<<

Title Evidence of Vent-Adaptation in Sponges Living at the Periphery of Hydrothermal Vent Environments: Ecological and Evolutionary Implications

Authors Georgieva, MN; Taboada, Sergio; Riesgo, A; Díez-Vives, C; De Leo, FC; Jeffreys, RM; Copley, JT; Little, Crispin; Ríos, P; Cristobo, J; Hestetun, JT; Glover, AG

Date Submitted 2020-08-05

Supplementary figures to: Georgieva MN, Taboada S, Riesgo A, Díez-Vives C, De Leo FC, Jeffreys RM, Copley JT, Little CTS, Ríos P, Cristobo J, Hestetun JT and Glover AG (2020) Evidence of vent-adaptation in sponges living at the periphery of hydrothermal vent environments: ecological and evolutionary implications. Frontiers in Microbiology 11:1636. doi: 10.3389/fmicb.2020.01636

A Legend (Kingdom;Class;Genus or lowest taxonomic rank): ;;OM182 clade Bacteria;;Rhodobacteraceae unclassified Bacteria;Gammaproteobacteria;Candidatus Thioglobus Bacteria;Nitrospinia;Nitrospina Bacteria;Gammaproteobacteria;MBAE14 Bacteria;Alphaproteobacteria;Alphaproteobacteria unclassified Bacteria;Gammaproteobacteria;C1-B045 Bacteria;Alphaproteobacteria;Candidatus Megaira Bacteria;Alphaproteobacteria;Sneathiella Bacteria;;Deltaproteobacteria unclassified Bacteria;Bacteria unclassified;Bacteria unclassified Bacteria;Bacteroidia;Reichenbachiella Bacteria;Gammaproteobacteria;EC94 Bacteria;;Sva0996 marine group Bacteria;Alphaproteobacteria;Roseobacter clade NAC11-7 Bacteria;Bacteroidia;Flavobacteriaceae unclassified Bacteria;Gammaproteobacteria;Halioglobus Bacteria;Gammaproteobacteria;Colwellia Bacteria;Gammaproteobacteria;Pseudohongiella Bacteria;Nitrospinia;LS-NOB Bacteria;Gammaproteobacteria;Gammaproteobacteria unclassified Bacteria;Gammaproteobacteria;Thioglobaceae unclassified Archaea;Nitrososphaeria;Candidatus Nitrosopumilus Bacteria;Gammaproteobacteria;UBA10353 marine group anches 46 stalk r 46 sphere

PAT 0 0.5 1 1.5 PAT er. USNM stalk v andis 2012 stalk r er. USNM sphere v andis 2012 sphere Ch. sp. r Ch. Ch. sp. Ch. Ch. g Cl. sp. A F-0135A stalk Cl. sp. A F-0135B stalk Ch. rob. BT6602C stalk Ch. g Ch. rob. BT6602C sphere Cl. sp. A F-0135B b Cl. sp. F-0121 stalk+branches Cl. sp. A F-0135A stalk+branches B Legend (Kingdom;Class;Genus or lowest taxonomic rank): Bacteria;Gammaproteobacteria;Methylomonaceae unclassified

Bacteria;Gammaproteobacteria;Thioglobaceae unclassified

Archaea;Nitrososphaeria;Nitrosopumilaceae unclassified

Bacteria;Gammaproteobacteria;Gammaproteobacteria unclassified

Bacteria;Gammaproteobacteria;UBA10353 marine group

Archaea;Nitrososphaeria;Candidatus Nitrosopumilus

Bacteria;Gammaproteobacteria;Methylomonaceae IheB2-23

Bacteria;;Nitrospira

Bacteria;Thermoanaerobaculia;Thermoanaerobaculaceae Subgroup 10

Bacteria;Alphaproteobacteria;Rhodobacteraceae unclassified

Bacteria;Bacteria unclassified;Bacteria unclassified

Bacteria;Campylobacteria;Sulfurimonas

Bacteria;Nitrospinia;Nitrospina

Bacteria;OM190;OM190

Archaea;Nitrososphaeria;Nitrosopumilaceae

Bacteria;Planctomycetacia;Pirellulaceae uncultured

Bacteria;Bacteroidia; unclassified

Bacteria;Gammaproteobacteria;EC94

Bacteria;Alphaproteobacteria;Alphaproteobacteria unclassified

Bacteria;Gammaproteobacteria;Thioglobaceae SUP05 cluster

0 0.5 1 1.5 Spi. sp. 030-S4 Spi. sp. 024-S1 Sy. sp. 033-S1.3 Spi. sp. 028-S2.1 Spi. sp. 033-S1.1 Spi. sp. 034-S2.4 Spi. sp. 034-S2.1 Spi. sp. 028-S2.3 Spi. sp. 034-S2.2 Spi. sp. 028-S2.2 Spi. sp. 034-S2.3 Spi. sp. 033-S1.2

C Legend (Kingdom;Class;Genus or lowest taxonomic rank): Archaea;Nitrososphaeria;Candidatus Nitrosopumilus

Bacteria;Alphaproteobacteria;Rhodobacteraceae unclassified

Bacteria;Alphaproteobacteria;Sedimentitalea

Bacteria;Gammaproteobacteria;Thioglobaceae SUP05 cluster

Bacteria;;Candidatus Hepatoplasma

Bacteria;Deltaproteobacteria;SAR324 clade (Marine group B)

Bacteria;Acidimicrobiia;Sva0996 marine group

Bacteria;Marinimicrobia (SAR406 clade);Marinimicrobia (SAR406 clade)

Bacteria;Gammaproteobacteria;SAR86 clade

Bacteria;Alphaproteobacteria;Sulfitobacter

Bacteria;Gammaproteobacteria;Pseudohongiella

Bacteria;Alphaproteobacteria;Sneathiella

Bacteria;Deltaproteobacteria;Deltaproteobacteria unclassified

Bacteria;Gammaproteobacteria;Methylomonaceae unclassified

Bacteria;Gammaproteobacteria;Thioglobaceae unclassified

Bacteria;Deltaproteobacteria;Bdellovibrio

Bacteria;Gammaproteobacteria;OM182 clade

Bacteria;Alphaproteobacteria;Roseobacter clade NAC11-7 lineage

Bacteria;Gammaproteobacteria;Gammaproteobacteria unclassified

Bacteria;Gammaproteobacteria;Methylophagaceae unclassified

Bacteria;Bacteroidia;Flavobacteriaceae unclassified

Bacteria;Gammaproteobacteria;UBA10353 marine group t. 1-5 r 1_1-6 1_1-7 0 0.5 1 1.5 yss. 1_1-4 b Cl. co Water Water y. cup. 1_1-1 L Cl. meth. 1_2-1 Cl. meth. 1_2-2 Cl. meth. 1_2-3 Cl. meth. 4_2-7 Cl. meth. 4_2-8 Cl. meth. 3_2-6 Cl. meth. 2_2-5 Cl. meth. 2_2-4 Cl. a Cl. gelida 2_2-11 Cl. gelida 2_2-13 As. furcata 1_1-2 As. furcata 2_2-9 As. furcata 1_1-3 Cl. gelida 2_2-12 Cl. gelida 1_2-10

Figure S1. Relative abundances (log10 transformed) of the most common prokaryotes for individual sponge samples at the genus level. Genera with relative abundances lower than 0.5% across the dataset were omitted from the figure. The heatmaps also illustrate similarity (weighted UniFrac distance cladograms) of microbiome composition for each microbiome dataset analysed, A, Cladorhiza-Chondrocladia (Dataset 1) and B, Spinularia-Sycon (Dataset 2), while C, Cladorhizidae dataset generated by Hestetun et al. (2016) (Dataset 3). Genus and species names are abbreviated as follows: Cl. Cladorhiza, Ch. Chondrocladia, rob. robertballardi, ver. verticillata, Ly. cup. Lycopina cupressiformis, As. Asbestopluma, meth. methanophila, abyss. abyssicola, cort. corticocancellata, Spi. Spinularia, Sy. Sycon.

Species: Abyssocladia dominalba Asbestopluma furcata Cladorhiza abyssicola Cladorhiza corticocancellata 10 Lycopodina cupressiformis Cladorhiza methanophila Cladorhiza

Spinularia 15 Study: 5 current

Figure S2. Carbon and nitrogen isotopic results (δ13C and δ15N) for E2 Cladorhiza and Endeavour Spinularia sp. specimens analysed during the present study in comparison to results for cladorhizid sponges from the previous studies of Erickson et al., (2009), Reid et al. (2013), Hestetun et al. (2016).

References Erickson, K. L., Macko, S. A., and Van Dover, C. L. (2009). Evidence for a chemoautotrophically based food web at inactive hydrothermal vents (Manus Basin). Deep Sea Res. Part II Top. Stud. Oceanogr. 56, 1577–1585. doi:10.1016/j.dsr2.2009.05.002. Hestetun, J. T., Dahle, H., Jørgensen, S. L., Olsen, B. R., and Rapp, H. T. (2016). The microbiome and occurrence of methanotrophy in carnivorous sponges. Front. Microbiol. 7, 1781. doi:10.3389/fmicb.2016.01781. Reid, W. D. K., Sweeting, C. J., Wigham, B. D., Zwirglmaier, K., Hawkes, J. A., McGill, R. A. R., et al. (2013). Spatial differences in East Scotia Ridge hydrothermal vent food webs: influences of chemistry, microbiology and predation on trophodynamics. PLoS One 8, e65553. doi:10.1371/journal.pone.0065553.