Frontiers in Ecology and the Environment 12

Total Page:16

File Type:pdf, Size:1020Kb

Frontiers in Ecology and the Environment 12 Sea-levelTHE rise ECOLOGICAL and tidal marsh ecosystems` SOCIETY OF AMERICA FrontiersFrontiers inin EcologyEcology andand thethe EnvironmentEnvironment Issue No 7 Volume 12 September 2014 Whales as ecosystem engineers Conserving mobile species Assessing environmental security in China esa REVIEWS REVIEWS REVIEWS Whales as marine ecosystem engineers Joe Roman1*, James A Estes2, Lyne Morissette3, Craig Smith4, Daniel Costa2, James McCarthy5, JB Nation6, Stephen Nicol7, Andrew Pershing8,9, and Victor Smetacek10 Baleen and sperm whales, known collectively as the great whales, include the largest animals in the history of life on Earth. With high metabolic demands and large populations, whales probably had a strong influence on marine ecosystems before the advent of industrial whaling: as consumers of fish and invertebrates; as prey to other large-bodied predators; as reservoirs and vertical and horizontal vectors for nutrients; and as detrital sources of energy and habitat in the deep sea. The decline in great whale numbers, estimated to be at least 66% and perhaps as high as 90%, has likely altered the structure and function of the oceans, but recovery is possible and in many cases is already underway. Future changes in the structure and function of the world’s oceans can be expected with the restoration of great whale populations. Front Ecol Environ 2014; doi:10.1890/130220 here is mounting evidence that apex predators play emerging understanding of the ecological role of great Timportant roles in the workings of natural ecosys- whales, a group – largely defined by size and commercial tems (Estes et al. 2011; Smith et al. 2013). Ocean science history – that includes all baleen whales (Mysticeti) and has been slow to embrace this view for at least three the sperm whale (Physeter macrocephalus). The terms interrelated reasons: (1) following World War II, when whales and great whales are used interchangeably in this oceanographic research gained new impetus, most whale text. Even though the large body size, great historical populations had been depleted or were in steep decline, abundance, high metabolic demands, and broad global so that ocean scientists had little opportunity to study distribution of whales is well known, we propose that the oceans with natural stocks of large predators, especially ecological role of these animals has been undervalued great whales; (2) there are logistical and operational chal- because we have underestimated the degree to which the lenges in studying large mobile animals on the high seas, depletion of great whales caused by a worldwide commer- with manipulative experiments being all but impossible cial harvest has altered marine ecosystems. (Bowen 1997); and (3) the prevailing focus of ocean sci- The earliest records of commercial whaling date from ence has been on bottom-up controls, such as resource approximately 1000 CE, when the Basque people began limitation and physical factors such as temperature hunting North Atlantic right whales (Eubalaena glacialis). In (Baum and Worm 2009). This review synthesizes our the millennium that followed, whaling systematically depleted coastal whale species, followed by reductions of pelagic species as well (Tønnessen and Johnsen 1982). In a nutshell: Although the overall level of reduction is still debated, • Commercial whaling dramatically reduced the biomass and experts agree that tens of millions of whales were killed dur- abundance of great whales and, until recently, we have lacked ing the thousand-year period of commercial whaling. the ability to study and directly observe the functional roles Estimates of numerical declines range from 66% to 90% of of whales in marine ecosystems • Whales facilitate the transfer of nutrients by releasing fecal populations, and total whale biomass may have been plumes near the surface after feeding at depth and by moving reduced by an estimated 85% (Branch and Williams 2006; nutrients from highly productive, high-latitude feeding areas Christensen 2006). For many species, population reductions to low-latitude calving areas were even more extreme: blue whales (Balaenoptera muscu- • Whale carcasses sequester carbon to the deep sea, where they lus), for example, have been reduced to 1% of their historical provide habitat and food for many endemic invertebrates • The continued recovery of great whales may help to buffer numbers in the Southern Hemisphere (Christensen 2006). marine ecosystems from destabilizing stresses and could lead Analyses of genetic diversity suggest that historical popula- to higher rates of productivity in locations where whales tions of several species, including North Atlantic humpback aggregate to feed and give birth whales (Megaptera novaeangliae) and fin whales (Balae- noptera physalus), in addition to Pacific gray whales (Eschrichtius robustus), were larger than previously supposed 1Gund Institute for Ecological Economics, University of Vermont, (Roman and Palumbi 2003; Alter et al. 2007; Ruegg et al. Burlington, VT *([email protected]); 2Department of Ecology 2013). This genetic approach indicates that the depletion of and Evolutionary Biology, University of California, Santa Cruz, the great whales may be in the range of 90% or greater. Santa Cruz, CA; 3M Expertise Marine, Sainte-Luce, Canada; Whales were once almost exclusively valued as goods to 4Department of Oceanography, University of Hawaii at Manoa, be removed from the ocean: for meat, oil (fuel, lubrica- Honolulu, HI (continued on last page) tion, and the manufacture of nitroglycerine), baleen (or © The Ecological Society of America www.frontiersinecology.org Whales as ecosystem engineers J Roman et al. Whale pump Prey whales as consumers is consider- 6 able; for instance, an estimated 15 65% (range 53–86%) of the North –1 yr 4 Pacific Ocean’s primary produc- 4 10 10 tion was required to sustain the ϫ large whale populations prior to 2 5 pressure Predation Tons N Tons commercial whaling (Croll et al. 2006). There is evidence that T Wu J Roman whales were similarly abundant Sediment suspension Whale falls elsewhere, so this calculation may 200 8 have applied to temperate oceans –1 160 6 yr generally. Lacking whales, this 3 10 –1 120 productivity is now shunted to yr ϫ 3 4 m other species and food-web path- 8 80 10 Tons C Tons ways, though arguably primary 2 40 production may have been higher in the past because of whale- F Nicklin M Rothman induced recycling and upper- Figure 1. Examples of the influence of whales on diverse ecosystem functions. Black bars ocean retention of nutrients represent estimated pre-whaling contributions; gray bars show contributions from currently (Roman and McCarthy 2010). estimated populations. Data for gray whales (Eschrichtius robustus) (“Sediment suspension”), Although as an endotherm a “Whale pump” (N released at the surface in the Gulf of Maine), and “Whale falls” (C exported whale’s total metabolic rate is to sea floor) are from original sources (Alter et al. 2007; Pershing et al. 2010; Roman and high, one consequence of its McCarthy 2010). Predation pressure is measured as the biomass of killer whales per unit immense size is a low mass-specific biomass of available marine mammal prey, calculated from estimates of abundance for all metabolic rate relative to smaller available marine mammal prey, including great whales, small cetaceans, pinnipeds, and sea animals. The amount of food otters for the North Pacific Ocean and Bering Sea before and after industrial whaling (Pfister and required to sustain one blue whale DeMaster 2006) and assuming that killer whale numbers have remained the same. As a result of could support seven smaller minke these changes in abundance, the risk of predation has increased for great whales and prey whales (Balaenoptera acutorostrata) availability has declined for killer whales. Although standard errors are not available for these or 1500 penguins, but the higher estimates, there is uncertainty in the number of whales before and after commercial exploitation metabolic rates of these smaller and the contribution of N and C for the whale-pump and whale-fall calculations. animals would limit their collec- tive biomass to just 50% or 8%, whalebone, prized for its flexibility and strength), and respectively, of a blue whale’s biomass. With primary pro- spermaceti (a waxy substance found in the head cavities duction held constant, reducing baleen whale popula- of sperm whales that was used in candles, ointments, and tions lowers the potential for marine ecosystems to retain industrial lubricants). They are now increasingly valued carbon (C), both in living biomass and in carcasses that for the many ecosystem services they provide. Great sink to the ocean floor (Pershing et al. 2010). whales can exert major trophic influences on marine As major predators in many marine ecosystems, whales ecosystems and also act as ecosystem engineers (Jones and can influence the ecological and evolutionary dynamics of Gutierrez 2007), influencing material fluxes and species prey populations, with effects propagating through food diversity and causing physical changes to the ocean envi- webs and biogeochemical cycles, such as the transport of ronment (Table 1). These functions will become increas- nitrogen (N) and iron (Fe). Predation by baleen whales, ingly relevant to ocean restoration and management as for example, may have been an important evolutionary great whale populations continue to recover in the post- force on Calanus copepods in the Arctic, selecting for whaling era (Magera et al. 2013; Roman et al. 2013). shorter life spans, smaller size, and higher growth rates; In this paper, we describe and discuss four mechanisms now that whales are functionally extinct in much of this or ecological pathways by which whales influence marine region, selection is favoring longer-lived, larger copepod ecosystems – as consumers, prey, detritus, and nutrient species (Berge et al. 2011). The near-extirpation of whales vectors (Figure 1) – and identify the associated ecosystem from the Southern Ocean in the 20th century may have services. released other krill predators, such as penguins and Antarctic fur seals (Arctocephalus gazella), from competi- n Whales as consumers tion (Ballance et al.
Recommended publications
  • Full Curriculum Vitae
    C. R. Smith July 2017 Curriculum Vitae CRAIG RANDALL SMITH Address: Department of Oceanography University of Hawaii at Manoa 1000 Pope Road Honolulu, HI 96822 Telephone: 808-956-7776 email: [email protected] Education: B.S., 1977, with high honors, Biological Science, Michigan State University Ph.D., Dec 1983, Biological Oceanography, University of California at San Diego, Scripps Institution of Oceanography Professional Experience: 1975-1976: Teaching Assistant, Biological Science Program, Michigan State University 1976: Summer Student Fellow, Woods Hole Oceanographic Institution 1976-1977: Research Assistant, Microbiology Department, Michigan State University 1977-1981: Research Assistant, Program for the Study of Sub- Seabed Disposal of Radioactive Waste, Scripps Institution of Oceanography 1981-1983: Associate Investigator, O.N.R. grant entitled, "The Impact of Large Organic Falls on a Bathyal Benthic Community," Scripps Institution of Oceanography 1983-1984: Postdoctoral Scholar, Woods Hole Oceanographic Institution 1985-1986: Postdoctoral Research Associate, School of Oceanography, University of Washington 1986-1988: Research Assistant Professor, School of Oceanography, University of Washington 1988-1995: Associate Professor, Department of Oceanography, University of Hawaii at Manoa 1995-1998, 2004-2007: Chair, Biological Oceanography Division, University of Hawaii at Manoa 1997-1998, 2006-2007: Associate Chair, Department of Oceanography 1995-present: Professor, Department of Oceanography, University of Hawaii at Manoa Major Research
    [Show full text]
  • BIOPAPUA Expedition Highlighting Deep-Sea Benthic Biodiversity of Papua New- Guinea
    Biopapua Expedition – Progress report MUSÉUM NATIONAL D'HISTOIRE NATURELLE 57 rue Cuvier 75005 PARIS‐ France BIOPAPUA Expedition Highlighting deep-sea benthic Biodiversity of Papua New- Guinea Submitted by: Muséum National d'Histoire Naturelle (MNHN) Represented by (co‐PI): Dr Sarah Samadi (Researcher, IRD) Dr Philippe Bouchet (Professor, MNHN) Dr Laure Corbari (Research associate, MNHN) 1 Biopapua Expedition – Progress report Contents Foreword 3 1‐ Our understanding of deep‐sea biodiversity of PNG 4 2 ‐ Tropical Deep‐Sea Benthos program 5 3‐ Biopapua Expedition 7 4‐ Collection management 15 5‐ Preliminary results 17 6‐ Outreach and publications 23 7‐ Appendices 26 Appendix 1 27 NRI, note n°. 302/2010 on 26th march, 2010, acceptance of Biopapua reseach programme Appendix 2 28 Biopapua cruise Report, submitted by Ralph MANA (UPNG) A Report Submitted to School of Natural and Physical Sciences, University of Papua New Guinea Appendix 3 39 Chan, T.Y (2012) A new genus of deep‐sea solenocerid shrimp (Crustacea: Decapoda: Penaeoidea) from the Papua New Guinea. Journal of Crustacean Biology, 32(3), 489‐495. Appendix 4 47 Pante E, Corbari L., Thubaut J., Chan TY, Mana R., Boisselier MC, Bouchet P., Samadi S. (In Press). Exploration of the deep‐sea fauna of Papua New Guinea. Oceanography Appendix 5 60 Richer de Forges B. & Corbari L. (2012) A new species of Oxypleurodon Miers, 1886 (Crustacea Brachyura, Majoidea) from the Bismark Sea, Papua New Guinea. Zootaxa. 3320: 56–60 Appendix 6 66 Taxonomic list: Specimens in MNHN and Taiwan collections 2 Biopapua Expedition – Progress report Foreword Biopapua cruise was a MNHN/IRD deep‐sea cruise in partnership with the School of Natural and Physical Sciences, University of Papua New Guinea.
    [Show full text]
  • Development of Species-Specific Edna-Based Test Systems For
    REPORT SNO 7544-2020 Development of species-specific eDNA-based test systems for monitoring of non-indigenous Decapoda in Danish marine waters © Henrik Carl, Natural History Museum, Denmark History © Henrik Carl, Natural NIVA Denmark Water Research REPORT Main Office NIVA Region South NIVA Region East NIVA Region West NIVA Denmark Gaustadalléen 21 Jon Lilletuns vei 3 Sandvikaveien 59 Thormøhlensgate 53 D Njalsgade 76, 4th floor NO-0349 Oslo, Norway NO-4879 Grimstad, Norway NO-2312 Ottestad, Norway NO-5006 Bergen Norway DK 2300 Copenhagen S, Denmark Phone (47) 22 18 51 00 Phone (47) 22 18 51 00 Phone (47) 22 18 51 00 Phone (47) 22 18 51 00 Phone (45) 39 17 97 33 Internet: www.niva.no Title Serial number Date Development of species-specific eDNA-based test systems for monitoring 7544-2020 22 October 2020 of non-indigenous Decapoda in Danish marine waters Author(s) Topic group Distribution Steen W. Knudsen and Jesper H. Andersen – NIVA Denmark Environmental monitor- Public Peter Rask Møller – Natural History Museum, University of Copenhagen ing Geographical area Pages Denmark 54 Client(s) Client's reference Danish Environmental Protection Agency (Miljøstyrelsen) UCB and CEKAN Printed NIVA Project number 180280 Summary We report the development of seven eDNA-based species-specific test systems for monitoring of marine Decapoda in Danish marine waters. The seven species are 1) Callinectes sapidus (blå svømmekrabbe), 2) Eriocheir sinensis (kinesisk uldhånds- krabbe), 3) Hemigrapsus sanguineus (stribet klippekrabbe), 4) Hemigrapsus takanoi (pensel-klippekrabbe), 5) Homarus ameri- canus (amerikansk hummer), 6) Paralithodes camtschaticus (Kamchatka-krabbe) and 7) Rhithropanopeus harrisii (østameri- kansk brakvandskrabbe).
    [Show full text]
  • Smith and De Leo Barkley Canyon Bone
    Biodiversity, connectivity and ecosystem function in organic-rich whale-bone and wood- fall habitats in Barkley Canyon PIs Craig R. Smith1 and Fabio De Leo2 1University of Hawaii at Manoa, 2ONC Background: Organic-rich habitat islands support specialized communities throughout natural ecosystems and often play fundamental roles in maintaining alpha and beta diversity, thus facilitating adaptive radiation and evolutionary novelty. In the deep sea, whale-bone and wood falls occur widely and may contribute fundamentally to biodiversity and evolutionary novelty; nonetheless, large-scale patterns of biodiversity, connectivity and ecosystem function in these organic-rich metacommunies remain essentially unexplored. We propose to deploy whale bones and wood in Barkley Canyon at ONC POD3 as part of a novel comparative experimental approach, in which bone and wood substrates are being used to evaluate bathymetric, regional and inter-basin variations in biodiversity and connectivity, as well as interactions between biodiversity and ecosystem function, in whale-bone and wood- fall habitats at the deep-sea floor. The experiments in Barkley Canyon will test fundamental hypotheses concerning biodiversity and biogeography of resource-rich habitats in energy- and oxygen-limited deep-sea environments, and explore the utility of whale-bone and wood falls as model experimental systems to address patterns of connectivity and decomposer function in the deep sea. General Study Design: Two packages of humpback (Megaptera novaeangliae) ribs, and two blocks of Douglas Fir (Pseudotsuga menziesii), will be deployed by ROV on the seafloor at 890- m depth in Barkley Canyon, within view of the POD3 Video Camera (Fig. 1). After deployment, video monitoring of the bone/wood packages will occur every three hours for 5 minutes, with a different experimental package monitored during each 3-h interval; thus, each package will be monitored for two 5-minute periods per day.
    [Show full text]
  • Editorial Submitting an Article
    Journal of Natural Science Collections 2015: Volume 2 Editorial Welcome to the second Volume of the Journal The articles presented here aim to provide guid- of Natural Science Collections : a Journal for ance for working with natural science collec- you who work with natural science collections tions. If colleagues are wanting to undertake everyday. I hope that the articles in this Volume specific conservation work on areas in their prove to be interesting, and useful for all. collection, and are unsure as where to begin, please do contact one of the NatSCA commit- There are a large variety of topics covered in tee who will be able to advise. this Volume. The first article examines proto- cols for destructive sampling in natural history All the articles from Volume 1 are now available specimens, providing a nice case study and for free to view on the NatSCA website destructive sampling forms for researchers that (www.natsca.org). Please also have a look at can be adapted for your own institution. A pa- the NatSCA blog, which has more informal write per examines the fascinating natural history ups of views, book reviews and conferences displays of old and new, with surprising results. (http://naturalsciencecollections.wordpress.com/). An interesting article can assist with the mu- seum curators decision to lend specimens for I am very excited about the NatSCA 2015 con- research, where the article examines whether ference and AGM. The theme is all about how Micro-CT scanning affects DNA in specimens. we use traditional and social media to talk Conservators share their methods of cleaning a about our collections.
    [Show full text]
  • (Gastropoda: Cocculiniformia) from Off the Caribbean Coast of Colombia
    ó^S PROCEEDINGS OF THE BIOLOGICAL SOCIETY OF WASHINGTON ll8(2):344-366. 2005. Cocculinid and pseudococculinid limpets (Gastropoda: Cocculiniformia) from off the Caribbean coast of Colombia Néstor E. Ardila and M. G. Harasewych (NEA) Museo de Historia Natural Marina de Colombia, Instituto de Investigaciones Marinas, INVEMAR, Santa Marta, A.A. 1016, Colombia, e-mail: [email protected]; (MGH) Department of Invertebrate Zoology, MRC-I63, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20013-7012 U.S.A., e-mail: [email protected] Abstract.•The present paper reports on the occurrence of six species of Cocculinidae and three species of Pseudococculinidae off the Caribbean coast of Colombia. Cocculina messingi McLean & Harasewych, 1995, Cocculina emsoni McLean & Harasewych, 1995 Notocrater houbricki McLean & Hara- sewych, 1995 and Notocrater youngi McLean & Harasewych, 1995 were not previously known to occur within the of the Caribbean Sea, while Fedikovella beanii (Dall, 1882) had been reported only from the western margins of the Atlantic Ocean, including the lesser Antilles. New data are presented on the external anatomy and radular morphology of Coccocrater portoricensis (Dall & Simpson, 1901) that supports its placement in the genus Coccocrater. Coc- culina fenestrata n. sp. (Cocculinidae) and Copulabyssia Colombia n. sp. (Pseu- dococculinidae) are described from the upper continental slope of Caribbean Colombia. Cocculiniform limpets comprise two paraphyletic, with the Cocculinoidea related groups of bathyal to hadal gastropods with to Neomphalina and the Lepetelloidea in- global distribution that live primarily on cluded within Vetigastropoda (Ponder & biogenic substrates (e.g., wood, algal hold- Lindberg 1996, 1997; McArthur & Hara- fasts, whale bone, cephalopod beaks, crab sewych 2003).
    [Show full text]
  • Contributions in Science
    NUMBER 453 9 JUNE 1995 CONTRIBUTIONS IN SCIENCE REVIEW OF WESTERN ATLANTIC SPECIES OF COCCULINID AND PSEUDOCOCCULINID LIMPETS, WITH DESCRIPTIONS OF NEW SPECIES (GASTROPODA: COCCULINIFORMIA) JAMES H. MCLEAN AND M. G. HARASEWYCH NATURAL HISTORY MUSEUM OF LOS ANGELES GOUNTY Thf: scientific publications of the Natural History Mu- SERIAL seum of Los Angeles County have been issued at irregular intervals in three major series; the issues in each series are PUBLICATIONS numbered individually, and numbers run consecutively, OF THE regardless of the subject matter. • Contributions in Science, a miscellaneous series of tech- NATURAL HISTORY nical papers describing original research in the life and earth sciences. MUSEUM OF • Science Bulletin, a miscellaneous series of monographs describing original research in the hfe and earth sci- LOS ANGELES ences. This series was discontinued in 1978 with the issue of Numbers 29 and 30; monographs are now COUNTY published by the Museum in Contributions in Science. • Science Series, long anieles and collections of papers on natural history topics. Copies of the publications in these series are sold through the Museum Book Shop. A catalog is available on request. The Museum also publishes Technical Reports, a mis- cellaneous series containing information relative to schol- arly inquiry and collections but not reporting the results of original research. Issue is authorized by the Museum's Scientific Publications Committee; however, manuscripts do not receive anonymous peer review. Individual Tech- nical Reports may be obtained from the relevant Section of the Museum. SCIENTIFIC PUBLICATIONS COMMITTEE «ÎWA James L. Powell, Museum President NATURAL HISTORY MUSEUM Daniel M. Cohen, Committee OF Los ANGELES COUNTY Chairman 900 EXPOSITION BOULEVARD Brian V.
    [Show full text]
  • Changes in Biomass and Chemical Composition During Lecithotrophic Larval Development of the Southern Stone Crab Paralomis Granulosa
    MARINE ECOLOGY PROGRESS SERIES Vol. 257: 189–196, 2003 Published August 7 Mar Ecol Prog Ser Changes in biomass and chemical composition during lecithotrophic larval development of the southern stone crab Paralomis granulosa Javier A. Calcagno1,*, Sven Thatje2, Klaus Anger3, Gustavo A. Lovrich4, Antje Kaffenberger3 1Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Intendente Güiraldes 2160, Lab 64, 4to Piso, Pab II, Cdad Universitaria C1428EHA, Buenos Aires, Argentina 2Alfred Wegener Institute for Polar and Marine Research, PO Box 120 161, 27515 Bremerhaven, Germany 3Biologische Anstalt Helgoland, Stiftung Alfred Wegener Institute for Polar and Marine Research, 27498 Helgoland, Germany 4Consejo Nacional de Investigaciones Científicas y Técnicas, Centro Austral de Investigaciones Científicas, CADIC, CC 92, V9410BFD Ushuaia, Tierra del Fuego, Argentina ABSTRACT: Changes in biomass and elemental composition (dry mass, W; carbon, C; nitrogen, N; hy- drogen, H) were studied in the laboratory during complete larval and early juvenile development of the southern stone crab Paralomis granulosa (Jacquinot). At 6 ± 0.5°C; total larval development from hatching to metamorphosis lasted ca. 56 d, comprising 2 demersal zoeal stages and a benthic mega- lopa, with mean stage durations of 5, 11 and 45 d, respectively. All larval stages of P. granulosa are lecithotrophic, and first feeding and growth were consistently observed immediately after meta- morphosis to the first juvenile crab stage. Regardless of presence or absence of food, W, C, N, and H decreased throughout larval development. Also the C:N mass ratio decreased significantly, from 7.2 at hatching to 4.2 at metamorphosis, indicating that a large initial lipid store remaining from the egg yolk was gradually utilised as an internal energy source.
    [Show full text]
  • Biodiversity and Trophic Ecology of Hydrothermal Vent Fauna Associated with Tubeworm Assemblages on the Juan De Fuca Ridge
    Biogeosciences, 15, 2629–2647, 2018 https://doi.org/10.5194/bg-15-2629-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Biodiversity and trophic ecology of hydrothermal vent fauna associated with tubeworm assemblages on the Juan de Fuca Ridge Yann Lelièvre1,2, Jozée Sarrazin1, Julien Marticorena1, Gauthier Schaal3, Thomas Day1, Pierre Legendre2, Stéphane Hourdez4,5, and Marjolaine Matabos1 1Ifremer, Centre de Bretagne, REM/EEP, Laboratoire Environnement Profond, 29280 Plouzané, France 2Département de sciences biologiques, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada 3Laboratoire des Sciences de l’Environnement Marin (LEMAR), UMR 6539 9 CNRS/UBO/IRD/Ifremer, BP 70, 29280, Plouzané, France 4Sorbonne Université, UMR7144, Station Biologique de Roscoff, 29680 Roscoff, France 5CNRS, UMR7144, Station Biologique de Roscoff, 29680 Roscoff, France Correspondence: Yann Lelièvre ([email protected]) Received: 3 October 2017 – Discussion started: 12 October 2017 Revised: 29 March 2018 – Accepted: 7 April 2018 – Published: 4 May 2018 Abstract. Hydrothermal vent sites along the Juan de Fuca community structuring. Vent food webs did not appear to be Ridge in the north-east Pacific host dense populations of organised through predator–prey relationships. For example, Ridgeia piscesae tubeworms that promote habitat hetero- although trophic structure complexity increased with ecolog- geneity and local diversity. A detailed description of the ical successional stages, showing a higher number of preda- biodiversity and community structure is needed to help un- tors in the last stages, the food web structure itself did not derstand the ecological processes that underlie the distribu- change across assemblages.
    [Show full text]
  • Faunal Succession on Replicate Deep-Sea Whale Falls: Time Scales and Vent-Seep Affinities
    Cah. Biol. Mar. (2002) 43 : 293-297 Faunal succession on replicate deep-sea whale falls: time scales and vent-seep affinities Craig R. SMITH1, Amy R. BACO1 and Adrian G. GLOVER1 (1) Department of Oceanography, 1000 Pope Road, Honolulu, Hawaii 96822, USA E-mail: [email protected] Introduction (2) An enrichment opportunist stage, during which opportunistic polychaetes and crustaceans would colonize In 1987, a chemoautotrophic community containing organically enriched sediments surrounding the whale fall; vesicomyid clams, mussels and bacterial mats was (3) A sulphophilic (or “sulphur-loving”) stage, during discovered on the lipid-rich skeleton of a 21 m which a chemoautotrophic assemblage would colonize the baleanopterid in the Santa Catalina Basin (Smith et al., bones as they emitted sulphide during anaerobic 1989). Subsequently, chemoautotrophic assemblages have decomposition of internal lipid, and been recovered from eight deep-sea whale skeletons off (4) A reef stage, occurring after the depletion of whale California (Smith, 1989; Smith & Baco, 1998; Baco et al., organic material, during which the mineral remnants of 1999), from at least four sites in the western Pacific whale skeletons would be colonized primarily by (Naganuma et al., 1996; Baco et al., 1999), and from 8 fossil suspension feeders exploiting hard substrata and flow skeletons from ~30 mya (Goedert et al., 1995). Whale-fall enhancement. communities appear to be widespread in the modern ocean, Here we report initial data collected from four deep-sea and have occurred at the deep-sea floor for at least 30 whale falls (two natural and two artificial) suggesting the million years. presence and duration of the first three successional stages.
    [Show full text]
  • Comparative Composition, Diversity and Trophic Ecology of Sediment Macrofauna at Vents, Seeps and Organic Falls
    Review Comparative Composition, Diversity and Trophic Ecology of Sediment Macrofauna at Vents, Seeps and Organic Falls Angelo F. Bernardino1*, Lisa A. Levin2, Andrew R. Thurber3, Craig R. Smith4 1 Departamento de Oceanografia e Ecologia, Universidade Federal do Espı´rito Santo, Goiabeiras, Vito´ ria, Esp´ı rito Santo, Brazil, 2 Center for Marine Biodiversity and Conservation; Integrative Oceanography Division, Scripps Institution of Oceanography, La Jolla, California, United States of America,3 College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, United States of America,4 Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawaii, Honolulu, Hawaii, United States of America communities. Sulfide is toxic to most metazoan taxa [1,2], Abstract: Sediments associated with hydrothermal vent- although some sediment-dwelling taxa have adapted to conditions ing, methane seepage and large organic falls such as of low oxygen and appear capable of tolerating the presence of whale, wood and plant detritus create deep-sea networks sulfide. Due to high local production, metazoans in reducing of soft-sediment habitats fueled, at least in part, by the sediments in the deep sea are often released from the extreme food oxidation of reduced chemicals. Biological studies at limitation prevalent in the background community (e.g. [3]). deep-sea vents, seeps and organic falls have looked at Instead, chemical toxicity may drive infaunal community macrofaunal taxa, but there has yet to be a systematic comparison of the community-level attributes of sedi- structure. In this meta-analysis we ask which taxa are common ment macrobenthos in various reducing ecosystems.
    [Show full text]
  • Annelida: Dorvilleidae) Associated with the Coral Lophelia Pertusa (Anthozoa: Caryophylliidae)
    ARTICLE A new species of Ophryotrocha (Annelida: Dorvilleidae) associated with the coral Lophelia pertusa (Anthozoa: Caryophylliidae) Vinicius da Rocha Miranda¹²; Andrielle Raposo Rodrigues¹³ & Ana Claudia dos Santos Brasil¹⁴ ¹ Universidade Federal Rural do Rio de Janeiro (UFRRJ), Instituto de Ciências Biológicas e da Saúde (ICBS), Departamento de Biologia Animal, Laboratório de Polychaeta. Seropédica, RJ, Brasil. ² ORCID: http://orcid.org/0000-0002-4591-184X. E-mail: [email protected] (corresponding author) ³ ORCID: http://orcid.org/0000-0001-9152-355X. E-mail: [email protected] ⁴ ORCID: http://orcid.org/0000-0002-0611-9948. E-mail: [email protected] Abstract. Ophryotrocha is the most speciose genus within Dorvilleidae, with species occurring in a great variety of environments around the globe. In Brazil, records of Ophryotrocha are scarce and no specific identification is provided for any of the records. Herein we describe a new species of Dorvilleidae, Ophryotrocha zitae sp. nov. Adult and larval specimens were found in the axis of a fragment of the cold-water coral Lophelia pertusa, sampled off São Paulo’s coast, at a depth of 245 m. Both forms are described and illustrated. This new species resembles O. puerilis, O. adherens and O. eutrophila, but can be distinguished based on differences in its mandible and on chaetae shape and arrangement. Key-Words. Epibiont; Cold-water Coral; Deep-sea; Eunicida, Associated fauna. INTRODUCTION sette glands on the posterior region of the body (Ockelmann & Åkesson, 1990; Heggoy et al., 2007; The Family Dorvilleidae is comprised of 38 val‑ Paxton & Åkesson, 2011). These species also bear id genera, many of which are monospecific (Read, a complex buccal apparatus comprising a pair of 2016) and others, despite more specious, pres‑ mandibles and maxillae, the latter being either ent evident morphological homogeny (Rouse & “P‑type” or “K‑type”, and the presence of one or Pleijel, 2001).
    [Show full text]