Higher Homotopy Groups Joshua Benjamin

Total Page:16

File Type:pdf, Size:1020Kb

Higher Homotopy Groups Joshua Benjamin HIGHER HOMOTOPY GROUPS JOSHUA BENJAMIN III CLASS OF 2020 [email protected] Acknowledgments I would like to thank: Joe Harris for lending me a copy of the Greenberg and Harper Algebraic Topology book. I would also like to thank him for allowing me to create an exposition and for oering advice as to what topic I should explore. ii To My Parents iii HIGHER HOMOTOPY GROUPS JOSHUA BENJAMIN III JOE HARRIS iv Contents 1 Introduction 1 2 Higher Homotopy Groups 2 2.1 Denition of the homotopy groups . .2 2.2 A rst important result . .3 3 Homotopy groups of Spheres 4 n 3.1 pi(S ) when i < n .............................4 n 3.2 pi(S ) when i = n .............................4 3.3 Stable and unstable . .5 n 3.4 pi(S ) when i > n .............................5 v Chapter 1 Introduction e study of higher homotopy groups has long been of interest to algebraic topologists. ese groups, which will be dened in the next chapter, are quite simple to dene, but unfortunately are very dicult to calculate. Especially when compared to the homology groups, the higher homotopy groups are rather ”elusive” in nature. e eld of study was opened when Heinz Hopf introduced Hopf bration (also known as the Hopf map) which was the rst non-trivial mapping of S3 to S2. e bers of this map were S1 and it allowed a calculation of the third homotopy group of the 2-sphere S2. For this text, the author will provide some history and some important theorems and results. Due to author’s limited knowledge, proofs of these theorems and results will not be included unless they are within the scope of the author’s ability. 1 Chapter 2 Higher Homotopy Groups e idea of homotopy and a homotopy group was introduced by Camille Jordan who did so without using the syntax and notation of group theory. e concepts of homol- ogy and the fundamental group were intertwined by Henri Poincare, but the higher homotopy groups were not dened until Eduard Cech did so. A major step in both the denition and computation of the homotopy groups came from Witold Hurewicz with the Hurewicz theorem. A later development came with Hans Freudenthal’s suspen- sion theorem. is development contributed to the study of stable algebraic topology to examine the properties that did not rely on dimension. George Whitehead and Jean- Pierre Serre made the next major advancements. Whitehead proved that there exists a metastable range for the homotopy groups of spheres. Serre employed the use of spec- tral sequences to prove that all the higher homotopy groups of spheres are nite, with n 2n the exception of pn(S ) and p4n−1(S ). 2.1 Denition of the homotopy groups For any given space X and base point b, pn(X) is the set of homotopy classes of maps f : Sn ! X that take a base point a ! b. pn(X) can also be dened as the group of homotopy classes of maps g : In ! X that take ¶In ! b, where In denotes the n-cube [0, 1]n and ¶ denotes the boundary. 2 2.2 A rst important result e result the author wishes to show is that all the pn(X, x0) for n > 1 are abelian. is will be done in two ways. e rst of which is the ”Eckmann-Hilton trick” and the other is an inductive proof. eorem 2.2.1. pn(X, x0) for n > 1 are abelian ”Eckmann-Hilton trick” Proof. Let S be a set with two associative operations ∗, ◦ : S × S ! S having a common unit e 2 S. Suppose ∗ and ◦ distribute over each other, in the sense that (a ∗ b) ◦ (g ∗ d) = (a ◦ g) ∗ (b ◦ d) Taking b = e = g in the distributive law yields a ◦ d = a ∗ d , while taking a = e = d yields b ◦ g = g ∗ b us ∗ and ◦ coincide, and dene a commutative operation on S As for the inductive method, a few things must rst be dened. Let Wx0 ⊂ X consist of all loops at x0 and let C be a constant loop at x0. is allows us the theorem: eorem 2.2.2. p1(Wx0 , C) is abelian Proof. Let f , g be loops in Wx0 at C. Now dene ( f ∗ g)(t) = f (t)g(t). f g ' f ∗ g ' g f rel(0, 1) Now dene the higher homotopy groups as pn(X, x0) = pn−1(Wx0 , C) for n ≥ 2 From this we have the corollary Corollary 2.2.3. e higher homotopy groups are all abelian 3 Chapter 3 Homotopy groups of Spheres e next major paerns come from theorems that are beyond the (current) knowledge of the author. alitative explanations will be given where possible. n 3.1 pi(S ) when i < n n Nicely, pi(S ) = 0 when i < n. is can be proven formally but it can also be seen in the following way. Given any continuous mapping from an i-sphere to an n-sphere with i < n, it can always be deformed so that it is not a surjective map. is conrms that, its image is contained in Sn with a point removed. In all cases, this is a contractible space, and any mapping to a contractible space can be deformed into a one-point mapping. Hence it is trivial. n 3.2 pi(S ) when i = n n pi(S ) = Z when i = n. is can be realized in multiple ways. Witold Hurewicz related the homotopy groups to the homology groups by abelianization(i.e. taking a quotient group G/[G, G]). So, the result directly follows from the Hurewicz theorem (which will not be stated or proved here for lack of knowledge of homology). e the- orem shows that for a simply-connected space X, the rst nonzero homotopy group pk(X), with k > 0, is isomorphic to the rst nonzero homology group Hk(X). For the n-sphere, this means that for n > 0, n n pn(S ) = Hn(S ) = Z . is can also be proven inductively from the Freudenthal suspension theorem which implies that the suspension homomorphism from n n+1 pn+k(S ) ! pn+k+1(S ) is an isomorphism for n > k + 1 4 3.3 Stable and unstable n e groups pn+k(S ) with n > k + 1 are called the stable homotopy groups of spheres, S and are denoted pk . ese are nite abelian groups for k 6= 0. e general formula is still unknown. For n ≤ k + 1, the groups are called the unstable homotopy groups of spheres. n 3.4 pi(S ) when i > n Unfortunately, these groups are not trivial in general eve though the homology groups of this form are. ere is no known general formula for computing these groups. As stated before, most of these groups are nite and all are still abelian. An example of a known paern is that 2 3 p3+j(S ) = p3+j(S ), 8j 2 N is is also a consequence of the Hopf bration. 5 Bibliography Cartan, Henri; Serre, Jean-Pierre (1952a), ”Espaces bres et groupes d’homotopie. I. Constructions generales”, Comptes Rendus de l’Academie des Sciences. Serie I. Mathematique, Paris: Elsevier, 234: 288-290 Greenberg, Marvin J., and John R. Harper. ”Loop Spaces and Higher Homotopy Groups.” Algebraic Topology: A First Course. Redwood City, CA: Addison-Wesley Pub., 1981. N. pag. Print. Hopf, Heinz (1931), ”Uber die Abbildungen der dreidimensionalen Sphare auf die Kugelache”, Mathematische Annalen, Berlin: Springer, 104 (1): 637-665 May, J. Peter (1999b), A Concise Course in Algebraic Topology, Chicago lectures in mathematics (revised ed.), University of Chicago Press May, J. Peter (1999a), ”Stable Algebraic Topology 1945-1966”, in I. M. James, History of Topology, Elsevier Science, pp. 665-723, 6.
Recommended publications
  • TOPOLOGY QUALIFYING EXAM May 14, 2016 Examiners: Dr
    Department of Mathematics and Statistics University of South Florida TOPOLOGY QUALIFYING EXAM May 14, 2016 Examiners: Dr. M. Elhamdadi, Dr. M. Saito Instructions: For Ph.D. level, complete at least seven problems, at least three problems from each section. For Master’s level, complete at least five problems, at least one problem from each section. State all theorems or lemmas you use. Section I: POINT SET TOPOLOGY 1. Let K = 1/n n N R.Let K = (a, b), (a, b) K a, b R,a<b . { | 2 }⇢ B { \ | 2 } Show that K forms a basis of a topology, RK ,onR,andthatRK is strictly finer than B the standard topology of R. 2. Recall that a space X is countably compact if any countable open covering of X contains afinitesubcovering.ProvethatX is countably compact if and only if every nested sequence C C of closed nonempty subsets of X has a nonempty intersection. 1 ⊃ 2 ⊃··· 3. Assume that all singletons are closed in X.ShowthatifX is regular, then every pair of points of X has neighborhoods whose closures are disjoint. 4. Let X = R2 (0,n) n Z (integer points on the y-axis are removed) and Y = \{ | 2 } R2 (0,y) y R (the y-axis is removed) be subspaces of R2 with the standard topology.\{ Prove| 2 or disprove:} There exists a continuous surjection X Y . ! 5. Let X and Y be metrizable spaces with metrics dX and dY respectively. Let f : X Y be a function. Prove that f is continuous if and only if given x X and ✏>0, there! exists δ>0suchthatd (x, y) <δ d (f(x),f(y)) <✏.
    [Show full text]
  • The Fundamental Group
    The Fundamental Group Tyrone Cutler July 9, 2020 Contents 1 Where do Homotopy Groups Come From? 1 2 The Fundamental Group 3 3 Methods of Computation 8 3.1 Covering Spaces . 8 3.2 The Seifert-van Kampen Theorem . 10 1 Where do Homotopy Groups Come From? 0 Working in the based category T op∗, a `point' of a space X is a map S ! X. Unfortunately, 0 the set T op∗(S ;X) of points of X determines no topological information about the space. The same is true in the homotopy category. The set of `points' of X in this case is the set 0 π0X = [S ;X] = [∗;X]0 (1.1) of its path components. As expected, this pointed set is a very coarse invariant of the pointed homotopy type of X. How might we squeeze out some more useful information from it? 0 One approach is to back up a step and return to the set T op∗(S ;X) before quotienting out the homotopy relation. As we saw in the first lecture, there is extra information in this set in the form of track homotopies which is discarded upon passage to [S0;X]. Recall our slogan: it matters not only that a map is null homotopic, but also the manner in which it becomes so. So, taking a cue from algebraic geometry, let us try to understand the automorphism group of the zero map S0 ! ∗ ! X with regards to this extra structure. If we vary the basepoint of X across all its points, maybe it could be possible to detect information not visible on the level of π0.
    [Show full text]
  • On Contractible J-Saces
    IHSCICONF 2017 Special Issue Ibn Al-Haitham Journal for Pure and Applied science https://doi.org/ 10.30526/2017.IHSCICONF.1867 On Contractible J-Saces Narjis A. Dawood [email protected] Dept. of Mathematics / College of Education for Pure Science/ Ibn Al – Haitham- University of Baghdad Suaad G. Gasim [email protected] Dept. of Mathematics / College of Education for Pure Science/ Ibn Al – Haitham- University of Baghdad Abstract Jordan curve theorem is one of the classical theorems of mathematics, it states the following : If C is a graph of a simple closed curve in the complex plane the complement of C is the union of two regions, C being the common boundary of the two regions. One of the region is bounded and the other is unbounded. We introduced in this paper one of Jordan's theorem generalizations. A new type of space is discussed with some properties and new examples. This new space called Contractible J-space. Key words : Contractible J- space, compact space and contractible map. For more information about the Conference please visit the websites: http://www.ihsciconf.org/conf/ www.ihsciconf.org Mathematics |330 IHSCICONF 2017 Special Issue Ibn Al-Haitham Journal for Pure and Applied science https://doi.org/ 10.30526/2017.IHSCICONF.1867 1. Introduction Recall the Jordan curve theorem which states that, if C is a simple closed curve in the plane ℝ, then ℝ\C is disconnected and consists of two components with C as their common boundary, exactly one of these components is bounded (see, [1]). Many generalizations of Jordan curve theorem are discussed by many researchers, for example not limited, we recall some of these generalizations.
    [Show full text]
  • Sheaves and Homotopy Theory
    SHEAVES AND HOMOTOPY THEORY DANIEL DUGGER The purpose of this note is to describe the homotopy-theoretic version of sheaf theory developed in the work of Thomason [14] and Jardine [7, 8, 9]; a few enhancements are provided here and there, but the bulk of the material should be credited to them. Their work is the foundation from which Morel and Voevodsky build their homotopy theory for schemes [12], and it is our hope that this exposition will be useful to those striving to understand that material. Our motivating examples will center on these applications to algebraic geometry. Some history: The machinery in question was invented by Thomason as the main tool in his proof of the Lichtenbaum-Quillen conjecture for Bott-periodic algebraic K-theory. He termed his constructions `hypercohomology spectra', and a detailed examination of their basic properties can be found in the first section of [14]. Jardine later showed how these ideas can be elegantly rephrased in terms of model categories (cf. [8], [9]). In this setting the hypercohomology construction is just a certain fibrant replacement functor. His papers convincingly demonstrate how many questions concerning algebraic K-theory or ´etale homotopy theory can be most naturally understood using the model category language. In this paper we set ourselves the specific task of developing some kind of homotopy theory for schemes. The hope is to demonstrate how Thomason's and Jardine's machinery can be built, step-by-step, so that it is precisely what is needed to solve the problems we encounter. The papers mentioned above all assume a familiarity with Grothendieck topologies and sheaf theory, and proceed to develop the homotopy-theoretic situation as a generalization of the classical case.
    [Show full text]
  • Properties of Digital N-Manifolds and Simply Connected Spaces
    The Jordan-Brouwer theorem for the digital normal n-space Zn. Alexander V. Evako. [email protected] Abstract. In this paper we investigate properties of digital spaces which are represented by graphs. We find conditions for digital spaces to be digital n-manifolds and n-spheres. We study properties of partitions of digital spaces and prove a digital analog of the Jordan-Brouwer theorem for the normal digital n-space Zn. Key Words: axiomatic digital topology, graph, normal space, partition, Jordan surface theorem 1. Introduction. A digital approach to geometry and topology plays an important role in analyzing n-dimensional digitized images arising in computer graphics as well as in many areas of science including neuroscience and medical imaging. Concepts and results of the digital approach are used to specify and justify some important low- level image processing algorithms, including algorithms for thinning, boundary extraction, object counting, and contour filling. To study properties of digital images, it is desirable to construct a convenient digital n-space modeling Euclidean n-space. For 2D and 3D grids, a solution was offered first by A. Rosenfeld [18] and developed in a number of papers, just mention [1-2,13,15-16], but it can be seen from the vast amount of literature that generalization to higher dimensions is not easy. Even more, as T. Y. Kong indicates in [14], there are problems even for the 2D and 3D grids. For example, different adjacency relations are used to define connectedness on a set of grid points and its complement. Another approach to overcome connectivity paradoxes and some other apparent contradictions is to build a digital space by using basic structures from algebraic topology such as cell complexes or simplicial complexes, see e.g.
    [Show full text]
  • Math 601 Algebraic Topology Hw 4 Selected Solutions Sketch/Hint
    MATH 601 ALGEBRAIC TOPOLOGY HW 4 SELECTED SOLUTIONS SKETCH/HINT QINGYUN ZENG 1. The Seifert-van Kampen theorem 1.1. A refinement of the Seifert-van Kampen theorem. We are going to make a refinement of the theorem so that we don't have to worry about that openness problem. We first start with a definition. Definition 1.1 (Neighbourhood deformation retract). A subset A ⊆ X is a neighbourhood defor- mation retract if there is an open set A ⊂ U ⊂ X such that A is a strong deformation retract of U, i.e. there exists a retraction r : U ! A and r ' IdU relA. This is something that is true most of the time, in sufficiently sane spaces. Example 1.2. If Y is a subcomplex of a cell complex, then Y is a neighbourhood deformation retract. Theorem 1.3. Let X be a space, A; B ⊆ X closed subspaces. Suppose that A, B and A \ B are path connected, and A \ B is a neighbourhood deformation retract of A and B. Then for any x0 2 A \ B. π1(X; x0) = π1(A; x0) ∗ π1(B; x0): π1(A\B;x0) This is just like Seifert-van Kampen theorem, but usually easier to apply, since we no longer have to \fatten up" our A and B to make them open. If you know some sheaf theory, then what Seifert-van Kampen theorem really says is that the fundamental groupoid Π1(X) is a cosheaf on X. Here Π1(X) is a category with object pints in X and morphisms as homotopy classes of path in X, which can be regard as a global version of π1(X).
    [Show full text]
  • The Fundamental Group and Seifert-Van Kampen's
    THE FUNDAMENTAL GROUP AND SEIFERT-VAN KAMPEN'S THEOREM KATHERINE GALLAGHER Abstract. The fundamental group is an essential tool for studying a topo- logical space since it provides us with information about the basic shape of the space. In this paper, we will introduce the notion of free products and free groups in order to understand Seifert-van Kampen's Theorem, which will prove to be a useful tool in computing fundamental groups. Contents 1. Introduction 1 2. Background Definitions and Facts 2 3. Free Groups and Free Products 4 4. Seifert-van Kampen Theorem 6 Acknowledgments 12 References 12 1. Introduction One of the fundamental questions in topology is whether two topological spaces are homeomorphic or not. To show that two topological spaces are homeomorphic, one must construct a continuous function from one space to the other having a continuous inverse. To show that two topological spaces are not homeomorphic, one must show there does not exist a continuous function with a continuous inverse. Both of these tasks can be quite difficult as the recently proved Poincar´econjecture suggests. The conjecture is about the existence of a homeomorphism between two spaces, and it took over 100 years to prove. Since the task of showing whether or not two spaces are homeomorphic can be difficult, mathematicians have developed other ways to solve this problem. One way to solve this problem is to find a topological property that holds for one space but not the other, e.g. the first space is metrizable but the second is not. Since many spaces are similar in many ways but not homeomorphic, mathematicians use a weaker notion of equivalence between spaces { that of homotopy equivalence.
    [Show full text]
  • Algebraic Topology
    Algebraic Topology Vanessa Robins Department of Applied Mathematics Research School of Physics and Engineering The Australian National University Canberra ACT 0200, Australia. email: [email protected] September 11, 2013 Abstract This manuscript will be published as Chapter 5 in Wiley's textbook Mathe- matical Tools for Physicists, 2nd edition, edited by Michael Grinfeld from the University of Strathclyde. The chapter provides an introduction to the basic concepts of Algebraic Topology with an emphasis on motivation from applications in the physical sciences. It finishes with a brief review of computational work in algebraic topology, including persistent homology. arXiv:1304.7846v2 [math-ph] 10 Sep 2013 1 Contents 1 Introduction 3 2 Homotopy Theory 4 2.1 Homotopy of paths . 4 2.2 The fundamental group . 5 2.3 Homotopy of spaces . 7 2.4 Examples . 7 2.5 Covering spaces . 9 2.6 Extensions and applications . 9 3 Homology 11 3.1 Simplicial complexes . 12 3.2 Simplicial homology groups . 12 3.3 Basic properties of homology groups . 14 3.4 Homological algebra . 16 3.5 Other homology theories . 18 4 Cohomology 18 4.1 De Rham cohomology . 20 5 Morse theory 21 5.1 Basic results . 21 5.2 Extensions and applications . 23 5.3 Forman's discrete Morse theory . 24 6 Computational topology 25 6.1 The fundamental group of a simplicial complex . 26 6.2 Smith normal form for homology . 27 6.3 Persistent homology . 28 6.4 Cell complexes from data . 29 2 1 Introduction Topology is the study of those aspects of shape and structure that do not de- pend on precise knowledge of an object's geometry.
    [Show full text]
  • 4 Homotopy Theory Primer
    4 Homotopy theory primer Given that some topological invariant is different for topological spaces X and Y one can definitely say that the spaces are not homeomorphic. The more invariants one has at his/her disposal the more detailed testing of equivalence of X and Y one can perform. The homotopy theory constructs infinitely many topological invariants to characterize a given topological space. The main idea is the following. Instead of directly comparing struc- tures of X and Y one takes a “test manifold” M and considers the spacings of its mappings into X and Y , i.e., spaces C(M, X) and C(M, Y ). Studying homotopy classes of those mappings (see below) one can effectively compare the spaces of mappings and consequently topological spaces X and Y . It is very convenient to take as “test manifold” M spheres Sn. It turns out that in this case one can endow the spaces of mappings (more precisely of homotopy classes of those mappings) with group structure. The obtained groups are called homotopy groups of corresponding topological spaces and present us with very useful topological invariants characterizing those spaces. In physics homotopy groups are mostly used not to classify topological spaces but spaces of mappings themselves (i.e., spaces of field configura- tions). 4.1 Homotopy Definition Let I = [0, 1] is a unit closed interval of R and f : X Y , → g : X Y are two continuous maps of topological space X to topological → space Y . We say that these maps are homotopic and denote f g if there ∼ exists a continuous map F : X I Y such that F (x, 0) = f(x) and × → F (x, 1) = g(x).
    [Show full text]
  • Some Finiteness Results for Groups of Automorphisms of Manifolds 3
    SOME FINITENESS RESULTS FOR GROUPS OF AUTOMORPHISMS OF MANIFOLDS ALEXANDER KUPERS Abstract. We prove that in dimension =6 4, 5, 7 the homology and homotopy groups of the classifying space of the topological group of diffeomorphisms of a disk fixing the boundary are finitely generated in each degree. The proof uses homological stability, embedding calculus and the arithmeticity of mapping class groups. From this we deduce similar results for the homeomorphisms of Rn and various types of automorphisms of 2-connected manifolds. Contents 1. Introduction 1 2. Homologically and homotopically finite type spaces 4 3. Self-embeddings 11 4. The Weiss fiber sequence 19 5. Proofs of main results 29 References 38 1. Introduction Inspired by work of Weiss on Pontryagin classes of topological manifolds [Wei15], we use several recent advances in the study of high-dimensional manifolds to prove a structural result about diffeomorphism groups. We prove the classifying spaces of such groups are often “small” in one of the following two algebro-topological senses: Definition 1.1. Let X be a path-connected space. arXiv:1612.09475v3 [math.AT] 1 Sep 2019 · X is said to be of homologically finite type if for all Z[π1(X)]-modules M that are finitely generated as abelian groups, H∗(X; M) is finitely generated in each degree. · X is said to be of finite type if π1(X) is finite and πi(X) is finitely generated for i ≥ 2. Being of finite type implies being of homologically finite type, see Lemma 2.15. Date: September 4, 2019. Alexander Kupers was partially supported by a William R.
    [Show full text]
  • COMPACT CONTRACTIBLE N-MANIFOLDS HAVE ARC SPINES (N > 5)
    PACIFIC JOURNAL OF MATHEMATICS Vol. 168, No. 1, 1995 COMPACT CONTRACTIBLE n-MANIFOLDS HAVE ARC SPINES (n > 5) FREDRIC D. ANCEL AND CRAIG R. GUILBAULT The following two theorems were motivated by ques- tions about the existence of disjoint spines in compact contractible manifolds. THEOREM 1. Every compact contractible n-manifold (n > 5) is the union of two n-balls along a contractible (n — 1)-dimensional submanifold of their boundaries. A compactum X is a spine of a compact manifold M if M is homeomorphic to the mapping cylinder of a map from dM to X. THEOREM 2. Every compact contractible n-manifold (n > 5) has a wild arc spine. Also a new proof is given that for n > 6, every homology (n — l)-sphere bounds a compact contractible n-manifold. The implications of arc spines for compact contractible manifolds of dimensions 3 and 4 are discussed in §5. The questions about the existence of disjoint spines in com- pact contractible manifolds which motivated the preced- ing theorems are stated in §6. 1. Introduction. Let M be a compact manifold with boundary. A compactum X is a spine of M if there is a map / : dM -> X and a homeomorphism h : M —> Cyl(/) such that h(x) = q((x,0)) for x G dM. Here Cyl(/) denotes the mapping cylinder of / and q : (dM x [0, l])Ul-) Cyl(/) is the natural quotient map. Thus Q\dMx[o,i) and q\X are embeddings and q(x, 1) = q(f(x)) for x e ι dM. So h carries dM homeomorphically onto q(M x {0}), h~ oq\x embeds in X int M, and M - h~ι(q(X)) ^ dM x [0,1).
    [Show full text]
  • New Ideas in Algebraic Topology (K-Theory and Its Applications)
    NEW IDEAS IN ALGEBRAIC TOPOLOGY (K-THEORY AND ITS APPLICATIONS) S.P. NOVIKOV Contents Introduction 1 Chapter I. CLASSICAL CONCEPTS AND RESULTS 2 § 1. The concept of a fibre bundle 2 § 2. A general description of fibre bundles 4 § 3. Operations on fibre bundles 5 Chapter II. CHARACTERISTIC CLASSES AND COBORDISMS 5 § 4. The cohomological invariants of a fibre bundle. The characteristic classes of Stiefel–Whitney, Pontryagin and Chern 5 § 5. The characteristic numbers of Pontryagin, Chern and Stiefel. Cobordisms 7 § 6. The Hirzebruch genera. Theorems of Riemann–Roch type 8 § 7. Bott periodicity 9 § 8. Thom complexes 10 § 9. Notes on the invariance of the classes 10 Chapter III. GENERALIZED COHOMOLOGIES. THE K-FUNCTOR AND THE THEORY OF BORDISMS. MICROBUNDLES. 11 § 10. Generalized cohomologies. Examples. 11 Chapter IV. SOME APPLICATIONS OF THE K- AND J-FUNCTORS AND BORDISM THEORIES 16 § 11. Strict application of K-theory 16 § 12. Simultaneous applications of the K- and J-functors. Cohomology operation in K-theory 17 § 13. Bordism theory 19 APPENDIX 21 The Hirzebruch formula and coverings 21 Some pointers to the literature 22 References 22 Introduction In recent years there has been a widespread development in topology of the so-called generalized homology theories. Of these perhaps the most striking are K-theory and the bordism and cobordism theories. The term homology theory is used here, because these objects, often very different in their geometric meaning, Russian Math. Surveys. Volume 20, Number 3, May–June 1965. Translated by I.R. Porteous. 1 2 S.P. NOVIKOV share many of the properties of ordinary homology and cohomology, the analogy being extremely useful in solving concrete problems.
    [Show full text]