, we obtain new proofs of the topological versions of these theorems, originally due to the second author. We conclude with a couple of applications: first, we give a short proof of the motivic Conner-Floyd theorem, and second, we show that algebraic K-theory and periodic algebraic cobordism are E∞ motivic spectra. 2000 Mathematics Subject Classification: 55N15; 55N22 1. Introduction 1.1. Background and motivation. Let (X, µ) be an E∞ monoid in the ∞ category of pointed spaces and let β ∈ πn(Σ X) be an element in the stable ∞ homotopy of X. Then Σ X is an E∞ ring spectrum, and we may invert the “multiplication by β” map − − ∞ Σ nβ∧1 Σ nΣ µ µ(β):Σ∞X ≃ Σ∞S0 ∧ Σ∞X −→ Σ−nΣ∞X ∧ Σ∞X −→ Σ−nΣ∞X. to obtain an E∞ ring spectrum −n β∗ Σ β∗ Σ∞X[1/β] := colim{Σ∞X −→ Σ−nΣ∞X −→ Σ−2nΣ∞X −→···} with the property that µ(β):Σ∞X[1/β] → Σ−nΣ∞X[1/β] is an equivalence. ∞ ∞ In fact, as is well-known, Σ X[1/β] is universal among E∞ Σ X-algebras A in which β becomes a unit. -
The Chern Characteristic Classes
The Chern characteristic classes Y. X. Zhao I. FUNDAMENTAL BUNDLE OF QUANTUM MECHANICS Consider a nD Hilbert space H. Qauntum states are normalized vectors in H up to phase factors. Therefore, more exactly a quantum state j i should be described by the density matrix, the projector to the 1D subspace generated by j i, P = j ih j: (I.1) n−1 All quantum states P comprise the projective space P H of H, and pH ≈ CP . If we exclude zero point from H, there is a natural projection from H − f0g to P H, π : H − f0g ! P H: (I.2) On the other hand, there is a tautological line bundle T (P H) over over P H, where over the point P the fiber T is the complex line generated by j i. Therefore, there is the pullback line bundle π∗L(P H) over H − f0g and the line bundle morphism, π~ π∗T (P H) T (P H) π H − f0g P H . Then, a bundle of Hilbert spaces E over a base space B, which may be a parameter space, such as momentum space, of a quantum system, or a phase space. We can repeat the above construction for a single Hilbert space to the vector bundle E with zero section 0B excluded. We obtain the projective bundle PEconsisting of points (P x ; x) (I.3) where j xi 2 Hx; x 2 B: (I.4) 2 Obviously, PE is a bundle over B, p : PE ! B; (I.5) n−1 where each fiber (PE)x ≈ CP . -
Math 535B Final Project: Lecture and Paper
Math 535b Final Project: Lecture and Paper 1. Overview and timeline The goal of the Math 535b final project is to explore some advanced aspect of Riemannian, symplectic, and/or K¨ahlergeometry (most likely chosen from a list below, but you are welcome to select and plan out a different topic, with instructor approval). You will then give two forms of exposition of this topic: • A 50 minute lecture, delivered to the class. • A 5+ page paper exposition of the topic. Your paper must be typeset (and I strongly recommend LATEX) The timeline for these assignments is: • Your lectures will be scheduled during the last two weeks of class, April 15-19 and 22- 26 - both during regular class time and during our make-up lecture slot, Wednesday between 4:30 and 6:30pm. We will schedule precise times later this week. If you have any scheduling constraints, please let me know ASAP. • Your final assignment will be due the last day of class, April 26. If it is necessary, this can be extended somewhat, but you will need to e-mail me in advance to schedule a final (hard) deadline. Some general requirements and/or suggestions: (1) In your paper, you are required to make reference to, in some non-trivial fashion, at least one original research paper. (you could also mention any insights you might have learned in your lecture though this is not necessary. Although many of the topics will be \textbook topics," i.e., they are now covered as advanced chapters in textbooks, there will be some component of the topic for which one or more original research papers are still the \best" or \most definitive" references. -
Toric Polynomial Generators of Complex Cobordism
TORIC POLYNOMIAL GENERATORS OF COMPLEX COBORDISM ANDREW WILFONG Abstract. Although it is well-known that the complex cobordism ring is a polynomial U ∼ ring Ω∗ = Z [α1; α2;:::], an explicit description for convenient generators α1; α2;::: has proven to be quite elusive. The focus of the following is to construct complex cobordism polynomial generators in many dimensions using smooth projective toric varieties. These generators are very convenient objects since they are smooth connected algebraic varieties with an underlying combinatorial structure that aids in various computations. By applying certain torus-equivariant blow-ups to a special class of smooth projective toric varieties, such generators can be constructed in every complex dimension that is odd or one less than a prime power. A large amount of evidence suggests that smooth projective toric varieties can serve as polynomial generators in the remaining dimensions as well. 1. Introduction U In 1960, Milnor and Novikov independently showed that the complex cobordism ring Ω∗ is isomorphic to the polynomial ring Z [α1; α2;:::], where αn has complex dimension n [14, 16]. The standard method for choosing generators αn involves taking products and disjoint unions i j of complex projective spaces and Milnor hypersurfaces Hi;j ⊂ CP × CP . This method provides a smooth algebraic not necessarily connected variety in each even real dimension U whose cobordism class can be chosen as a polynomial generator of Ω∗ . Replacing the disjoint unions with connected sums give other choices for polynomial generators. However, the operation of connected sum does not preserve algebraicity, so this operation results in a smooth connected not necessarily algebraic manifold as a complex cobordism generator in each dimension.