Non-Invasive Biomarkers for Early Detection of Breast Cancer

Total Page:16

File Type:pdf, Size:1020Kb

Non-Invasive Biomarkers for Early Detection of Breast Cancer cancers Review Non-Invasive Biomarkers for Early Detection of Breast Cancer Jiawei Li 1 , Xin Guan 1,2, Zhimin Fan 2, Lai-Ming Ching 3, Yan Li 1 , Xiaojia Wang 4, Wen-Ming Cao 4,* and Dong-Xu Liu 1,* 1 The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand; [email protected] (J.L.); [email protected] (X.G.); [email protected] (Y.L.) 2 Department of Breast Surgery, the First Hospital of Jilin University, Jilin University, Changchun 130021, China; [email protected] 3 Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; [email protected] 4 Department of Breast Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital & Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; [email protected] * Correspondence: [email protected] (W.-M.C.); [email protected] (D.-X.L.) Received: 11 September 2020; Accepted: 24 September 2020; Published: 27 September 2020 Simple Summary: Early diagnosis of breast cancer greatly increases the chance of cure and survival from the disease. The mammogram is widely used for early detection of breast cancer, but its effectiveness and accuracy have been a concern for a long time as well as its inability in detecting small cancers, especially in women with dense breast tissues. Therefore, it is an unmet clinical need to develop a simple, convenient test to overcome the shortcomings of mammography. Liquid biopsy, which is based on the analysis of body fluids, has attracted much attention in the search for cancer biomarkers. Recent advances in analytical techniques have gradually made it possible to detect breast cancer early through a biomarker analysis of blood, nipple aspirate fluid, sweat, urine, tears, or the breath. We envision that a simple blood or breath test holds great promise as a biomarker for early detection of breast cancer in the near future. Abstract: Breast cancer is the most common cancer in women worldwide. Accurate early diagnosis of breast cancer is critical in the management of the disease. Although mammogram screening has been widely used for breast cancer screening, high false-positive and false-negative rates and radiation from mammography have always been a concern. Over the last 20 years, the emergence of “omics” strategies has resulted in significant advances in the search for non-invasive biomarkers for breast cancer diagnosis at an early stage. Circulating carcinoma antigens, circulating tumor cells, circulating cell-free tumor nucleic acids (DNA or RNA), circulating microRNAs, and circulating extracellular vesicles in the peripheral blood, nipple aspirate fluid, sweat, urine, and tears, as well as volatile organic compounds in the breath, have emerged as potential non-invasive diagnostic biomarkers to supplement current clinical approaches to earlier detection of breast cancer. In this review, we summarize the current progress of research in these areas. Keywords: breast cancer; biomarker; diagnosis; detection; blood; body fluid 1. Introduction Breast cancer is the most commonly diagnosed cancer in women worldwide. The incidence and mortality rates for female breast cancer far exceeded those for other cancers [1]. Although the Cancers 2020, 12, 2767; doi:10.3390/cancers12102767 www.mdpi.com/journal/cancers Cancers 2020, 12, 2767 2 of 28 Cancers 2020, 12, x 2 of 28 incidenceincidence raterate ofof breast cancercancer hashas risen, the mortalitymortality rates have steadily fallenfallen due to early diagnosis and betterbetter treatmentstreatments [2[2].]. EarlyEarly detection detection of of breast breast cancer cancer often often leads leads to to better better outcomes. outcomes. According According to Cancerto Cancer Australia’s Australia’s National National Cancer Cancer Control Control Indicators, Indicators, the the relative relative survival survival forfor femalesfemales diagnoseddiagnosed withwith early-stage breastbreast cancerscancers atat diagnosisdiagnosis waswas much higher than that for those with advanced breast cancers. Survival Survival for for early-stage breast breast cancer cancer (stage (stage 1) 1) remained at 100% at 1, 3, and 5 years from diagnosis. However, survival for metastatic breast cancer (stage 4) reduced to 69% at 1 year, 47% at 3 years, and 32% at 5 years from diagnosisdiagnosis [[3].3]. Therefore,Therefore, detection of breast cancer at an early stage plays aa pivotalpivotal rolerole inin reducingreducing thethe mortality.mortality. Mammogram screening has been commonly used forfor early detection of breast cancer in many high-income countries. However, the benefitsbenefits and limitations of mammography have been a heated internationalinternational debate forfor decadesdecades [[4–9].4–9]. The main concerns with mammographymammography are radiationradiation andand overdiagnosis. StudiesStudies havehave observedobserved that that the the X-rays X-rays used used for for mammography mammography could could be be a contributora contributor to theto the onset onset of cancer. of cancer. Overdiagnosis Overdiagnosis through through breast cancerbreast mammogram cancer mammogram screening hasscreening been recognized has been asrecognized the most as important the mostadverse important event adverse and theevent estimates and the of estimates overdiagnosis of overdiagnosis range from range 0% to from 40–50% 0% dependingto 40–50% depending on invitational on invitational age and methods age and [10 methods,11]. In addition, [10,11]. mammogramsIn addition, mammograms cannot detect cannot small tumorsdetect small and are tumors less accurate and are inless cancer accurate detection in cancer in women detection with in dense women breasts. with Therefore,dense breasts. it is imperativeTherefore, toit is have imperative alternative to have tools alternative for early detection tools for ofearly breast detection cancer of [12 breast]. cancer [12]. Breast cancercancer diagnosisdiagnosis is is usually usually confirmed confirmed by by using using needle needle or surgicalor surgical biopsy, biopsy, which which is not is only not invasiveonly invasive but also but notalso necessary not necessary in most in most cases cases when when tumors tumors are benign. are benign. Therefore, Therefore, much much attention attention and manyand many research research efforts efforts have been have focused been focused on the development on the development of non-invasive of non-invasive and more convenientand more biomarkersconvenient biomarkers that allow earlier that allow detection earlier of breastdetection cancer. of breast It has cancer. been reported It has been that non-invasivereported that bodynon- fluid-basedinvasive body tests, fluid-based including tests, circulating including carcinoma circulating antigens carcinoma (CAs), antigens circulating (CAs), tumor circulating cells (CTCs), tumor circulatingcells (CTCs), cell-free circulating tumor nucleiccell-free acids tumor (DNA nucleic or RNA), acids circulating (DNA or microRNAs RNA), circulating (miRNAs), microRNAs circulating extracellular(miRNAs), circulating vesicles (EVs) extracellular in the peripheral vesicles blood, (EVs) nipple in the aspirate peripheral fluid (NAF),blood, sweat,nipple urine, aspirate and tears,fluid as(NAF), well sweat, as volatile urine, organic and tears, compounds as well as (VOCs) volatile in organic exhaled compounds breath, have (VOCs) the potential in exhaled to supplementbreath, have currentthe potential clinical to approachessupplement tocurrent earlier clinical detection approaches of breast to cancerearlier (Figuredetection1)[ of13 breast,14]. Incancer this (Figure review, we1) [13,14]. summarize In this the review, current we progress summarize of research the current in these progress areas (Tableof research1). in these areas (Table 1). Figure 1.1. Overview of current sources and main measurementmeasurement types of non-invasivenon-invasive biomarkers for early detection ofof breastbreast cancer.cancer. FiguresFigures werewere createdcreated withwith BioRender.comBioRender.com ((https://biorender.com/).https://biorender.com/). Cancers 2020, 12, 2767 3 of 28 Table 1. Summary of potential non-invasive biomarkers for early detection of breast cancer. Sources Types Biomarkers Measured Detection Types (Sample Size) Sensitivity Specificity Notes References serum proteins: CEA, FASL, OPN, VEGFC, VEGFD, breast cancer (100) vs. non-breast 74.7%. 77.0%. AUC*: 0.79. HGF. cancer subjects (110). tumor-associated autoantibodies: FRS3, RAC3, breast cancer (100) vs. non-breast HOXD1, GPR157, ZMYM6, EIF3E, CSNK1E, 72.2% 70.8% AUC: 0.77 cancer subjects (110) [15] ZNF510, BMX, SF3A1, SOX2 serum proteins and tumor-associated autoantibodies: FASL, IL6, IL8, OPN, VEGFD, HGF, breast cancer (100) vs. non-breast 81.0% 78.8% AUC: 0.89 FRS3, MYOZ2, RAC3GPR157, ZMYM6, EIF3E, cancer subjects (110) Circulating CSNK1E, ZNF510, BMXSF3A1, SOX2 carcinoma proteins Videssa Breast consisting of serum proteins: AFP, CA19-9, CEA, TNF-α, VEGF-C, ErbB2 (HER2); and negative predictive value: tumor-associated autoantibodies: ANXA1, ATF3, women aged 25–75 (1145) 93.0% 64.0% [16] 98.0% ATP6AP1, BAT4 (GPANK1), BDNF, CTBP1, DBT, HOXD1, IGF2BP1, IGFBP2, ErbB2 (HER2) women aged under 50 years (545): Videssa Breast consisting of 11 serum protein negative predictive value: Breast cancer (32) vs. benign 87.5% 83.8% [17] Peripheral
Recommended publications
  • Primary Screening for Breast Cancer with Conventional Mammography: Clinical Summary
    Primary Screening for Breast Cancer With Conventional Mammography: Clinical Summary Population Women aged 40 to 49 y Women aged 50 to 74 y Women aged ≥75 y The decision to start screening should be No recommendation. Recommendation Screen every 2 years. an individual one. Grade: I statement Grade: B Grade: C (insufficient evidence) These recommendations apply to asymptomatic women aged ≥40 y who do not have preexisting breast cancer or a previously diagnosed high-risk breast lesion and who are not at high risk for breast cancer because of a known underlying genetic mutation Risk Assessment (such as a BRCA1 or BRCA2 gene mutation or other familial breast cancer syndrome) or a history of chest radiation at a young age. Increasing age is the most important risk factor for most women. Conventional digital mammography has essentially replaced film mammography as the primary method for breast cancer screening Screening Tests in the United States. Conventional digital screening mammography has about the same diagnostic accuracy as film overall, although digital screening seems to have comparatively higher sensitivity but the same or lower specificity in women age <50 y. For women who are at average risk for breast cancer, most of the benefit of mammography results from biennial screening during Starting and ages 50 to 74 y. While screening mammography in women aged 40 to 49 y may reduce the risk for breast cancer death, the Stopping Ages number of deaths averted is smaller than that in older women and the number of false-positive results and unnecessary biopsies is larger. The balance of benefits and harms is likely to improve as women move from their early to late 40s.
    [Show full text]
  • The Use of Rodent Tumors in Experimental Cancer Therapy Conclusions and Recommendations from an International Workshop1'2
    [CANCER RESEARCH 45, 6541-6545, December 1985] Meeting Report The Use of Rodent Tumors in Experimental Cancer Therapy Conclusions and Recommendations from an International Workshop1'2 This workshop was convened to address the question of how of a specific tumor cannot be predicted with any certainty. Virus- best to use animal models of solid tumors in cancer therapy induced rodent tumors almost always express common virus- research. The discussion among the 58 participants focused on coded antigens and are usually strongly immunogenic, but hosts the following topics: appropriate solid tumor models; xenografts neonatally infected with virus may be immunologically tolerant to of human tumors; assay systems such as local tumor control, virus-coded antigens. Chemically induced rodent tumors tend to clonogenic assays following tumor excision, and tumor regrowth express individually distinct antigens. Depending partially upon delay; and applications of such models in chemotherapy, radio the carcinogen and the target organ, the degree of immunoge therapy, and combined modalities studies. nicity is variable, but a large proportion of chemically induced A major goal of the meeting was to produce a set of guiding tumors are immunogenic. Spontaneous rodent tumors are usu principles for experiments on animal tumors. This report is largely ally nonimmunogenic, although a minority may be weakly to a statement of those guiding principles, with suggestions and moderately immunogenic (1, 2). comments concerning investigations using animal models in Because no tumor can be expected to be nonimmunogenic if cancer therapy research.3 The authors believe that this discus it is placed in an allogeneic environment, tumors should as a sion of "tricks of the trade" will be useful to research workers general rule only be transplanted syngeneically.
    [Show full text]
  • Tepzz¥ 6Z54za T
    (19) TZZ¥ ZZ_T (11) EP 3 260 540 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 27.12.2017 Bulletin 2017/52 C12N 15/113 (2010.01) A61K 9/127 (2006.01) A61K 31/713 (2006.01) C12Q 1/68 (2006.01) (21) Application number: 17000579.7 (22) Date of filing: 12.11.2011 (84) Designated Contracting States: • Sarma, Kavitha AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Philadelphia, PA 19146 (US) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO • Borowsky, Mark PL PT RO RS SE SI SK SM TR Needham, MA 02494 (US) • Ohsumi, Toshiro Kendrick (30) Priority: 12.11.2010 US 412862 P Cambridge, MA 02141 (US) 20.12.2010 US 201061425174 P 28.07.2011 US 201161512754 P (74) Representative: Clegg, Richard Ian et al Mewburn Ellis LLP (62) Document number(s) of the earlier application(s) in City Tower accordance with Art. 76 EPC: 40 Basinghall Street 11840099.3 / 2 638 163 London EC2V 5DE (GB) (71) Applicant: The General Hospital Corporation Remarks: Boston, MA 02114 (US) •Thecomplete document including Reference Tables and the Sequence Listing can be downloaded from (72) Inventors: the EPO website • Lee, Jeannie T •This application was filed on 05-04-2017 as a Boston, MA 02114 (US) divisional application to the application mentioned • Zhao, Jing under INID code 62. San Diego, CA 92122 (US) •Claims filed after the date of receipt of the divisional application (Rule 68(4) EPC). (54) POLYCOMB-ASSOCIATED NON-CODING RNAS (57) This invention relates to long non-coding RNAs (IncRNAs), libraries of those ncRNAs that bind chromatin modifiers, such as Polycomb Repressive Complex 2, inhibitory nucleic acids and methods and compositions for targeting IncRNAs.
    [Show full text]
  • Radiotherapy: Seizing the Opportunity in Cancer Care
    RADIOTHERAPY: seizing the opportunity in cancer care November 2018 Foreword The incidence of cancer is increasing, resulting in a rising demand for high‑quality cancer care. In 2018, there were close to 4.23 million new cases of cancer in Europe, and this number is predicted to rise by almost a quarter to 5.2 million by 2040.1 This growing demand poses a major challenge to healthcare systems and highlights the need to ensure all cancer patients have access to high-quality, efficient cancer care. One critical component of cancer care is too often forgotten in these discussions: radiotherapy. Radiotherapy is recommended as part of treatment for more than 50% of cancer patients.2 3 However, at least one in four people needing radiotherapy does not receive it.3 This report aims to demonstrate the significant role of radiotherapy in achieving high‑quality cancer care and highlights what needs to be done to close the current gap in utilisation of radiotherapy across Europe. We call on all stakeholders, with policymakers at the helm, to help position radiotherapy appropriately within cancer policies and models of care – for the benefit of cancer patients today and tomorrow. 2 1 Governments and policymakers: Make radiotherapy a central component of cancer care in policies, planning and budgets Our 5 2 Patient groups, media five-point Professional societies working and other stakeholders: Help with national and EU‑level improve general awareness and plan decision‑makers: Achieve understanding of radiotherapy recognition of all radiotherapy to
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • DNA Hypermethylation of Tumor Suppressor Genes As an Early Lung Cancer Biomarker
    Perspective DNA hypermethylation of tumor suppressor genes as an early lung cancer biomarker Tomasz Powrózek, Teresa Małecka-Massalska Department of Human Physiology, Medical University of Lublin, Lublin, Poland Correspondence to: Tomasz Powrózek, PhD. Department of Human Physiology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland. Email: [email protected]. Comment on: Hulbert A, Jusue Torres I, Stark A, et al. Early detection of lung cancer using DNA promoter hypermethylation in plasma and sputum. Clin Cancer Res 2016. [Epub ahead of print]. Abstract: Lung cancer is a leading cause of cancer related deaths worldwide. It seems to be caused especially by lack of established molecular markers which could provide early and non-invasive diagnostics of developing tumor. Among studied markers the most promising are epigenetic alterations such as DNA hypermethylation. Recent studies demonstrated high utility of such markers especially as adjunct test for computed tomography (CT)/low-dose spiral computed tomography (LDSCT) tumor screening. Reduction of false results rate obtained by imaging diagnostics as well as possibility of application that markers as independent non-invasive tools for early lung cancer detection encourages to their further investigation. Keywords: Lung cancer; DNA methylation; biomarker; screening Submitted Nov 22, 2016. Accepted for publication Nov 29, 2016. doi: 10.21037/tcr.2016.12.51 View this article at: http://dx.doi.org/10.21037/tcr.2016.12.51 Introduction advanced or advanced stage with presence of distant metastases. Unfortunately tumor detected in a late stage Despite the advances in lung cancer therapeutics perspectives of the disease disqualifies patients from radical surgery involving personalized therapies and investigation of cancer and in consequence prevents from complete recovery.
    [Show full text]
  • The Future of Cancer Research: ACCELERATING SCIENTIFIC INNOVATION
    The Future Of Cancer Research: ACCELERATING SCIENTIFIC INNOVATION President’s Cancer Panel Annual Report 2010-2011 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Cancer Institute The President’s Cancer Panel LaSalle D. Leffall, Jr., M.D., F.A.C.S., Chair (through 12/31/11) Charles R. Drew Professor of Surgery Howard University College of Medicine Washington, DC 20059 Margaret L. Kripke, Ph.D. (through 12/31/11) Vivian L. Smith Chair and This report is submitted to the President of the United States Professor Emerita in fulfillment of the obligations of the President’s Cancer Panel The University of Texas to appraise the National Cancer Program as established in MD Anderson Cancer Center accordance with the National Cancer Act of 1971 (P.L. 92-218), Houston, TX 77030 the Health Research Extension Act of 1987 (P.L. 99-158), the National Institutes of Health Revitalization Act of 1993 (P.L. 103-43), and Title V, Part A, Public Health Service Act (42 U.S.C. 281 et seq.). Printed November 2012 For further information on the President’s Cancer Panel or additional copies of this report, please contact: Abby B. Sandler, Ph.D. Executive Secretary President’s Cancer Panel 9000 Rockville Pike Bld. 31/Rm B2B37 MSC 2590 Bethesda, MD 20892 301-451-9399 [email protected] http://pcp.cancer.gov The Future Of Cancer Research:: ACCELERATING SCIENTIFIC INNOVATION President’s Cancer Panel Annual Report 2010-2011 Suzanne H. Reuben Erin L. Milliken Lisa J. Paradis for The President’s Cancer Panel November 2012 U.S.
    [Show full text]
  • Cancer Treatment and Survivorship Facts & Figures 2019-2021
    Cancer Treatment & Survivorship Facts & Figures 2019-2021 Estimated Numbers of Cancer Survivors by State as of January 1, 2019 WA 386,540 NH MT VT 84,080 ME ND 95,540 59,970 38,430 34,360 OR MN 213,620 300,980 MA ID 434,230 77,860 SD WI NY 42,810 313,370 1,105,550 WY MI 33,310 RI 570,760 67,900 IA PA NE CT 243,410 NV 185,720 771,120 108,500 OH 132,950 NJ 543,190 UT IL IN 581,350 115,840 651,810 296,940 DE 55,460 CA CO WV 225,470 1,888,480 KS 117,070 VA MO MD 275,420 151,950 408,060 300,200 KY 254,780 DC 18,750 NC TN 470,120 AZ OK 326,530 NM 207,260 AR 392,530 111,620 SC 143,320 280,890 GA AL MS 446,900 135,260 244,320 TX 1,140,170 LA 232,100 AK 36,550 FL 1,482,090 US 16,920,370 HI 84,960 States estimates do not sum to US total due to rounding. Source: Surveillance Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute. Contents Introduction 1 Long-term Survivorship 24 Who Are Cancer Survivors? 1 Quality of Life 24 How Many People Have a History of Cancer? 2 Financial Hardship among Cancer Survivors 26 Cancer Treatment and Common Side Effects 4 Regaining and Improving Health through Healthy Behaviors 26 Cancer Survival and Access to Care 5 Concerns of Caregivers and Families 28 Selected Cancers 6 The Future of Cancer Survivorship in Breast (Female) 6 the United States 28 Cancers in Children and Adolescents 9 The American Cancer Society 30 Colon and Rectum 10 How the American Cancer Society Saves Lives 30 Leukemia and Lymphoma 12 Research 34 Lung and Bronchus 15 Advocacy 34 Melanoma of the Skin 16 Prostate 16 Sources of Statistics 36 Testis 17 References 37 Thyroid 19 Acknowledgments 45 Urinary Bladder 19 Uterine Corpus 21 Navigating the Cancer Experience: Treatment and Supportive Care 22 Making Decisions about Cancer Care 22 Cancer Rehabilitation 22 Psychosocial Care 23 Palliative Care 23 Transitioning to Long-term Survivorship 23 This publication attempts to summarize current scientific information about Global Headquarters: American Cancer Society Inc.
    [Show full text]
  • Early Detection and Screening for Breast Cancer
    Seminars in Oncology Nursing, Vol 33, No 2 (May), 2017: pp 141-155 141 EARLY DETECTION AND SCREENING FOR BREAST CANCER CATHY COLEMAN OBJECTIVE: To review the history, current status, and future trends related to breast cancer screening. DATA SOURCES: Peer-reviewed articles, web sites, and textbooks. CONCLUSION: Breast cancer remains a complex, heterogeneous disease. Serial screening with mammography is the most effective method to detect early stage disease and decrease mortality. Although politics and economics may inhibit organized mammography screening programs in many countries, the judi- cious use of proficient clinical and self-breast examination can also identify small tumors leading to reduced morbidity. IMPLICATIONS FOR NURSING PRACTICE: Oncology nurses have exciting oppor- tunities to lead, facilitate, and advocate for delivery of high-quality screening services targeting individuals and communities. A practical approach is needed to translate the complexities and controversies surrounding breast cancer screen- ing into improved care outcomes. KEY WORDS: breast cancer, screening, early stage, quality, breast centers, advocacy. he future is hopeful for the public, pro- fessionals, and interdisciplinary teams as multifaceted progress continues to reveal new insights in carcinogenesis, ge- Cathy Coleman, DNP, MSN, PHN, OCN®, CPHQ, CNL: T nomics, tumor biology, translational research, and Assistant Professor, University of San Francisco School quality improvement from prevention to pallia- of Nursing and Health Professions, San Francisco, CA. tion and survivorship for cancer care.1-8 Oncology Address correspondence to Cathy Coleman, DNP, nurses are on the front line of care delivery across MSN, PHN, OCN®, CPHQ, CNL, University of San settings; they also assert a strong leadership voice Francisco School of Nursing and Health Professions, 2130 Fulton Street, San Francisco, CA 94117.
    [Show full text]
  • State of Science Breast Cancer Fact Sheet
    Patient Version Breast Cancer Fact Sheet About Breast Cancer Breast cancer can start in any area of the breast. In the US, breast cancer is the most common cancer (after skin cancer) and the second-leading cause of cancer death (after lung cancer) in women. Risk Factors Risk factors for breast cancer that you cannot change Lifestyle-related risk factors for breast cancer include: • Drinking alcohol Being born female • Being overweight or obese, especially after menopause This is the main risk factor for breast cancer. But men can get breast cancer, too. • Not being physically active Getting older • Getting hormone therapy after menopause with As a person gets older, their risk of breast cancer estrogen and progesterone therapy goes up. Most breast cancers are found in women • Starting menstruation early or having late menopause age 55 or older. • Never having children or having first live birth after Personal or family history age 30 A woman who has had breast cancer in the past or has a • Using certain types of birth control close blood relative who has had breast cancer (mother, • Having a history of non-cancerous breast conditions father, sister, brother, daughter) has a higher risk of getting it. Having more than one close blood relative increases the risk even more. It’s important to know that Prevention most women with breast cancer don’t have a close blood There is no sure way to prevent breast cancer, and relative with the disease. some risk factors can’t be changed, such as being born female, age, race, and personal or family history of the Inheriting gene changes disease.
    [Show full text]
  • CANCE R RESEARCH Experimental Brain Tumors
    CANCE R RESEARCH A MONTHLY JOURNAL OF ARTICLES AND ABSTRACTS REPORTING CANCER RESEARCH VOLUME 1 DECEMBER, 1941 NUMBER 12 Experimental Brain Tumors I. Tumors Produced with Methylcholanthrene* H. M. Zimmerman, M.D., and Hildegarde Arnold, M.D. (Frorn the Laboratory o/Pathology, Yale University School o/ Medicine, New Haven, Conn.) (Received for publication October 9, I941) Efforts to produce intracranial neoplasia by various of 4 in pyrex glass jars having wire mesh covers. The chemical carcinogens have been attended with scant jars were sterilized weekly. Each group of animals was success prior to the work of Seligman and Shear (2). inspected at least twice daily for evidences of tumor By intracerebral implantation of pellets of 2o-methyl- development. cholanthrene, these workers produced ii gliomas and The diet consisted of Purina Fox Chow and oats. 2 fibrosarcomas in a series of 2o male mice of the C3H This and tap water were available to the animals at all strain. Seligman and Shear reported also successful times ad libitum. subcutaneous transplantation of several of these tumors, Carcinogen.--The carcinogen employed for intra- one of which was stated to be a glioma. cranial implantation was 2o-methylcholanthrene (Hoff- Utilizing the same technic, the present writers re- man-LaRoche, Inc., Nutley, N. J.) which was purified ported a preliminary experiment (3) in which they by chromatographic adsorption on A120:~.1 The speci- found u6 intracranial tumors in 51 C3H mice. These men used had a corrected melting point of i79.8- tumors, occurring during the first io months of the I8o.4 ~ C. Cylindrical pellets of this hydrocarbon were experiment, consisted of oligodendroglioma, glioblas- prepared with a diameter of about I mm.
    [Show full text]
  • Stochastic Models for Improving Screening and Surveillance Decisions for Prostate Cancer Care
    Stochastic Models for Improving Screening and Surveillance Decisions for Prostate Cancer Care by Christine Barnett A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Industrial and Operations Engineering) in The University of Michigan 2017 Doctoral Committee: Professor Brian T. Denton, Chair Associate Professor Mariel S. Lavieri Professor Lawrence M. Seiford Assistant Professor Scott A. Tomlins Christine L. Barnett [email protected] ORCID iD: 0000-0002-1465-7623 c Christine L. Barnett 2017 DEDICATION For Jon, Amy, and Kate. ii ACKNOWLEDGEMENTS First, I would like to thank my advisor, Dr. Brian Denton, for his guidance and support over the past five years. I am grateful to have had him as a mentor through this experience, and feel prepared for the next stage in my career thanks to his encouragement and guidance. This work was supported in part by the National Sci- ence Foundation through Grant Number CMMI 0844511 and by the National Science Foundation Graduate Research Fellowship under Grant Number DGE 1256260. I would like to thank my committee members Dr. Mariel Lavieri, Dr. Lawrence Seiford, and Dr. Scott Tomlins for serving on my committee and providing me with career advice and helpful feedback on my research. In addition, I would like to thank our collaborators from Michigan Medicine, Dr. Gregory Auffenberg, Dr. Matthew Davenport, Dr. Jeffrey Montgomery, Dr. James Montie, Dr. Todd Morgan, Dr. Scott Tomlins, and Dr. John Wei for their invaluable clinical perspective and for teaching me about the intricacies of prostate cancer screening and treatment decisions. Finally, I would like to thank my friends and family for their support throughout graduate school.
    [Show full text]