Human Homolog of the Mouse Sperm Receptor (Human Zona Pellucida/ZP3/Oocyte-Specific Gene Expression/Cis-Acting Elements/Human Sperm Receptor) MARGARET E

Total Page:16

File Type:pdf, Size:1020Kb

Human Homolog of the Mouse Sperm Receptor (Human Zona Pellucida/ZP3/Oocyte-Specific Gene Expression/Cis-Acting Elements/Human Sperm Receptor) MARGARET E Proc. Nati. Acad. Sci. USA Vol. 87, pp. 6014-6018, August 1990 Developmental Biology Human homolog of the mouse sperm receptor (human zona pellucida/ZP3/oocyte-specific gene expression/cis-acting elements/human sperm receptor) MARGARET E. CHAMBERLIN AND JURRIEN DEAN Laboratory of Cellular and Developmental Biology, National Institute of Arthritis, Diabetes, and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 Communicated by Christian B. Anfinsen, May 31, 1990 ABSTRACT The human zona pellucida, composed of see ref. 7). The recent cloning of mouse ZP2 and ZP3 cDNAs three glycoproteins (ZP1, ZP2, and ZP3), forms an extracel- (8-10) and the characterization of their genomic loci (8, 11, lular matrix that surrounds ovulated eggs and mediates species- 12) has provided a wealth of molecular detail on the primary specific fertilization. The genes that code for at least two of the structure of the zona proteins and their developmentally zona proteins (ZP2 and ZP3) cross-hybridize with other mam- regulated expression during oogenesis (8, 13). malian DNA. The recently characterized mouse sperm receptor Less is known about the primary structure and the func- gene (Zp-3) was used to isolate its human homolog. The human tions of the zona pellucida proteins from other species, homolog spans =18.3 kilobase pairs (kbp) (compared to 8.6 including that of human. The human zona pellucida is com- kbp for the mouse gene) and contains eight exons, the sizes of posed of three glycoproteins, ZP1 (90-110 kDa), ZP2 (64-76 which are strictly conserved between the two species. Four kDa), and ZP3 (57-73 kDa) (14, 15), at least one of which short (8-15 bp) sequences within the first 250 bp of the 5' appears to be modified following fertilization (15). However, flanking region in the human Zp-3 homolog are also present more detailed biochemical studies of individual human zona upstream ofmouse Zp-3. These elements may modulate oocyte- pellucida proteins are difficult because of the paucity of specific gene expression. By using the polymerase chain reac- biological material. An alternate approach to learning more tion, a full-length cDNA of human ZP3 was isolated from about the human zona pellucida is to deduce the structure of human ovarian poly(A)I RNA and used to deduce the structure individual proteins from their cognate genes. We have dem- of human ZP3 mRNA. Certain features of the human and onstrated (9, 10) that the genes that code for the zona mouse ZP3 transcripts are conserved. Both have unusually pellucida proteins are conserved among mammals. Taking short 5' and 3' untranslated regions, both contain a single open advantage of the cross-hybridization of a mouse cDNA with reading frame that is 74% identical, and both code for 424 human DNA, we now report the isolation of full-length amino acid polypeptides that are 67% the same. The similarity cDNA clones of human ZP3* and the characterization of the between the two proteins may define domains that are impor- genomic locus of human ZP3, the homologue to the mouse tant in maintaining the structural integrity of the zona pellu- sperm receptor. cida, while the differences may play a role in mediating the species-specific events of mammalian fertilization. MATERIALS AND METHODS Human Genomic DNA. A human genomic library in Charon Many details ofmammalian fertilization have been elucidated 4A (16) was screened with pZP3.2 (10). A recombinant, from studies in the mouse. Fertilization begins when a AHuZP3.14, was isolated and plaque-purified. The 14.0- capacitated mouse spermatozoon attaches to the zona pel- kilobase-pair (kbp) insert (containing exons 1-5) was digested lucida, an extracellular matrix that surrounds the ovulated with BamHI and EcoRI, the resultant fragments were sub- egg of mammals. After tight binding to the zona, the dehis- cloned into pBluescript, and the nucleic acid sequence of 11.7 cence of the sperm acrosome results in the release of lytic kbp was determined (17). enzymes that, coupled with the forward motility of the The 3' end of the gene including exons 6-8 was obtained sperm, results in passage through the zona pellucida. The by the polymerase chain reaction (PCR) (GeneAmp; Perkin- sperm then traverses the perivitelline space, fuses with the Elmer/Cetus). One microgram of human genomic DNA from egg's plasma membrane, and is absorbed into the cytoplasm, K562 cells (gift of A. Dean) was primed with oligonucleotide where its nucleus undergoes decondensation and repackag- H78 (exon 6) and H77 (exon 8) for 25 cycles (94°C for 1 min, ing into the male pronucleus of the one-cell zygote (1). 60°C for 2 min, and 72° for 3 min) and a final extension at 72°C The sperm-egg interaction that takes place in the oviduct for 15 min. The 1.8-kbp fragment was blunt end-ligated into after ovulation of the egg and insemination of sperm is pBluescript (Stratagene) and sequenced (17). relatively species-specific (2-5). In part, this specificity is The 3' flanking sequences were determined by PCR of a dependent on the affinity of the spermatozoon for the zona circularized Xba I fragment encompassing exon 8 (Fig. 1). pellucida of the homologous species (for review, see ref. 6). One microgram of human genomic DNA was digested with The mouse zona pellucida is composed of three sulfated Xba I, extracted, precipitated with ETOH, resuspended (1 glycoproteins, ZP1, ZP2, and ZP3, and specific functions ,ug/ml), and cyclized overnight with 10 units ofT4 ligase. The have been ascribed to each. ZP3 induces the sperm acrosome Xba I fragment containing exon 8 and the 3' flanking region reaction and mediates the initial binding of sperm to the egg were amplified by using exon 8 oligonucleotide primers H101 via O-linked oligosaccharide side chains. ZP2 acts as a and H86 for 25 cycles of PCR. The resultant 570-bp fragment secondary sperm receptor and it, along with ZP3, is biochem- was blunt end-ligated into pBluescript and sequenced (17). ically modified after fertilization to provide the postfertiliza- Southern Blot Analysis. Exon-specific DNA probes were tion block to polyspermy. ZP2 and ZP3 exist as dimers in long amplified by PCR with human cDNA as a substrate (see filaments that appear to be cross-linked by ZP1 (for review, below) and the following oligonucleotide primer sets: H36 The publication costs of this article were defrayed in part by page charge Abbreviations: PCR, polymerase chain reaction; nt, nucleotides. payment. This article must therefore be hereby marked "advertisement" *The sequence reported in this paper has been deposited in the in accordance with 18 U.S.C. §1734 solely to indicate this fact. GenBank data base (accession no. M35109). 6014 Downloaded by guest on October 3, 2021 Developmental Biology: Chamberlin and Dean Proc. Natl. Acad. Sci. USA 87 (1990) 6015 B xB Bg x B Bg X X 111 I I 1VI * 1 A 51 =I I I11 11 0* - 4 - - - 1 1 l 2 3 4 5 67 8 I kb -44+- B Bg Bg B x x Bg I1 I I Ism I I in . I I B I IN I in l 3 l 2 34 5 67 8 FIG. 1. Genomic locusST-of the human homolog of mouse Zp-3. (A) Exon map of human Zp-3 homolog with eight exons (1-8) and restriction enzyme sites for BamHI (B), Bgl II (Bg), and Xba I (X). Horizontal arrows indicate Alu repeat sequences. Solid lines indicate regions for which the nucleic acid sequence was determined. Distance of the dashed line was estimated from Southern blot analysis. (B) Exon map of mouse Zp-3 (12) for comparison. and H75 (exons 4 and 5); H78 and H81 (exons 6 and 7); and was determined (23) as was its hydropathicity (24) and H80 and H77 (exon 8). Labeled probes (18) were used in hydrophilicity (25). Signal peptide cleavage sites were de- Southern blots of human K562 DNA after digestion with a fined by a sliding window-weighted matrix algorithm (26). variety of restriction endonucleases as described (12). Human ZP3 cDNA. Poly(A)+ RNA (19) was purified from RESULTS total RNA (20) isolated from a human ovary (supplied by the National Disease Research Interchange) and used as a tem- Genomic Locus of Human Zp-3 Homolog. A clone contain- plate for first-strand synthesis with oligonucleotide primer ing a 14.0-kbp insert was isolated from a human genomic A2T15 according to the manufacturer's instruction (Promega library (16) screened with a mouse ZP3 cDNA probe (10). Of Riboclone cDNA synthesis system). The first strand was the 14.0-kbp insert, 11.7 kbp were sequenced and contained amplified by PCR with A2T15 and oligonucleotide H36 from the first five exons ofthe human Zp-3 homolog as well as 1.1 human exon 4 (940C for 5 min, 500C for 2 min, and 720C for kbp of the 5' flanking region and 1.78 kbp of intron 5 (27). 40 min, followed by 40 cycles of 940C for 2 min, 580C for 2 Despite repeated screening of the library with probes from min, and 720C for 3 min) (21). The resultant 800-bp band was mouse cDNA specific for exons 6-8, a genomic fragment reamplified with A2 [lacking poly (dT)] and H74 from exon 5 containing the balance of the human exons was not isolated. (25 cycles of 94°C for 1 minm 55°C for 2 min, and 72°C for 3 Instead, the remaining exons of the human Zp-3 homolog min and a final extension at 72°C for 15 min). The 670-bp were characterized by amplifying genomic DNA by the PCR insert was blunt-end ligated into pBluescript and sequenced with oligonucleotides from exons 6 and 8 (based on the cDNA (17).
Recommended publications
  • Supplementary Materials
    Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine
    [Show full text]
  • Xenopus Laevis Sperm Receptor Gp69/64 Glycoprotein Is a Homolog
    Proc. Natl. Acad. Sci. USA Vol. 96, pp. 829–834, February 1999 Biochemistry Xenopus laevis sperm receptor gp69y64 glycoprotein is a homolog of the mammalian sperm receptor ZP2 JINGDONG TIAN*, HUI GONG, AND WILLIAM J. LENNARZ† Department of Biochemistry and Cell Biology and Institute for Cell and Developmental Biology, State University of New York, Stony Brook, NY 11794-5215 Contributed by William J. Lennarz, November 4, 1998 ABSTRACT Little is known about sperm-binding pro- Much less information is available on the identity of sperm teins in the egg envelope of nonmammalian vertebrate species. receptors in other, nonmammalian vertebrate species. Re- We report here the molecular cloning and characterization of cently, a Xenopus laevis sperm receptor (gp69y64) in the egg a recently identified sperm receptor (gp69y64) in the Xenopus vitelline envelope (VE) was identified (7, 8). It was shown that laevis egg vitelline envelope. Our data indicate that the gp69 the purified gp69y64 proteins, as well as their antibodies, and gp64 glycoproteins are two glycoforms of the receptor and blocked sperm binding to unfertilized eggs or to beads coupled have the same number of N-linked oligosaccharide chains but with gp69y64 proteins. It has been know for some time (9) that differ in the extent of O-glycosylation. The amino acid se- during fertilization, gp69y64 undergoes limited proteolysis. quence of the receptor is closely related to that of the mouse However, the molecular details of this cleavage have been zona pellucida protein ZP2. Most of the sequence conserva- unclear because the primary structure of gp69y64 was un- tion, including a ZP domain, a potential furin cleavage site, known.
    [Show full text]
  • Rat Zona Pellucida Sperm-Binding Protein 2 (ZP2) ELISA Kit
    Product Datasheet Rat Zona pellucida sperm-binding protein 2 (ZP2) ELISA Kit Catalog No: #EK11690 Orders: [email protected] Package Size: #EK11690-1 48T #EK11690-2 96T Support: [email protected] Description Product Name Rat Zona pellucida sperm-binding protein 2 (ZP2) ELISA Kit Brief Description ELISA Kit Applications ELISA Species Reactivity Rat (Rattus norvegicus) Other Names ZPA; zona pellucida glycoprotein 2|zona pellucida protein A|zona pellucida sperm-binding protein 2 Accession No. P48829 Storage The stability of ELISA kit is determined by the loss rate of activity. The loss rate of this kit is less than 5% within the expiration date under appropriate storage condition. The loss rate was determined by accelerated thermal degradation test. Keep the kit at 37C for 4 and 7 days, and compare O.D.values of the kit kept at 37C with that of at recommended temperature. (referring from China Biological Products Standard, which was calculated by the Arrhenius equation. For ELISA kit, 4 days storage at 37C can be considered as 6 months at 2 - 8C, which means 7 days at 37C equaling 12 months at 2 - 8C). Application Details Detect Range:0.312-20 ng/mL Sensitivity:0.125 ng/mL Sample Type:Serum, Plasma, Other biological fluids Sample Volume: 1-200 µL Assay Time:1-4.5h Detection wavelength:450 nm Product Description Detection Method:SandwichTest principle:This assay employs a two-site sandwich ELISA to quantitate ZP2 in samples. An antibody specific for ZP2 has been pre-coated onto a microplate. Standards and samples are pipetted into the wells and anyZP2 present is bound by the immobilized antibody.
    [Show full text]
  • Positive Darwinian Selection Drives the Evolution of Several Female Reproductive Proteins in Mammals
    Positive Darwinian selection drives the evolution of several female reproductive proteins in mammals Willie J. Swanson*†, Ziheng Yang‡, Mariana F. Wolfner*, and Charles F. Aquadro* *Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, NY 14853-2703; and ‡Department of Biology, University College London, 4 Stephenson Way, London NW1 2HE, United Kingdom Communicated by M. T. Clegg, University of California, Riverside, CA, December 20, 2000 (received for review May 15, 2000) Rapid evolution driven by positive Darwinian selection is a recur- neutral evolution, purifying selection, and positive diversifying rent theme in male reproductive protein evolution. In contrast, selection, respectively. This criterion has been used to demon- positive selection has never been demonstrated for female repro- strate rapid evolution of male reproductive proteins in a variety ductive proteins. Here, we perform phylogeny-based tests on three of invertebrate and vertebrate species (1–17). Recently, Wyckoff female mammalian fertilization proteins and demonstrate positive et al. (1) used the ␻ ratio and other criteria to demonstrate the selection promoting their divergence. Two of these female fertil- rapid evolution of male reproductive proteins in primates. In ization proteins, the zona pellucida glycoproteins ZP2 and ZP3, are their study, female reproductive proteins, including OGP and part of the mammalian egg coat. Several sites identified in ZP3 as ZP3, were placed within a control group of nonrapidly evolving likely to be under positive selection are located in a region genes expressed in a variety of tissues (1). To elucidate the previously demonstrated to be involved in species-specific sperm- selective forces underlying the rapid divergence of reproductive egg interaction, suggesting the selective pressure is related to proteins, it is important to analyze female, as well as male, male-female interaction.
    [Show full text]
  • Genome-Wide Expression Profiling Establishes Novel Modulatory Roles
    Batra et al. BMC Genomics (2017) 18:252 DOI 10.1186/s12864-017-3635-4 RESEARCHARTICLE Open Access Genome-wide expression profiling establishes novel modulatory roles of vitamin C in THP-1 human monocytic cell line Sakshi Dhingra Batra, Malobi Nandi, Kriti Sikri and Jaya Sivaswami Tyagi* Abstract Background: Vitamin C (vit C) is an essential dietary nutrient, which is a potent antioxidant, a free radical scavenger and functions as a cofactor in many enzymatic reactions. Vit C is also considered to enhance the immune effector function of macrophages, which are regarded to be the first line of defence in response to any pathogen. The THP- 1 cell line is widely used for studying macrophage functions and for analyzing host cell-pathogen interactions. Results: We performed a genome-wide temporal gene expression and functional enrichment analysis of THP-1 cells treated with 100 μM of vit C, a physiologically relevant concentration of the vitamin. Modulatory effects of vitamin C on THP-1 cells were revealed by differential expression of genes starting from 8 h onwards. The number of differentially expressed genes peaked at the earliest time-point i.e. 8 h followed by temporal decline till 96 h. Further, functional enrichment analysis based on statistically stringent criteria revealed a gamut of functional responses, namely, ‘Regulation of gene expression’, ‘Signal transduction’, ‘Cell cycle’, ‘Immune system process’, ‘cAMP metabolic process’, ‘Cholesterol transport’ and ‘Ion homeostasis’. A comparative analysis of vit C-mediated modulation of gene expression data in THP-1cells and human skin fibroblasts disclosed an overlap in certain functional processes such as ‘Regulation of transcription’, ‘Cell cycle’ and ‘Extracellular matrix organization’, and THP-1 specific responses, namely, ‘Regulation of gene expression’ and ‘Ion homeostasis’.
    [Show full text]
  • Zona Pellucida Protein ZP2 Is Expressed in the Oocyte of Japanese Quail (Coturnix Japonica)
    REPRODUCTIONRESEARCH Zona pellucida protein ZP2 is expressed in the oocyte of Japanese quail (Coturnix japonica) Mihoko Kinoshita, Daniela Rodler1, Kenichi Sugiura, Kayoko Matsushima, Norio Kansaku2, Kenichi Tahara3, Akira Tsukada3, Hiroko Ono3, Takashi Yoshimura3, Norio Yoshizaki4, Ryota Tanaka5, Tetsuya Kohsaka and Tomohiro Sasanami Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan, 1Institute of Veterinary Anatomy II, University of Munich, Veterinaerstrasse 13, 80539 Munich, Germany, 2Laboratory of Animal Genetics and Breeding, Azabu University, Fuchinobe, Sagamihara 229-8501, Japan, 3Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan, 4Department of Agricultural Science, Gifu University, Gifu 501-1193, Japan and 5Biosafety Research Center, Foods, Drugs, and Pesticides (An-Pyo Center), Iwata 437-1213, Japan Correspondence should be addressed to T Sasanami; Email: [email protected] Abstract The avian perivitelline layer (PL), a vestment homologous to the zona pellucida (ZP) of mammalian oocytes, is composed of at least three glycoproteins. Our previous studies have demonstrated that the matrix’s components, ZP3 and ZPD, are synthesized in ovarian granulosa cells. Another component, ZP1, is synthesized in the liver and is transported to the ovary by blood circulation. In this study, we report the isolation of cDNA encoding quail ZP2 and its expression in the female bird. By RNase protection assay and in situ hybridization, we demonstrate that ZP2 transcripts are restricted to the oocytes of small white follicles (SWF). The expression level of ZP2 decreased dramatically during follicular development, and the highest expression was observed in the SWF. Western blot and immunohistochemical analyses using the specific antibody against ZP2 indicate that the 80 kDa protein is the authentic ZP2, and the immunoreactive ZP2 protein is also present in the oocytes.
    [Show full text]
  • Anti-ZP3 Monoclonal Antibody (DCABH-14088) This Product Is for Research Use Only and Is Not Intended for Diagnostic Use
    Anti-ZP3 monoclonal antibody (DCABH-14088) This product is for research use only and is not intended for diagnostic use. PRODUCT INFORMATION Antigen Description The zona pellucida is an extracellular matrix that surrounds the oocyte and early embryo. It is composed primarily of three or four glycoproteins with various functions during fertilization and preimplantation development. The protein encoded by this gene is a structural component of the zona pellucida and functions in primary binding and induction of the sperm acrosome reaction. The nascent protein contains a N-terminal signal peptide sequence, a conserved ZP domain, a C-terminal consensus furin cleavage site, and a transmembrane domain. It is hypothesized that furin cleavage results in release of the mature protein from the plasma membrane for subsequent incorporation into the zona pellucida matrix. However, the requirement for furin cleavage in this process remains controversial based on mouse studies. A variation in the last exon of this gene has previously served as the basis for an additional ZP3 locus; however, sequence and literature review reveals that there is only one full-length ZP3 locus in the human genome. Another locus encoding a bipartite transcript designated POMZP3 contains a duplication of the last four exons of ZP3, including the above described variation, and maps closely to this gene. Immunogen A synthetic peptide of human ZP3 is used for rabbit immunization. Isotype IgG Source/Host Rabbit Species Reactivity Human Purification Protein A Conjugate Unconjugated Applications Western Blot (Transfected lysate); ELISA Size 1 ea Buffer In 1x PBS, pH 7.4 Preservative None Storage Store at -20°C or lower.
    [Show full text]
  • A Structured Interdomain Linker Directs Self-Polymerization of Human
    A structured interdomain linker directs self-polymerization of human uromodulin Marcel Bokhove, Kaoru Nishimura, Martina Brunati, Ling Han, Daniele de Sanctis, Luca Rampoldi, Luca Jovine To cite this version: Marcel Bokhove, Kaoru Nishimura, Martina Brunati, Ling Han, Daniele de Sanctis, et al.. A struc- tured interdomain linker directs self-polymerization of human uromodulin. Proceedings of the National Academy of Sciences of the United States of America , National Academy of Sciences, 2016, 113 (6), pp.1552-1557. 10.1073/pnas.1519803113. hal-01572808 HAL Id: hal-01572808 https://hal.archives-ouvertes.fr/hal-01572808 Submitted on 8 Aug 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A structured interdomain linker directs self-polymerization of human uromodulin Marcel Bokhovea, Kaoru Nishimuraa, Martina Brunatib, Ling Hana, Daniele de Sanctisc, Luca Rampoldib, and Luca Jovinea,1 aDepartment of Biosciences and Nutrition & Center for Innovative Medicine, Karolinska Institutet, SE-141 83 Huddinge, Sweden; bMolecular Genetics of Renal Disorders
    [Show full text]
  • Reproductive Protein Evolution Within and Between Species: Maintenance of Divergent ZP3 Alleles in Peromyscus
    Molecular Ecology (2008) 17, 2616–2628 doi: 10.1111/j.1365-294X.2008.03780.x ReproductiveBlackwell Publishing Ltd protein evolution within and between species: maintenance of divergent ZP3 alleles in Peromyscus LESLIE M. TURNER*† and HOPI E. HOEKSTRA† *Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093, USA, †Department of Organismic and Evolutionary Biology and The Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA Abstract In a variety of animal taxa, proteins involved in reproduction evolve more rapidly than non- reproductive proteins. Most studies of reproductive protein evolution, however, focus on divergence between species, and little is known about differentiation among populations within a species. Here we investigate the molecular population genetics of the protein ZP3 within two Peromyscus species. ZP3 is an egg coat protein involved in primary binding of egg and sperm and is essential for fertilization. We find that amino acid polymorphism in the sperm-combining region of ZP3 is high relative to silent polymorphism in both species of Peromyscus. In addition, while there is geographical structure at a mitochondrial gene (Cytb), a nuclear gene (Lcat) and eight microsatellite loci, we find no evidence for geographical structure at Zp3 in Peromyscus truei. These patterns are consistent with the maintenance of ZP3 alleles by balancing selection, possibly due to sexual conflict or pathogen resistance. However, we do not find evidence that reinforcement promotes ZP3 diversification; allelic variation in P. truei is similar among populations, including populations allopatric and sympatric with sibling species. In fact, most alleles are present in all populations sampled across P.
    [Show full text]
  • Prognostic and Therapeutic Implications of Extracellular Matrix Associated Gene Signature in Renal Clear Cell Carcinoma
    www.nature.com/scientificreports OPEN Prognostic and therapeutic implications of extracellular matrix associated gene signature in renal clear cell carcinoma Pankaj Ahluwalia1, Meenakshi Ahluwalia1, Ashis K. Mondal1, Nikhil Sahajpal1, Vamsi Kota2, Mumtaz V. Rojiani1, Amyn M. Rojiani1 & Ravindra Kolhe1* Complex interactions in tumor microenvironment between ECM (extra-cellular matrix) and cancer cell plays a central role in the generation of tumor supportive microenvironment. In this study, the expression of ECM-related genes was explored for prognostic and immunological implication in clear cell renal clear cell carcinoma (ccRCC). Out of 964 ECM genes, higher expression (z-score > 2) of 35 genes showed signifcant association with overall survival (OS), progression-free survival (PFS) and disease-specifc survival (DSS). On comparison to normal tissue, 12 genes (NUDT1, SIGLEC1, LRP1, LOXL2, SERPINE1, PLOD3, ZP3, RARRES2, TGM2, COL3A1, ANXA4, and POSTN) showed elevated expression in kidney tumor (n = 523) compared to normal (n = 100). Further, Cox proportional hazard model was utilized to develop 12 genes ECM signature that showed signifcant association with overall survival in TCGA dataset (HR = 2.45; 95% CI [1.78–3.38]; p < 0.01). This gene signature was further validated in 3 independent datasets from GEO database. Kaplan–Meier log-rank test signifcantly associated patients with elevated expression of this gene signature with a higher risk of mortality. Further, diferential gene expression analysis using DESeq2 and principal component analysis (PCA) identifed genes with the highest fold change forming distinct clusters between ECM-rich high-risk and ECM-poor low-risk patients. Geneset enrichment analysis (GSEA) identifed signifcant perturbations in homeostatic kidney functions in the high-risk group.
    [Show full text]
  • Genome of Spea Multiplicata, a Rapidly Developing, Phenotypically Plastic, and Desert-Adapted Spadefoot Toad
    G3: Genes|Genomes|Genetics Early Online, published on October 2, 2019 as doi:10.1534/g3.119.400705 1 Genome of Spea multiplicata, a rapidly developing, 2 phenotypically plastic, and desert-adapted spadefoot toad 3 4 Fabian Seidl1, Nicholas A. Levis2, Rachel Schell1, David W. Pfennig2,3, Karin S. Pfennig2,3, and 5 Ian M. Ehrenreich1,3 6 7 1 Molecular and Computational Biology Section, Department of Biological Sciences, University 8 of Southern California, Los Angeles, CA 90089, USA 9 10 2 Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA 11 12 3 Corresponding authors: 13 David W. Pfennig 14 Phone #: 919-962-0155 15 Email: [email protected] 16 17 Karin S. Pfennig 18 Phone #: 919-843-5590 19 Email: [email protected] 20 21 Ian M. Ehrenreich 22 Phone #: 213 – 821 – 5349 23 Email: [email protected] © The Author(s) 2013. Published by the Genetics Society of America. 24 Abstract 25 Frogs and toads (anurans) are widely used to study many biological processes. Yet, few anuran 26 genomes have been sequenced, limiting research on these organisms. Here, we produce a 27 draft genome for the Mexican spadefoot toad, Spea multiplicata, which is a member of an 28 unsequenced anuran clade. Atypically for amphibians, spadefoots inhabit deserts. 29 Consequently, they possess many unique adaptations, including rapid growth and development, 30 prolonged dormancy, phenotypic (developmental) plasticity, and adaptive, interspecies 31 hybridization. We assembled and annotated a 1.07 Gb Sp. multiplicata genome containing 32 19,639 genes. By comparing this sequence to other available anuran genomes, we found gene 33 amplifications in the gene families of nodal, hyas3, and zp3 in spadefoots, and obtained 34 evidence that anuran genome size differences are partially driven by variability in intergenic 35 DNA content.
    [Show full text]
  • Generative Modeling of Multi-Mapping Reads with Mhi-C
    Manuscript submitted to eLife 1 Generative Modeling of 2 Multi-mapping Reads with mHi-C 3 Advances Analysis of Hi-C Studies 1 2,3 1,4* 4 Ye Zheng , Ferhat Ay , Sündüz Keleş *For correspondence: [email protected] (SK) 1 2 5 Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706, USA; La 3 6 Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA; School of Medicine, 4 7 University of California San Diego, La Jolla, CA 92093, USA; Department of Biostatistics 8 and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA 9 10 Abstract Current Hi-C analysis approaches are unable to account for reads that align to multiple 11 locations, and hence underestimate biological signal from repetitive regions of genomes. We 12 developed and validated mHi-C,amulti-read mapping strategy to probabilistically allocate Hi-C 13 multi-reads. mHi-C exhibited superior performance over utilizing only uni-reads and heuristic 14 approaches aimed at rescuing multi-reads on benchmarks. Specifically, mHi-C increased the 15 sequencing depth by an average of 20% resulting in higher reproducibility of contact matrices and 16 detected interactions across biological replicates. The impact of the multi-reads on the detection of 17 significant interactions is influenced marginally by the relative contribution of multi-reads to the 18 sequencing depth compared to uni-reads, cis-to-trans ratio of contacts, and the broad data quality 19 as reflected by the proportion of mappable reads of datasets. Computational experiments 20 highlighted that in Hi-C studies with short read lengths, mHi-C rescued multi-reads can emulate the 21 effect of longer reads.
    [Show full text]