Elliptic Homology and Topological Modular Forms
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Representation Stability, Configuration Spaces, and Deligne
Representation Stability, Configurations Spaces, and Deligne–Mumford Compactifications by Philip Tosteson A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Mathematics) in The University of Michigan 2019 Doctoral Committee: Professor Andrew Snowden, Chair Professor Karen Smith Professor David Speyer Assistant Professor Jennifer Wilson Associate Professor Venky Nagar Philip Tosteson [email protected] orcid.org/0000-0002-8213-7857 © Philip Tosteson 2019 Dedication To Pete Angelos. ii Acknowledgments First and foremost, thanks to Andrew Snowden, for his help and mathematical guidance. Also thanks to my committee members Karen Smith, David Speyer, Jenny Wilson, and Venky Nagar. Thanks to Alyssa Kody, for the support she has given me throughout the past 4 years of graduate school. Thanks also to my family for encouraging me to pursue a PhD, even if it is outside of statistics. I would like to thank John Wiltshire-Gordon and Daniel Barter, whose conversations in the math common room are what got me involved in representation stability. John’s suggestions and point of view have influenced much of the work here. Daniel’s talk of Braids, TQFT’s, and higher categories has helped to expand my mathematical horizons. Thanks also to many other people who have helped me learn over the years, including, but not limited to Chris Fraser, Trevor Hyde, Jeremy Miller, Nir Gadish, Dan Petersen, Steven Sam, Bhargav Bhatt, Montek Gill. iii Table of Contents Dedication . ii Acknowledgements . iii Abstract . .v Chapters v 1 Introduction 1 1.1 Representation Stability . .1 1.2 Main Results . .2 1.2.1 Configuration spaces of non-Manifolds . -
13 Elliptic Function
13 Elliptic Function Recall that a function g : C → Cˆ is an elliptic function if it is meromorphic and there exists a lattice L = {mω1 + nω2 | m, n ∈ Z} such that g(z + ω)= g(z) for all z ∈ C and all ω ∈ L where ω1,ω2 are complex numbers that are R-linearly independent. We have shown that an elliptic function cannot be holomorphic, the number of its poles are finite and the sum of their residues is zero. Lemma 13.1 A non-constant elliptic function f always has the same number of zeros mod- ulo its associated lattice L as it does poles, counting multiplicites of zeros and orders of poles. Proof: Consider the function f ′/f, which is also an elliptic function with associated lattice L. We will evaluate the sum of the residues of this function in two different ways as above. Then this sum is zero, and by the argument principle from complex analysis 31, it is precisely the number of zeros of f counting multiplicities minus the number of poles of f counting orders. Corollary 13.2 A non-constant elliptic function f always takes on every value in Cˆ the same number of times modulo L, counting multiplicities. Proof: Given a complex value b, consider the function f −b. This function is also an elliptic function, and one with the same poles as f. By Theorem above, it therefore has the same number of zeros as f. Thus, f must take on the value b as many times as it does 0. -
The Nori Fundamental Gerbe of Tame Stacks 3
THE NORI FUNDAMENTAL GERBE OF TAME STACKS INDRANIL BISWAS AND NIELS BORNE Abstract. Given an algebraic stack, we compare its Nori fundamental group with that of its coarse moduli space. We also study conditions under which the stack can be uniformized by an algebraic space. 1. Introduction The aim here is to show that the results of [Noo04] concerning the ´etale fundamental group of algebraic stacks also hold for the Nori fundamental group. Let us start by recalling Noohi’s approach. Given a connected algebraic stack X, and a geometric point x : Spec Ω −→ X, Noohi generalizes the definition of Grothendieck’s ´etale fundamental group to get a profinite group π1(X, x) which classifies finite ´etale representable morphisms (coverings) to X. He then highlights a new feature specific to the stacky situation: for each geometric point x, there is a morphism ωx : Aut x −→ π1(X, x). Noohi first studies the situation where X admits a moduli space Y , and proceeds to show that if N is the closed normal subgroup of π1(X, x) generated by the images of ωx, for x varying in all geometric points, then π1(X, x) ≃ π1(Y,y) . N Noohi turns next to the issue of uniformizing algebraic stacks: he defines a Noetherian algebraic stack X as uniformizable if it admits a covering, in the above sense, that is an algebraic space. His main result is that this happens precisely when X is a Deligne– Mumford stack and for any geometric point x, the morphism ωx is injective. For our purpose, it turns out to be more convenient to use the Nori fundamental gerbe arXiv:1502.07023v3 [math.AG] 9 Sep 2015 defined in [BV12]. -
On Modular Forms for the Paramodular Group
On Modular Forms for the Paramodular Group Brooks Roberts and Ralf Schmidt Contents 1 Definitions 3 2 Linear independence at different levels 6 3 The level raising operators 8 4 Oldforms and newforms 13 5 Saito–Kurokawa liftings 16 6 Two theorems 23 Appendix 26 References 28 Introduction Let F be a p–adic field, and let G be the algebraic F –group GSp(4). In our paper [RS] we presented a conjectural theory of local newforms for irreducible, admissible, generic representations of G(F ) with trivial central character. The main feature of this theory is that it considers fixed vectors under the paramodular groups K(pn), a certain family of compact-open subgroups. The group K(p0) is equal to the standard maximal compact subgroup G(o), where o is the ring of integers of F . In fact, K(p0) and K(p1) represent the two conjugacy classes of maximal compact subgroups of G(F ). In general K(pn) can be conjugated into K(p0) if n is even, and into K(p1) if n is odd. Our theory is analogous to Casselman’s well-known theory for representations of GL(2,F ); see [Cas]. The main conjecture made in [RS] states that for each irreducible, admissible, generic representation (π, V ) of PGSp(4,F ) there exists an n such that the space V (n) of K(pn) invariant vectors is non-zero; if n0 is the minimal such n then dimC(V (n0)) = 1; and the Novodvorski zeta integral of a suitably normalized vector in V (n0) computes the L–factor L(s, π) (for this last statement we assume that V is the Whittaker model of π). -
CHARACTERIZING ALGEBRAIC STACKS 1. Introduction Stacks
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 136, Number 4, April 2008, Pages 1465–1476 S 0002-9939(07)08832-6 Article electronically published on December 6, 2007 CHARACTERIZING ALGEBRAIC STACKS SHARON HOLLANDER (Communicated by Paul Goerss) Abstract. We extend the notion of algebraic stack to an arbitrary subcanon- ical site C. If the topology on C is local on the target and satisfies descent for morphisms, we show that algebraic stacks are precisely those which are weakly equivalent to representable presheaves of groupoids whose domain map is a cover. This leads naturally to a definition of algebraic n-stacks. We also compare different sites naturally associated to a stack. 1. Introduction Stacks arise naturally in the study of moduli problems in geometry. They were in- troduced by Giraud [Gi] and Grothendieck and were used by Deligne and Mumford [DM] to study the moduli spaces of curves. They have recently become important also in differential geometry [Bry] and homotopy theory [G]. Higher-order general- izations of stacks are also receiving much attention from algebraic geometers and homotopy theorists. In this paper, we continue the study of stacks from the point of view of homotopy theory started in [H, H2]. The aim of these papers is to show that many properties of stacks and classical constructions with stacks are homotopy theoretic in nature. This homotopy-theoretical understanding gives rise to a simpler and more powerful general theory. In [H] we introduced model category structures on different am- bient categories in which stacks are the fibrant objects and showed that they are all Quillen equivalent. -
ELLIPTIC FUNCTIONS (Approach of Abel and Jacobi)
Math 213a (Fall 2021) Yum-Tong Siu 1 ELLIPTIC FUNCTIONS (Approach of Abel and Jacobi) Significance of Elliptic Functions. Elliptic functions and their associated theta functions are a new class of special functions which play an impor- tant role in explicit solutions of real world problems. Elliptic functions as meromorphic functions on compact Riemann surfaces of genus 1 and their associated theta functions as holomorphic sections of holomorphic line bun- dles on compact Riemann surfaces pave the way for the development of the theory of Riemann surfaces and higher-dimensional abelian varieties. Two Approaches to Elliptic Function Theory. One approach (which we call the approach of Abel and Jacobi) follows the historic development with motivation from real-world problems and techniques developed for solving the difficulties encountered. One starts with the inverse of an elliptic func- tion defined by an indefinite integral whose integrand is the reciprocal of the square root of a quartic polynomial. An obstacle is to show that the inverse function of the indefinite integral is a global meromorphic function on C with two R-linearly independent primitive periods. The resulting dou- bly periodic meromorphic functions are known as Jacobian elliptic functions, though Abel was actually the first mathematician who succeeded in inverting such an indefinite integral. Nowadays, with the use of the notion of a Rie- mann surface, the inversion can be handled by using the fundamental group of the Riemann surface constructed to make the square root of the quartic polynomial single-valued. The great advantage of this approach is that there is vast literature for the properties of the Jacobain elliptic functions and of their associated Jacobian theta functions. -
Lecture 9 Riemann Surfaces, Elliptic Functions Laplace Equation
Lecture 9 Riemann surfaces, elliptic functions Laplace equation Consider a Riemannian metric gµν in two dimensions. In two dimensions it is always possible to choose coordinates (x,y) to diagonalize it as ds2 = Ω(x,y)(dx2 + dy2). We can then combine them into a complex combination z = x+iy to write this as ds2 =Ωdzdz¯. It is actually a K¨ahler metric since the condition ∂[i,gj]k¯ = 0 is trivial if i, j = 1. Thus, an orientable Riemannian manifold in two dimensions is always K¨ahler. In the diagonalized form of the metric, the Laplace operator is of the form, −1 ∆=4Ω ∂z∂¯z¯. Thus, any solution to the Laplace equation ∆φ = 0 can be expressed as a sum of a holomorphic and an anti-holomorphid function. ∆φ = 0 φ = f(z)+ f¯(¯z). → In the following, we assume Ω = 1 so that the metric is ds2 = dzdz¯. It is not difficult to generalize our results for non-constant Ω. Now, we would like to prove the following formula, 1 ∂¯ = πδ(z), z − where δ(z) = δ(x)δ(y). Since 1/z is holomorphic except at z = 0, the left-hand side should vanish except at z = 0. On the other hand, by the Stokes theorem, the integral of the left-hand side on a disk of radius r gives, 1 i dz dxdy ∂¯ = = π. Zx2+y2≤r2 z 2 I|z|=r z − This proves the formula. Thus, the Green function G(z, w) obeying ∆zG(z, w) = 4πδ(z w), − should behave as G(z, w)= log z w 2 = log(z w) log(¯z w¯), − | − | − − − − near z = w. -
The Orbifold Chow Ring of Toric Deligne-Mumford Stacks
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY Volume 18, Number 1, Pages 193–215 S 0894-0347(04)00471-0 Article electronically published on November 3, 2004 THE ORBIFOLD CHOW RING OF TORIC DELIGNE-MUMFORD STACKS LEVA.BORISOV,LINDACHEN,ANDGREGORYG.SMITH 1. Introduction The orbifold Chow ring of a Deligne-Mumford stack, defined by Abramovich, Graber and Vistoli [2], is the algebraic version of the orbifold cohomology ring in- troduced by W. Chen and Ruan [7], [8]. By design, this ring incorporates numerical invariants, such as the orbifold Euler characteristic and the orbifold Hodge num- bers, of the underlying variety. The product structure is induced by the degree zero part of the quantum product; in particular, it involves Gromov-Witten invariants. Inspired by string theory and results in Batyrev [3] and Yasuda [28], one expects that, in nice situations, the orbifold Chow ring coincides with the Chow ring of a resolution of singularities. Fantechi and G¨ottsche [14] and Uribe [25] verify this conjecture when the orbifold is Symn(S)whereS is a smooth projective surface n with KS = 0 and the resolution is Hilb (S). The initial motivation for this project was to compare the orbifold Chow ring of a simplicial toric variety with the Chow ring of a crepant resolution. To achieve this goal, we first develop the theory of toric Deligne-Mumford stacks. Modeled on simplicial toric varieties, a toric Deligne-Mumford stack corresponds to a combinatorial object called a stacky fan. As a first approximation, this object is a simplicial fan with a distinguished lattice point on each ray in the fan. -
Congruences Between Modular Forms
CONGRUENCES BETWEEN MODULAR FORMS FRANK CALEGARI Contents 1. Basics 1 1.1. Introduction 1 1.2. What is a modular form? 4 1.3. The q-expansion priniciple 14 1.4. Hecke operators 14 1.5. The Frobenius morphism 18 1.6. The Hasse invariant 18 1.7. The Cartier operator on curves 19 1.8. Lifting the Hasse invariant 20 2. p-adic modular forms 20 2.1. p-adic modular forms: The Serre approach 20 2.2. The ordinary projection 24 2.3. Why p-adic modular forms are not good enough 25 3. The canonical subgroup 26 3.1. Canonical subgroups for general p 28 3.2. The curves Xrig[r] 29 3.3. The reason everything works 31 3.4. Overconvergent p-adic modular forms 33 3.5. Compact operators and spectral expansions 33 3.6. Classical Forms 35 3.7. The characteristic power series 36 3.8. The Spectral conjecture 36 3.9. The invariant pairing 38 3.10. A special case of the spectral conjecture 39 3.11. Some heuristics 40 4. Examples 41 4.1. An example: N = 1 and p = 2; the Watson approach 41 4.2. An example: N = 1 and p = 2; the Coleman approach 42 4.3. An example: the coefficients of c(n) modulo powers of p 43 4.4. An example: convergence slower than O(pn) 44 4.5. Forms of half integral weight 45 4.6. An example: congruences for p(n) modulo powers of p 45 4.7. An example: congruences for the partition function modulo powers of 5 47 4.8. -
NOTES on ELLIPTIC CURVES Contents 1
NOTES ON ELLIPTIC CURVES DINO FESTI Contents 1. Introduction: Solving equations 1 1.1. Equation of degree one in one variable 2 1.2. Equations of higher degree in one variable 2 1.3. Equations of degree one in more variables 3 1.4. Equations of degree two in two variables: plane conics 4 1.5. Exercises 5 2. Cubic curves and Weierstrass form 6 2.1. Weierstrass form 6 2.2. First definition of elliptic curves 8 2.3. The j-invariant 10 2.4. Exercises 11 3. Rational points of an elliptic curve 11 3.1. The group law 11 3.2. Points of finite order 13 3.3. The Mordell{Weil theorem 14 3.4. Isogenies 14 3.5. Exercises 15 4. Elliptic curves over C 16 4.1. Ellipses and elliptic curves 16 4.2. Lattices and elliptic functions 17 4.3. The Weierstrass } function 18 4.4. Exercises 22 5. Isogenies and j-invariant: revisited 22 5.1. Isogenies 22 5.2. The group SL2(Z) 24 5.3. The j-function 25 5.4. Exercises 27 References 27 1. Introduction: Solving equations Solving equations or, more precisely, finding the zeros of a given equation has been one of the first reasons to study mathematics, since the ancient times. The branch of mathematics devoted to solving equations is called Algebra. We are going Date: August 13, 2017. 1 2 DINO FESTI to see how elliptic curves represent a very natural and important step in the study of solutions of equations. Since 19th century it has been proved that Geometry is a very powerful tool in order to study Algebra. -
Lectures on the Combinatorial Structure of the Moduli Spaces of Riemann Surfaces
LECTURES ON THE COMBINATORIAL STRUCTURE OF THE MODULI SPACES OF RIEMANN SURFACES MOTOHICO MULASE Contents 1. Riemann Surfaces and Elliptic Functions 1 1.1. Basic Definitions 1 1.2. Elementary Examples 3 1.3. Weierstrass Elliptic Functions 10 1.4. Elliptic Functions and Elliptic Curves 13 1.5. Degeneration of the Weierstrass Elliptic Function 16 1.6. The Elliptic Modular Function 19 1.7. Compactification of the Moduli of Elliptic Curves 26 References 31 1. Riemann Surfaces and Elliptic Functions 1.1. Basic Definitions. Let us begin with defining Riemann surfaces and their moduli spaces. Definition 1.1 (Riemann surfaces). A Riemann surface is a paracompact Haus- S dorff topological space C with an open covering C = λ Uλ such that for each open set Uλ there is an open domain Vλ of the complex plane C and a homeomorphism (1.1) φλ : Vλ −→ Uλ −1 that satisfies that if Uλ ∩ Uµ 6= ∅, then the gluing map φµ ◦ φλ φ−1 (1.2) −1 φλ µ −1 Vλ ⊃ φλ (Uλ ∩ Uµ) −−−−→ Uλ ∩ Uµ −−−−→ φµ (Uλ ∩ Uµ) ⊂ Vµ is a biholomorphic function. Remark. (1) A topological space X is paracompact if for every open covering S S X = λ Uλ, there is a locally finite open cover X = i Vi such that Vi ⊂ Uλ for some λ. Locally finite means that for every x ∈ X, there are only finitely many Vi’s that contain x. X is said to be Hausdorff if for every pair of distinct points x, y of X, there are open neighborhoods Wx 3 x and Wy 3 y such that Wx ∩ Wy = ∅. -
Handbook of Moduli
Equivariant geometry and the cohomology of the moduli space of curves Dan Edidin Abstract. In this chapter we give a categorical definition of the integral cohomology ring of a stack. For quotient stacks [X=G] the categorical co- ∗ homology ring may be identified with the equivariant cohomology HG(X). Identifying the stack cohomology ring with equivariant cohomology allows us to prove that the cohomology ring of a quotient Deligne-Mumford stack is rationally isomorphic to the cohomology ring of its coarse moduli space. The theory is presented with a focus on the stacks Mg and Mg of smooth and stable curves respectively. Contents 1 Introduction2 2 Categories fibred in groupoids (CFGs)3 2.1 CFGs of curves4 2.2 Representable CFGs5 2.3 Curves and quotient CFGs6 2.4 Fiber products of CFGs and universal curves 10 3 Cohomology of CFGs and equivariant cohomology 13 3.1 Motivation and definition 14 3.2 Quotient CFGs and equivariant cohomology 16 3.3 Equivariant Chow groups 19 3.4 Equivariant cohomology and the CFG of curves 21 4 Stacks, moduli spaces and cohomology 22 4.1 Deligne-Mumford stacks 23 4.2 Coarse moduli spaces of Deligne-Mumford stacks 27 4.3 Cohomology of Deligne-Mumford stacks and their moduli spaces 29 2000 Mathematics Subject Classification. Primary 14D23, 14H10; Secondary 14C15, 55N91. Key words and phrases. stacks, moduli of curves, equivariant cohomology. The author was supported by NSA grant H98230-08-1-0059 while preparing this article. 2 Cohomology of the moduli space of curves 1. Introduction The study of the cohomology of the moduli space of curves has been a very rich research area for the last 30 years.