<<

CHARISMathematics Unit6• FFrractactalsals

UNIT6

Inthisunit, studentswilllearnaboutfractals, mainlythroughthe Mathematical constructionof images. Atthesametime, itishopedthat content studentswillfindfractalsfascinatingandwillappreciatethatthe createdworld, whichfractalsonlymodelinalimitedway, iseven morecomplexandawe-inspiring. AT2 u Ratios u Rearranging Usingthisunit formulasinvolving indices(optional) Itisnotintendedthatstudentsattempteveryactivityintheunit. u Trialand Therearetwomainconstructions, theKochSnowflakeandthe improvement SierpinskiTriangle. Neitheraredifficulttoconstructbutareasonable methodsforsolving degreeof accuracyisrequiredandsomepatienceinthelatterstages! exponential Diagrams, invariousstagesof development, areincludedforreference. equations Theconstructionof theKochSnowflaketothenumberof generations suggestedwilltakeabout45minutes. TheSierpinskiTriangletakesless AT3 timebutcolouringitisalmostir resistible!Itisthebestactivitytochoose u Perimeters foragroupwhichfindsaccurateconstructiondifficult. u Constructionsand accuratedrawing Thereisalsoasectioncontainingsomec hallengingalgebra in ordertocalculatefractaldimensions. Studentsworkingatlevel8or aboveshouldbeabletotackletheproblem, butthesectionisentirely optionalandcanbeomitted. Extratimewillbeneededif thealgebrais Spiritualandmoral attempted. development Therearethenthreeideasforfurtherwork. TheSquareFractalis similarinconstructiontotheSnowflakebutismorecomplicatedto Itishopedthatpupils draw. Againadiagramisenclosedforreference. Thealgebraissimilarto willenjoythe thatfortheKochSnowflakeandisagainoptional. fascinationof fractal Awalldisplayonfractalsislikelytocreateinterestbeyondthemaths ; thattheywillbe classroom. Finally, therearecloselinksbetweenPascal’sTriangleandthe awedbythecomplexity SierpinskiTrianglewhichareinterestingtoexplore. of thecreateduniverse andthattheywill Thisunitexploresareasof mathematicswhichareunfamiliartomost appreciatethat students, buttheactivitiesarelikelytobesuitableforpupilsworkingat mathematics, farfrom Intermediate/Higherlevels. Mostof theactivitiesrequireaccuracyin excludingGod, canbe drawingandtogetthebesteffectsstudentsmustbepreparedto anintroductiontoHim. constructveryaccurately. Somesectionsrequireareasonablyhighlevel of readingabilityandcouldbereadtotheclass.

vStudentswillneedplainA4paper; asharppencil; arubber; arulerandapair of compasses. Acalculatorisneededfortheoptionalalgebrasection.

©ACT1996 Teacher’sNotes•47

Unit6•Fractals CHARISMathematics

Background

Studentstendtoviewmathematicsasaverycutanddriedsubjectwithnounans weredquestions. Fractals offerthemachancetotakealookatsomemathematicswhichhasonlybeenstudiedduringthiscentur y andisstillbeingdeveloped. Theworldof fractalsisafascinatingone. Fractalscanmodelthenaturalworldandcanproduceimages of startlingcomplexityandbeauty. Mathematicianshavefrequentlyattemptedtodescribetheworldwe liveinusingmathematicalmodels. Manyfelt, asKeplerdid, thattheywere“thinkingGod’sthoughtsafter Him” andmodernmathematiciansarenolessintriguedbytheideathattheyarediscoveringmoreand moreof thewondersof creation. Theultimatefractal, theMandelbrotset, hasbeendescribedasthe ‘thumbprintof God’ byamathematicianworkinginthisfield. Mandelbrothimself, whopioneeredthis workonfractals, isfascinatedbythepossibilityof describingnaturalphenomenawithfractalequations andneverseemstolosehissenseof wonderattheworldheisexploring. Hedoesnotclaimtohave inventedanything, simplytobediscoveringwhathasalreadybeencreated.

Themathematicsusedtogeneratetheamazingfractalpatternsproducedoncomputersinvolvesthe iterationof simpleformulas, which, althoughnotcomplicated, dorequireaknowledgeof complex numbers. Noattemptismadetoinvestigatethisherebutthegeometricideaof asimplepatternforever repeatingitself canbeconveyedeffectivelythroughdrawingactivities.

Additionalsources

Books: I. Stewart, DoesGodPlayDice?TheNewMathematicsof Chaos (Penguin, 1990). M. E. Lines, Thinkof aNumber (AdamHilger, 1990). McGuire, AnEyeforFractals (AddisonWesley, 1991). R. Dixon, Mathographics (Blackwell, 1987). D. Uribe, FractalCuts:ExploringtheMagicof FractalswithPop-upDesigns (Tarquin, 1993). Thisbookconsistsof wonderfulfractalpop-upcardstomake.

Video: PrismLeisureVideo, TheColoursof presentedbyArthurC. Clarkeavailablefrom: NewMoonProductions, Unit1, BairdRoad, Enfield, EN11SQ.

Computerpackage: Thefamousfreewarepackage, (motto: “Don’twantmoney. Gotmoney. Wantadmiration.”)is availableontheInternet. ItisproducedbytheStoneSoupGroup.

CD-ROM ExploringChaosandFractals (RoyalMelbourneInstituteof Technology)availableinPCformatfrom MicroinfoLtd., OmegaPark, Alton, Hants., GU342PG(Tel: 0142086848).

Fractalpostcardsareavailablefrom: TheMathematicalAssociation, 259LondonRoad, Leicester, LE23BE.

48•Teacher’sNotes ©ACT1996

CHARISMathematics Unit6•Fractals

Notesontheactivities

TheKochSnowflake Thiscaneasilybesolvedusinglogarithms, hence; Adiagramisenclosedshowingthisinthree log4 stagesof construction. Itdoesbecomeverytime D ==1.26 to2decimalplaces log3 consuminginthelatterstagesbutmanypupilswillbe fascinatedandwillwanttocarryonasfaraspossible. Itshouldsoonbecomeclearwhyfractalswerenever TheSierpinskiTriangle reallyexploreduntilthebirthof thecomputermade Thisisasatisfyingconstructionwhichdemonstrates themanyrepetitionspossible. Thebook self similarityveryclearly. Itisveryeffectivewhen “Mathographics” referredtointheadditionalsources coloured. ItisdifferentfromtheSnowflake givesasimpleprogrammeinBASICwhichcanbe constructioninthat, if continuedtoinfinity, the usedtodrawthesnowflakeonacomputer. originaltrianglewillbefilledwithholes, anditwill disappeartofractaldust. Again, adiagramisincluded Thefascinationof thesnowflakeisthatthecurveis forreference. infinitebuttheareaitenclosesisfinite. Thisideais exploredinthestudentworksheet. Thesquarefractal(reinforcement activity) Task2. Examplesof possibleanswersare: Thisishardertodrawasthecornerscontinuallymeet. 1. Astraightline Again, adrawinginthreestagesof developmentis 2. Acircle included. Shadingthe‘inside’ makesthetrueshape 3. Trianglescanbeadded“forever” andsothecurve clear. Itquicklybecomesobviousthatwhencontinued isof infinitelength. ‘toinfinity’ thecurvewouldencloseasquare 4. Acirclecanbedrawnsothatthesnowflakeis containingtinydotsof space, fractaldust. Thealgebra inscribedwithinit. Theareainsidethecircleis isverysimilartotheSnowflakeexceptthattheratioof finite. Theareainsidethesnowflakeissmallerthan successiveperimetersis5:3andsother esulting thatinsidethecircleand, therefore, isalsofinite. equationis3D =5withsolutionD =1.46to2 decimalplaces. Fractaldimensions Thefractaldimensionmeasuresthedegreeof Thewalldisplay(extensionactivity) ‘crinkliness’ of thecurve, howwellitfillsthespace. Thedesignsproducedbythestudentsusingthisunit Asmoothcurvewouldhaveadimensionof 1. makeastrikingdisplay. Therearemanynaturalobjects exhibitingself similarityandpicturesthatbringout Thealgebraof fractaldimensionscanbeomittedbut thispropertycouldbeaddedtothedisplay. itisaninterestingchallengeforpupilswhocanuse Suggestionsare: theedgesof cumulusclouds; firtrees negativeindicestorearrangeMandlebrot’sformula andferns; therockyridgesof mountains; aerialviews intothegivenformwhichiseasilysolvedusingtrial of riversandtheirtributaries; treesinwinteretc.. andimprovementonthecalculator. Thereisalsoag rowingsupplyof commercially producedmaterial. Somearelistedontheprevious Studentsshouldarriveatthefractions: page. L P n+1 1 n+1 4 =and=/3 /3 Pascal’sTriangle(extensionactivity) Ln Pn Asupplyof photocopiesof Pascal’sTriangle(atleast SubstitutinginMandlebrot’sformulagives; 15lines)wouldbeusefulforthisinvestigation. The numbersarebestenclosedinboxessothatthe 4 1 1-D patternsareclear. Shadingtheoddnumbersshowsthe /3 = /3 () samepatternastheSierpinskiTriangle. Otherfractal 4=3x(3 -1)1-D patternscanbegeneratedbyleavingunshadedall 4=3x3 -1 x3D multiplesof aparticularnumberandshadingevery othernumber. 4=3 D

©ACT1996 Teacher’sNotes•49 50•Teacher’sNotes ©ACT1996

CHARISMathematics Unit6•Fractals FFrractactalsals

UNIT6

Haveyoueverwonderedwhatmathematiciansdothesedays?Perhapsyouthinkthat thisisacutanddriedsubjectw hereallthelooseendsweretieduplongago, if not withPythagorasthencertainlybythetimeof Newton!If so, itwillsurpriseyouto ‘Fractalscapture learnthatthereisagreatdealof excitingresearchtakingplaceinmathematics. So thetextureof whataretheydoing?Thisunitintroducesyoutosomeof theideaswhichare reality’ intriguingmathematicianstoday. Jeanne Youwillneedasharppencil, aruler, arubberandcompassestoconstructan McDermott equilateraltriangle. Tocalculatethefractaldimensionsyouneedtobeabletosolve equationsusingatrialandimprovementmethodonyourcalculator.

TheKochSnowflake

TakeapieceofplainA4paperandconstr uctanaccurateequilateraltriangleinthe middle,makingeachside9cmlong.Divideeachsideintothr eeequalparts, (seediagrama).? 1 abcde

Onthecentre‘third’ofoneside,constructanequilateraltriangleofside3cm,(diagramb). Repeatontheothertwosides.Yourdiagramshouldnowlooklikethe‘starofDavid’, (diagramc). Ruboutanyconstructionlinesandalsorubouttheinteriorlinessothatonly theoutlineofyourshapeisleft,(diagramd). Oneachsideofeachpointofthestar ,repeattheaboveprocessso thatyouareconstructing1cmequilateraltrianglesonthe middle‘third’ofeach3cmlinesegment.Ifyouar everycareful,it ispossibletodothisusingacompassconstr uction.Againrub outyourconstructionlinesandtheinteriorlines.Thediagrame showsthisstagepartiallycompleted. Repeattheprocessonemoretime,althoughthenewtriangles aretoosmalltoconstructaccurately.Howeverifyoumeasure about3mminfromeachendofeachlinesegmentitiseasy enoughtoguessthepositionofthetopofthetriangle.Thisstageis fiddlyandtimeconsumingasyoumustplaceoneofthesetinytrianglesin thecentreofeach1cmlinesegment,butitgivesyouagoodimpr essionofthe snowflakecurve.

©ACT1996 Student’sSheet•51

Unit6•Fractals CHARISMathematics

Intheory, wecouldgoonrepeating thisprocessforeverandthe resultingshapeiscalledtheKoch 1. Describeacurveofinfinitelengthwhichdoes notencloseafinitearea. Snowflakecurve. Itwasfirstdrawnby theGermanMathematicianHelgevon 2 2. Describeacurveoffinitelengthwhichdoes Kochin1904anditsfascinationliesnot encloseafinitearea. justinitsresemblancetoasnowflake, butinthefactthatitisacur vewithan 3. ExplainwhytheKochSnowflakehasaperimeterof infinitelengthbutitenclosesafinite infinitelength. area. Thisisanunusualcombination. 4. DrawasimplegeometricshapearoundtheKoch Manycurveshaveinfinitelengthand Snowflake.Howdoesthisdemonstratethatthe othersencloseafinitearea, butthese KochSnowflakeenclosesafinitearea? twopropertiesdonotusuallyoccur together.

Thiscurveisanexampleofafractal.Afractalisacur veofinfinitelength,(inourexample,we icould,intheory,havegoneonaddingtrianglesforever).Whatismor e,howevermuchwe magnifytheedgeofthecur ve,wewillstillseethesameshape.Thispr opertyoffractalsiscalled ‘self-similarity’anditisapropertywhichmakesfractalsbothbeautifulanduseful.

Manynaturalphenomenaexhibitself- Untilfractalswerediscovered, similarity. hadnotbeenabletocope verywellwithsuchshapes. Oneof thefirstquestionsaskedinthis fieldof mathematicswas“Howlongis ? Trytodescribeatreeusingonly thecoastlineof Britain?” circles, rectanglesandtriangles!

Canyouseetheconnection? FractalsofferMathematiciansasimplewayof mimickingthesenaturalshapesveryaccurately. If welookatthecoastlineonamapandmeasure itwithabitof string, wewillgetaverydifferent Computerscantakeaverysmallpieceof answerfromtheonewewouldgetif wesetoff informationand(becauseof theself-similarityof toscramblealongtheshoreline. Thecoastlineis theobject)theycanbuildupafractalpicture crinkly, butstrangelyenoughthecrinklyshapeyou whichlooksremarkablyliketherealthing. seeonamapisverysimilar(althoughonavery differentscale)totheshapeyouseeif you If youhaveseenthefilms‘StarTrekII’ or examinearockjuttingouttosea. Coastlines ‘Returnof theJedi’ youwillhaveseenthese exhibitself-similarity. Sotoodoclouds, treesand ‘fractalforgeries’. Theywereusedtocreatethe mountainranges. planetlandscapes.

“Thebookof natureiswritteninmathematicallanguage” Galileo

52•Student’sSheet ©ACT1996 CHARISMathematics Unit6•Fractals

Fractaldimensions Apartfromfollowersof ‘Dr. Who’, mostpeoplebelievetherearethreedimensions, butfractalsseemtofallinbetweendimensions!

Returntoyoursnowflakecurve.Whenyoudrewthefirsttriangleyouhadan 3 edgelengthof9cmandaperimeterof27cm.Letuscallthese

L0 =9andP 0 =27

Nowconsiderthefirststageoftheconstr uction,the‘starofDavid’.Howlongis thelengthofasidenow?

L1 =3.HowlongisthenewperimeterP 1?

Completethefollowingtableofresultsforyoursnowflakecurve:

Sidelength(L) Perimeterlength(P)

9cmtriangle L0 =9 P0 =27

3cmtriangle L1 =3 P1 = 1cmtriangle L2 =1 P2 = 1 1 /3 cmtriangle L3 = /3 P3 =

Nowinvestigatethefractions

L L L 3 2 and 1 L2 L1 L0

Completethestatement

Ln+1 = Ln

Nowdothesamethingforyourperimetersandcompletethestatement

Pn+1 = Pn

ThevalueyouobtainedforD forthesnowflakecurveisameasureof itsroughnessorcrinkliness. The dimensionof acoastlineisabout1.2, soacoastlineisaboutascrinklyastheKochsnowflake!

©ACT1996 Student’sSheet•53 Unit6•Fractals CHARISMathematics

BenoitMandelbrotwasborninWarsawin1924andpioneeredmathematicalresearchinthisfield. Infact Mandelbrotfirstcameupwiththenamefr actalsandhadaparticularlyimportantfractalnamedafterhim. Mandelbrotdefinedthedimensionof afractal, ameasureof itscrinkliness!Thedimension, D, of afractalis foundfromMandelbrot’sequation

1-D Pn+1 Ln+1 = Pn ( Ln )

Youshouldbeabletoputyouranswersforthesnowflakeintothisequationtogive:

4 1 1-D /3 = ( /3)

ThisisadifficultequationtosolvewithoutsomeAlevelmathematics, butitcanberearrangedintotheform:

3D =4 Youmaybeabletorearrangeityouriself if youhavestudiednegativeindices.

4 Withtheequationinthisfor m,youcansolveitbyatrialandimpr ovementmethod onyourcalculator.Thefirstthreestepsaredoneforyou.

TryD = 1 31 = 3 toosmall

TryD = 2 32 = 9 toobig

TryD = 1.5 31.5 = 5.19615242 toobig

TryD = 1.4 31.4 =

Continuetosearchuntilyoucangivethevalueof D totwodecimalplaces.

54•Student’sSheet ©ACT1996 CHARISMathematics Unit6•Fractals

TheSierpinskiTriangle TheKochsnowflakewasinteresting becauseithadaninfiniteperimeter OnplainA4paperdrawalar gescalenetriangle. butafinitearea. Whenyou Markthemid-pointsofeachsideandjointhem together.Imaginethatthenewtrianglewhichis constructedit, youbuiltitupfromthe 5 formedisremovedfromthediagramleavingthree inside. Ournextfractalstartswithan trianglesaroundthe‘hole’. outlineandremovessectionsfrominside ateachstage. If wecontinuetheprocess toinfinityweendupwithaninfinite hole perimeterandnoareaatall. The ‘inside’ turnsintofractaldust! Howeveraverysatisfying Repeattheaboveprocessforthethreetriangles, diagramcanbeobtained eachtimeimaginethatyouhaver emovedthe afteronly5repetitions, centretriangle. andtheuseof colour canenhancethe result.

Continuetheprocessasfaras desired.

Fractalshaveenormousfascination. Computerscancreatefractalpatternsbyusingcolourstohighlightdifferentareas. Theresultsare extremelybeautiful. Fractalgeometryallowsustodescribemathematicallymanyshapesweseeinthe naturalworldmuchmoreaccuratelythanwithconventionalgeometry. Afractaltreewithdimension 0.6309isremarkablyliketherealthing! Mathematiciansstruggletodescribemoreandmoreaccuratelytheintricacy, beautyandorderof the worldaroundus. Thoseworkinginthisareadonotfeeltheyareinventing, theyfeeltheyarediscovering somethingthatisalreadythere. OnedescribedtheMandlebrotset, animportantandbasicfractalnamed afterMandlebrot, asthe‘thumbprintof God’. Mathematicsdoesnotleadusawayfromtheideaof a Creatorbutcanleadustowardsone.

Thesquarefractal(extensionactivity)

Startwitha9cmsquareinthecentreofA4paper.Asbefore,divideeachsideinto threeequalpartsandconstructa3cmsquareoneachcentrethird,removingthe 6 internallines. CalculateP0 andP1,L0 andL1, forthisshapeandcalculatethefractions

P1 L0 and P0 L1

©ACT1996 Student’sSheet•55 Unit6•Fractals CHARISMathematics

(Activity6, Thesquarefractal, continued) Aswiththesnowflaketheprocesscanberepeatedforevergiving afractalcurve.

Thenextstageistodivideallthe3cmlinesintothr eeand placea1cmsquareonthecentrethirdofeachline segment.

Unfortunatelyyouwillfindthatthesquar es begintotouchatthecor nersmakingit moredifficulttoseewhichbitsare ‘outsides’andwhichbitsare‘insides’!

Onceyouhavedrawnallthe1cm squaresyoushouldbeabletocolourthe ‘inside’ofyourshapeandgetagoodidea ofthegeneralshape.(Itispossible,although verytimeconsuming,todrawthenextstage.Y ou willsoonseewhytheinventionofthecomputerwas necessarybeforefractalgeometryreallytookoff!)

Walldisplay(extensionactivity) Whatoutlineshapedoyou thinkthisfractalwillfillifyou continuetheprocess Produceawalldisplayusingyourdrawings. indefinitely? Lookforbooksinthelibrar ywhichdeal Whatwillhappentothe 7withfractals.TheMathematicsmight internalholes? lookcomplicatedbutthepicturesare stunning.Fractalpicturesarenowbeing Tocalculatethedimensionof usedforavarietyofposters,car ds,etc.. the‘square’curveuse Keepalookoutforthem. ? Mandelbrot’sequationasyou didbeforebutwiththe Whichnaturalshapesdemonstrate fractionsyouhavejustfound. self-similarity? Thistimeyoushouldget Makeacollectionofpicturesandaddthemtoyour 5 1 1-D walldisplay. /3 =( /3) whichrearrangesto

3D =5 Pascal’sTriangle(extensionactivity)

Usingatrialand IfyouhavestudiedPascal’sTriangleyouwillfind improvementmethod,solve someremarkablesimilaritiesbetweenthenumber thisequationto2decimal patternsitcontainsandthegeometricpatter nsin placesandsostatethe 8 theSierpinskiTriangle. dimensionofthe‘square’ curve. Investigate.

56•Student’sSheet ©ACT1996