Understanding Constraints and Potentials of Weed Management Through Seed Predation by Harvester Ants
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ants As Prey for the Endemic and Endangered Spanish Tiger Beetle Cephalota Dulcinea (Coleoptera: Carabidae) Carlo Polidori A*, Paula C
Annales de la Société entomologique de France (N.S.), 2020 https://doi.org/10.1080/00379271.2020.1791252 Ants as prey for the endemic and endangered Spanish tiger beetle Cephalota dulcinea (Coleoptera: Carabidae) Carlo Polidori a*, Paula C. Rodríguez-Flores b,c & Mario García-París b aInstituto de Ciencias Ambientales (ICAM), Universidad de Castilla-La Mancha, Avenida Carlos III, S/n, 45071, Toledo, Spain; bDepartamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, 28006, Spain; cCentre d’Estudis Avançats de Blanes (CEAB-CSIC), C. d’Accés Cala Sant Francesc, 14, 17300, Blanes, Spain (Accepté le 29 juin 2020) Summary. Among the insects inhabiting endorheic, temporary and highly saline small lakes of central Spain during dry periods, tiger beetles (Coleoptera: Carabidae: Cicindelinae) form particularly rich assemblages including unique endemic species. Cephalota dulcinea López, De la Rosa & Baena, 2006 is an endemic, regionally protected species that occurs only in saline marshes in Castilla-La Mancha (Central Spain). Here, we report that C. dulcinea suffers potential risks associated with counter-attacks by ants (Hymenoptera: Formicidae), while using them as prey at one of these marshes. Through mark–recapture methods, we estimated the population size of C. dulcinea at the study marsh as of 1352 individuals, with a sex ratio slightly biased towards males. Evident signs of ant defensive attack by the seed-harvesting ant Messor barbarus (Forel, 1905) were detected in 14% of marked individuals, sometimes with cut ant heads still grasped with their mandibles to the beetle body parts. Ant injuries have been more frequently recorded at the end of adult C. -
Chromosome Numbers in Spanish Formicidae (Hymenoptera) IV
331 Chromosome Numbers in Spanish Formicidae (Hymenoptera) IV. New data of Species from the Genera Camponotus, Formica, Lasius, Messor, and Monomorium by Pedro Lorite1, Jose A. Carrillo1, Alberto Tinaut2 and Teresa Palomeque1 ABSTRACT In this paper we report new karyological data from seven species belonging to subfamilies Formicinae and Myrmicinae. Among them we include two that are considered as endemic Iberian species, Formica frontalis and Formica subrufa. Also the chromosome number of Formica gerardi is reported. In Lasius brunneus, a variation on chromosome number probably due to the presence of B-chromosomes was detected. For two other species (Camponotus cruentatus and Messor barbarus) we found different chromosome numbers from those previously published. Also we confirm the chromosome number reported for Monomorium subopacum. INTRODUCTION Hymenoptera form one of the most distinct and well-defined insect orders and have long been perceived as a natural group. Haplo-diploidy or male haploidy is the main characteristic of the order (Crozier 1975, Gauld & Bolton 1988). Several studies have been carried about cytogenetic aspects of ants. A wide variation has been observed in relation to the chromosome number (n=1 to n=42). Karyological analysis has proved to be useful to determine the karyotypic relationship and evolution between related species (Imai 1971, Loiselle et al. 1990, Palomeque et al. 1988, 1993) as well for the establishment and characterization of new species (Imai et al. 1994). In recent years our group have performed studies in Spanish Formicidae. In relation to this, we have published several reviews of chromosome numbers (Lorite et al. 1998a, 1998b, 2000). In this paper we report new karyological data from seven species from the Formicinae 1 Departamento de Biología Experimental. -
Report on Pitfall Trapping of Ants at the Biospecies Sites in the Nature Reserve of Orange County, California
Report on Pitfall Trapping of Ants at the Biospecies Sites in the Nature Reserve of Orange County, California Prepared for: Nature Reserve of Orange County and The Irvine Co. Open Space Reserve, Trish Smith By: Krista H. Pease Robert N. Fisher US Geological Survey San Diego Field Station 5745 Kearny Villa Rd., Suite M San Diego, CA 92123 2001 2 INTRODUCTION: In conjunction with ongoing biospecies richness monitoring at the Nature Reserve of Orange County (NROC), ant sampling began in October 1999. We quantitatively sampled for all ant species in the central and coastal portions of NROC at long-term study sites. Ant pitfall traps (Majer 1978) were used at current reptile and amphibian pitfall trap sites, and samples were collected and analyzed from winter 1999, summer 2000, and winter 2000. Summer 2001 samples were recently retrieved, and are presently being identified. Ants serve many roles on different ecosystem levels, and can serve as sensitive indicators of change for a variety of factors. Data gathered from these samples provide the beginning of three years of baseline data, on which long-term land management plans can be based. MONITORING OBJECTIVES: The California Floristic Province, which includes southern California, is considered one of the 25 global biodiversity hotspots (Myers et al. 2000). The habitat of this region is rapidly changing due to pressure from urban and agricultural development. The Scientific Review Panel of the State of California's Natural Community Conservation Planning Program (NCCP) has identified preserve design parameters as one of the six basic research needs for making informed long term conservation planning decisions. -
Dynamics of Locomotion in the Seed Harvesting Ant Messor Barbarus: Effect of Individual Body Mass and Transported Load Mass
Dynamics of locomotion in the seed harvesting ant Messor barbarus: effect of individual body mass and transported load mass Hugo Merienne, Gérard Latil, Pierre Moretto and Vincent Fourcassié Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France ABSTRACT Ants are well-known for their amazing load carriage performances. Yet, the biome- chanics of locomotion during load transport in these insects has so far been poorly investigated. Here, we present a study of the biomechanics of unloaded and loaded locomotion in the polymorphic seed-harvesting ant Messor barbarus (Linnaeus, 1767). This species is characterized by a strong intra-colonial size polymorphism with allometric relationships between the different body parts of the workers. In particular, big ants have much larger heads relative to their size than small ants. Their center of mass is thus shifted forward and even more so when they are carrying a load in their mandibles. We investigated the dynamics of the ant center of mass during unloaded and loaded locomotion. We found that during both unloaded and loaded locomotion, the kinetic energy and gravitational potential energy of the ant center of mass are in phase, which is in agreement with what has been described by other authors as a grounded-running gait. During unloaded locomotion, small and big ants do not display the same posture. However, they expend the same amount of mechanical energy to raise and accelerate their center of mass per unit of distance and per unit of body mass. While carrying a load, compared to the unloaded situation, ants seem to modify their locomotion gradually with increasing load mass. -
Evidence for a Thoracic Crop in the Workers of Some Neotropical Pheidole Species (Formicidae: Myrmicinae)
Arthropod Structure & Development 59 (2020) 100977 Contents lists available at ScienceDirect Arthropod Structure & Development journal homepage: www.elsevier.com/locate/asd Evidence for a thoracic crop in the workers of some Neotropical Pheidole species (Formicidae: Myrmicinae) * A. Casadei-Ferreira a, , G. Fischer b, E.P. Economo b a Departamento de Zoologia, Universidade Federal do Parana, Avenida Francisco Heraclito dos Santos, s/n, Centro Politecnico, Curitiba, Mailbox 19020, CEP 81531-980, Brazil b Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan article info abstract Article history: The ability of ant colonies to transport, store, and distribute food resources through trophallaxis is a key Received 28 May 2020 advantage of social life. Nonetheless, how the structure of the digestive system has adapted across the Accepted 21 July 2020 ant phylogeny to facilitate these abilities is still not well understood. The crop and proventriculus, Available online xxx structures in the ant foregut (stomodeum), have received most attention for their roles in trophallaxis. However, potential roles of the esophagus have not been as well studied. Here, we report for the first Keywords: time the presence of an auxiliary thoracic crop in Pheidole aberrans and Pheidole deima using X-ray micro- Ants computed tomography and 3D segmentation. Additionally, we describe morphological modifications Dimorphism Mesosomal crop involving the endo- and exoskeleton that are associated with the presence of the thoracic crop. Our Liquid food results indicate that the presence of a thoracic crop in major workers suggests their potential role as Species group repletes or live food reservoirs, expanding the possibilities of tasks assumed by these individuals in the colony. -
The Ant Host of Razorfemora Zaragozae and Some Observations of Their Relationships Under Natural Conditions
Bulletin of Insectology 73 (2): 193-200, 2020 ISSN 1721-8861 eISSN 2283-0332 The ant host of Razorfemora zaragozae and some observations of their relationships under natural conditions Juan A. DELGADO1, R. Henry L. DISNEY2, Ricardo L. PALMA3 1Departamento de Zoología, Facultad de Biología, Universidad de Murcia, Spain 2Department of Zoology, University of Cambridge, United Kingdom 3Museum of New Zealand Te Papa Tongarewa, Wellington, New Zealand Abstract The biology of the scuttle fly Razorfemora zaragozae Disney (Diptera Phoridae) was previously unknown, but our observations in southern Spain indicate that this phorid fly is a parasitoid of the seed harvester ant Messor barbarus (L.) (Hymenoptera Formicidae). We report some aspects of the host location, host selection and oviposition behaviour of Razorfemora flies, as well as a potential defensive response of its host ant. Key words: Diptera, Phoridae, Razorfemora, scuttle flies, parasitoid, Hymenoptera, Formicidae, Messor, ants, behaviour, Spain. Introduction the species Razorfemora nussbaumi Disney from Israel, described from a single male (Disney, 1990). Disney Species of the dipteran family Phoridae are the most im- (1994) identified a female from Spain as R. nussbaumi portant parasitoids of members of the ant family Formi- but, when a large series of R. nussbaumi, including both cidae (Johnson, 2001). Since the review by Disney sexes, became available from Yemen, it was evident that (1994), many papers have focused on relationships be- the single female from Spain belonged to a second spe- tween parasitoid scuttle flies and ants (e.g. Hsieh and Per- cies (Disney, 2006). Since their description, nothing fecto, 2012; Mathis and Philpott, 2012; Elizalde et al., about the biology of the two species of Razorfemora has 2018). -
Thievery in Rainforest Fungus-Growing Ants: Interspecific Assault on Culturing Material at Nest Entrance
Insectes Sociaux (2018) 65:507–510 https://doi.org/10.1007/s00040-018-0632-9 Insectes Sociaux SHORT COMMUNICATION Thievery in rainforest fungus-growing ants: interspecific assault on culturing material at nest entrance M. U. V. Ronque1 · G. H. Migliorini2 · P. S. Oliveira3 Received: 15 March 2018 / Revised: 21 May 2018 / Accepted: 22 May 2018 / Published online: 5 June 2018 © International Union for the Study of Social Insects (IUSSI) 2018 Abstract Cleptobiosis in social insects refers to a relationship in which members of a species rob food resources, or other valuable items, from members of the same or a different species. Here, we report and document in field videos the first case of clepto- biosis in fungus-growing ants (Atta group) from a coastal, Brazilian Atlantic rainforest. Workers of Mycetarotes parallelus roam near the nest and foraging paths of Mycetophylax morschi and attack loaded returning foragers of M. morschi, from which they rob cultivating material for the fungus garden. Typically, a robbing Mycetarotes stops a loaded returning Myce- tophylax, vigorously pulls away the fecal item from the forager’s mandibles, and brings the robbed item to its nearby nest. In our observations, all robbed items consisted of arthropod feces, the most common culturing material used by M. parallelus. Robbing behavior is considered a form of interference action to obtain essential resources needed by ant colonies to cultivate the symbiont fungus. Cleptobiosis between fungus-growing ants may increase colony contamination, affect foraging and intracolonial behavior, as well as associated microbiota, with possible effects on the symbiont fungus. The long-term effects of this unusual behavior, and associated costs and benefits for the species involved, clearly deserve further investigation. -
Encyclopedia of Social Insects
G Guests of Social Insects resources and homeostatic conditions. At the same time, successful adaptation to the inner envi- Thomas Parmentier ronment shields them from many predators that Terrestrial Ecology Unit (TEREC), Department of cannot penetrate this hostile space. Social insect Biology, Ghent University, Ghent, Belgium associates are generally known as their guests Laboratory of Socioecology and Socioevolution, or inquilines (Lat. inquilinus: tenant, lodger). KU Leuven, Leuven, Belgium Most such guests live permanently in the host’s Research Unit of Environmental and nest, while some also spend a part of their life Evolutionary Biology, Namur Institute of cycle outside of it. Guests are typically arthropods Complex Systems, and Institute of Life, Earth, associated with one of the four groups of eusocial and the Environment, University of Namur, insects. They are referred to as myrmecophiles Namur, Belgium or ant guests, termitophiles, melittophiles or bee guests, and sphecophiles or wasp guests. The term “myrmecophile” can also be used in a broad sense Synonyms to characterize any organism that depends on ants, including some bacteria, fungi, plants, aphids, Inquilines; Myrmecophiles; Nest parasites; and even birds. It is used here in the narrow Symbionts; Termitophiles sense of arthropods that associated closely with ant nests. Social insect nests may also be parasit- Social insect nests provide a rich microhabitat, ized by other social insects, commonly known as often lavishly endowed with long-lasting social parasites. Although some strategies (mainly resources, such as brood, retrieved or cultivated chemical deception) are similar, the guests of food, and nutrient-rich refuse. Moreover, nest social insects and social parasites greatly differ temperature and humidity are often strictly regu- in terms of their biology, host interaction, host lated. -
Comprehensive Phylogeny of Myrmecocystus Honey Ants Highlights Cryptic Diversity and Infers Evolution During Aridification of the American Southwest
Molecular Phylogenetics and Evolution 155 (2021) 107036 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Comprehensive phylogeny of Myrmecocystus honey ants highlights cryptic diversity and infers evolution during aridification of the American Southwest Tobias van Elst a,b,*, Ti H. Eriksson c,d, Jürgen Gadau a, Robert A. Johnson c, Christian Rabeling c, Jesse E. Taylor c, Marek L. Borowiec c,e,f,* a Institute for Evolution and Biodiversity, University of Münster, Hüfferstraße 1, 48149 Münster, Germany b Institute of Zoology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany c School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85287-1501, USA d Beta Hatch Inc., 200 Titchenal Road, Cashmere, WA 98815, USA e Department of Entomology, Plant Pathology and Nematology, University of Idaho, 875 Perimeter Drive, Moscow, ID 83844-2329, USA f Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, 875 Perimeter Drive, Moscow, ID 83844-2329, USA ARTICLE INFO ABSTRACT Keywords: The New World ant genus Myrmecocystus Wesmael, 1838 (Formicidae: Formicinae: Lasiini) is endemic to arid Cryptic diversity and semi-arid habitats of the western United States and Mexico. Several intriguing life history traits have been Formicidae described for the genus, the best-known of which are replete workers, that store liquified food in their largely Molecular Systematics expanded crops and are colloquially referred to as “honeypots”. Despite their interesting biology and ecological Myrmecocystus importance for arid ecosystems, the evolutionary history of Myrmecocystus ants is largely unknown and the Phylogenomics Ultraconserved elements current taxonomy presents an unsatisfactory systematic framework. -
By J. Bequaert
1V.-ANTS IN THEIR DIVERSE RELATIOSS TO THE PLANT WORLD BY J. BEQUAERT The following contribution is an attempt to summarize what is known at present of the widely varied and often intricate relations which exist in nature between ants and vegetation. It has primarily grown out of an examination of certain so-called ‘‘ myrmecophytes,” or ant-plants, which I frequently came across during my travels in the Belgian Congo in quest of zoological and botanical specimens. Prof. Wheeler’s study of the feeding habits of the larva of certain plant-inhabiting ants col- lected by Messrs. H. Lang and J. P. Chapin and myself in the Congo, and Prof. I. W. Bailey’s investigation of the anatomy of myrmecophytes show that the whole subject of the mutual adaptations of plants and ants is in need of a thorough revision. It thus seemed appropriate that the present opportunity be used to bring together the many isolated and scattered observations which have been made on the interrelations of these organisms. Indeed, the problem of myrmecophytism is dominated by the feeding habits of the ants and their young and, until these are perfectly understood, we can scarcely hope to grasp the true ecological meaning and the probable origin of the extreme cases of apparent or true symbiosis between certain ants and certain species of plants. It is, therefore, of the utmost importance to inquire carefully into the various ways in which ants are wont to benefit by the vegetation. Although much time has been spent in consulting botanical and entomological papers for information bearing on the subject, undoubted- ly a number of interesting observations have escaped my notice. -
Hymenoptera: Formicidae
NATAL NEST DISTRIBUTION AND PLEOMETROSIS IN THE DESERT LEAF-CUTTER ANT A CROMYRMEX I/ERSICOLOR (PERGANDE) (HYMENOPTERA: FORMICIDAE) BY STEVEN W. RISSING,* ROBERT A. JOHNSON,* AND GREGORY B. POLLOCK** While most ant colonies are started by single queens, colony foundation by groups of queens, pleometrosis, also occurs (Wilson 1971, H6lldobler and Wilson 1977). Several extensively studied, highly pleometrotic species are notably similar with respect to important aspects of colony ontogeny and population dynamics. Myrmecocystus mimicus, Solenopsis invicta and l/'eromessor per- gandei queens found colonies mutualistically without respect to relatedness (Bartz and H6lldobler 1982, Tschinkel and Howard 1983, Pollock and Rissing 1985, Rissing and Pollock 1986). Further, while adult colonies of these species are highly territorial (Htill- dobler 1976a, 1981; Wilson et al. 1971; Went et al. 1972, Wheeler and Rissing 1975), natal colonies are clumped with brood raiding and subsequent worker defection from brood-raided colonies occur- ring (references cited above for M. mimicus and S. invicta, for F. pergandei: Rissing and Pollock, in press). Given such frequently deleterious natal colony interactions, adaptive value of b.abitat selection by founding queens resulting in clumping of natal nests is unclear. Natal nests of M. mimicus are generally clumped in areas devoid of adult nests (Bartz and H6lldobler 1982), yet still occur near such nests (B. H611dobler, pers. comm.), and queens of S. invicta show some preference for microtopographic features (Tschinkel and Howard 1983). Here we present data relating habitat selection and clumping of natal nests of the highly pleometrotic leaf- cutter ant Acromyrmex versicolor (Pergande) directly to survival of founding queens. -
Hybridization in Ants
Rockefeller University Digital Commons @ RU Student Theses and Dissertations 2020 Hybridization in Ants Ian Butler Follow this and additional works at: https://digitalcommons.rockefeller.edu/ student_theses_and_dissertations Part of the Life Sciences Commons HYBRIDIZATION IN ANTS A Thesis Presented to the Faculty of The Rockefeller University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Ian Butler June 2020 © Copyright by Ian Butler 2020 HYBRIDIZATION IN ANTS Ian Butler, Ph.D. The Rockefeller University 2020 Interspecific hybridization is a relatively common occurrence within all animal groups. Two main factors make hybridization act differently in ants than in other species: eusociality and haplodiploidy. These factors serve to reduce the costs of interspecific hybridization in ants while simultaneously allowing them to take advantage of certain benefits. Eusociality may mitigate the effects of hybridization by allowing hybrids to be shunted into the worker caste, potentially reducing the effects of hybrid sterility. In haplodiploid species, males do not have a father. They instead develop from unfertilized eggs as haploid clones of their mother. This means that interspecifically mated queens do not completely sacrifice reproductive potential even if all hybrids are sterile because they can still produce fertile males. These factors in turn suggest that hybridization should be more common among the social Hymenoptera than other animal groups. Nevertheless, current data suggest that ants hybridize at rates similar to other animal groups, although these data are limited. Furthermore, there is a large amount of overlap between cases of interspecific hybridization and cases of genetic caste determination. A majority of the cases in ants where caste is determined primarily by genotype are associated with hybridization.