Towards the Amelioration of Classification Models for Evoked
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
New Technologies for Improving Behavioral Health
ISSUE BRIEF New Technologies for Improving Behavioral Health A National Call for Accelerating the Use of New Methods for Assessing and Treating Mental Health and Substance Use Disorders Prepared by: Adam Powell, PhD along with The Kennedy Forum senior leadership team, including Patrick J. Kennedy, and Garry Carneal, JD, Steve Daviss, MD and Henry Harbin, MD. Kennedy Forum Focus Group Participants:* Ŋ Patrick J. Kennedy Ŋ Jocelyn Faubert, PhD Ŋ Sharon Kilcarr Ŋ Steve Ronik, PhD The Kennedy Forum Université de Montréal HealthTrackRx Henderson Behavioral Health Ŋ Alicia Aebersold Ŋ Majid Fotuhi, MD, PhD Ŋ Mike Knable, DO, DFAPA Ŋ Linda Rosenberg National Council for Behavioral NeuroGrow Brain Fitness Center Sylvan C. Herman Foundation National Council for Community Health Behavioral Health Ŋ Don Fowls, MD Ŋ Allison Kumar Ŋ Ŋ Alan Axelson, MD Don Fowls and Associates FDA/CDRH Kevin Scalia InterCare Health Systems Limited Netsmart Ŋ Shanti Fry Ŋ Corinna Lathan, PhD, PE Ŋ Ŋ Bill Bucher Neuromodulation Working Group AnthroTronix, Inc. Michael Schoenbaum, PhD LabCorp National Institute of Mental Health Ŋ Adam Gazzaley, MD, PhD Ŋ David Lischner, MD Ŋ Ŋ Michael Byer Neuroscience Imaging Center Valant Steve Sidel M3 Information Mindoula Ŋ Robert Gibbons Ŋ Jay Lombard, DO Ŋ Ŋ John H. Cammack University of Chicago GenoMind Kate Sullivan, MS, CCC-SLP, Cammack Associates, LLC CBIS Ŋ Robert Gibbs Ŋ Zack Lynch Walter Reed National Military Medical Center Ŋ Garry Carneal, JD, MA Genomind Neurotechnology Industry Organization The Kennedy Forum Ŋ Ŋ Evian -
Neuroregulation
NeuroRegulation Proceedings of the 2014 ISNR Conference Selected Abstracts of Conference Presentations at the 2014 International Society for Neurofeedback and Research (ISNR) 22nd Conference, Bayside San Diego, California, USA Copyright: © 2014. ISNR. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC-BY). KEYNOTE PRESENTATIONS Harnessing Brain Plasticity: The Future of Neurotherapeutics Adam Gazzaley, MD, PhD Neuroscience Imaging Center and Neuroscape Lab Principal Investigator, Gazzaley Lab, University of California, San Francisco, California, USA A fundamental challenge of modern society is the development of effective approaches to enhance brain function and cognition in both healthy and impaired individuals. For the healthy, this serves as a core mission of our educational system and for the cognitively impaired this is a critical goal of our medical system. Unfortunately, there are serious and growing concerns about the ability of either system to meet this challenge. I will describe an approach developed in our lab that uses custom-designed video games to achieve meaningful and sustainable cognitive enhancement (e.g., Anguera et al., 2013), as well the next stage of our research program, which uses video games integrated with technological innovations in software (e.g., brain computer interface algorithms, Neurofeedback, GPU computing) and hardware (e.g., virtual reality headsets, mobile EEG, transcranial electrical brain stimulation) to create a novel personalized closed-loop system. I will share with you a vision of the future in which video games serve as an underlying engine to enhance our brain’s information processing systems, thus reducing our reliance on non-specific drugs to treat neurological and psychiatric conditions and allowing us to better target our educational efforts. -
Perceptual-Cognitive Training Improves Biological Motion Perception: Evidence for Transferability of Training in Healthy Aging Isabelle Legault and Jocelyn Faubert
Cognitive neuroscience and neuropsychology 1 Perceptual-cognitive training improves biological motion perception: evidence for transferability of training in healthy aging Isabelle Legault and Jocelyn Faubert In our everyday life, processing complex dynamic scenes virtual space. We also had a control group trained on a such as crowds and traffic is of critical importance. Further, visual task and a third group without training. it is well documented that there is an age-related decline in The perceptual-cognitive training eliminated the difference complex perceptual-cognitive processing, which can be in BM perception between 4 and 16 m after only a few reversed with training. It has been suggested that a weeks, whereas the two control groups showed no specific dynamic scene perceptual-cognitive training transfer. This demonstrates that 3D-MOT training could be procedure [the three-dimensional multiple object tracking a good generic process for helping certain observers deal speed task (3D-MOT)] helps observers manage socially with socially relevant dynamic scenes. NeuroReport relevant stimuli such as human body movements as seen 00:000–000 c 2012 Wolters Kluwer Health | Lippincott in crowds or during sports activities. Here, we test this Williams & Wilkins. assertion by assessing whether training older observers on NeuroReport 2012, 00:000–000 3D-MOT can improve biological motion (BM) perception. Research has shown that healthy older adults require more Keywords: aging, biological motion, perceptual-cognitive training, three-dimensional multiple object tracking speed task, transferability distance in virtual space between themselves and a point- light walker to integrate BM information than younger Visual Psychophysics Perception Laboratory, School of Optometry, University of Montre´al, Montreal, Quebec, Canada adults. -
Combining 3D-MOT with Motor and Perceptual Decision- Making Tasks: Conception of a Life-Sized Virtual Perceptual- Cognitive Training Paradigm
bioRxiv preprint doi: https://doi.org/10.1101/511337; this version posted January 3, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Combining 3D-MOT with motor and perceptual decision- making tasks: conception of a life-sized virtual perceptual- cognitive training paradigm Thomas Romeas*1,2,3,4, Romain Chaumillon2, David Labbé1,5, Jocelyn Faubert2,3 1Department of software and IT engineering, École de technologie supérieure (ÉTS), Montreal, Qc, Canada 2Faubert Lab, School of Optometry, Université de Montréal, Montreal, Qc, Canada 3Faubert Applied Research Center, Montreal, Qc, Canada 4Institut National du Sport du Québec (INS Québec), Montreal, Qc, Canada 5Laboratoire de recherche en imagerie et orthopédie (LIO), Centre de recherche du Centre hospitalier de l'Université de Montréal (CHUM), Montreal, Qc, Canada Correspondence and requests for materials should be addressed to: Thomas Romeas [email protected] bioRxiv preprint doi: https://doi.org/10.1101/511337; this version posted January 3, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Combined perceptual-cognitive training Abstract: The present study introduces a virtual life-sized perceptual-cognitive paradigm combining three dimensional multiple object tracking (3D-MOT) with motor (Experiment 1) or perceptual (Experiment 2) decision-making tasks. -
Magnetocardiography on an Isolated Animal Heart with a Room
www.nature.com/scientificreports OPEN Magnetocardiography on an isolated animal heart with a room- temperature optically pumped Received: 4 July 2018 Accepted: 12 October 2018 magnetometer Published: xx xx xxxx Kasper Jensen 1,4, Mark Alexander Skarsfeldt 2, Hans Stærkind 1, Jens Arnbak1, Mikhail V. Balabas 1,3, Søren-Peter Olesen 2, Bo Hjorth Bentzen 2 & Eugene S. Polzik 1 Optically pumped magnetometers are becoming a promising alternative to cryogenically-cooled superconducting magnetometers for detecting and imaging biomagnetic felds. Magnetic feld detection is a completely non-invasive method, which allows one to study the function of excitable human organs with a sensor placed outside the human body. For instance, magnetometers can be used to detect brain activity or to study the activity of the heart. We have developed a highly sensitive miniature optically pumped magnetometer based on cesium atomic vapor kept in a parafn-coated glass container. The magnetometer is optimized for detection of biological signals and has high temporal and spatial resolution. It is operated at room- or human body temperature and can be placed in contact with or at a mm-distance from a biological object. With this magnetometer, we detected the heartbeat of an isolated guinea-pig heart, which is an animal widely used in biomedical studies. In our recordings of the magnetocardiogram, we can detect the P-wave, QRS-complex and T-wave associated with the cardiac cycle in real time. We also demonstrate that our device is capable of measuring the cardiac electrographic intervals, such as the RR- and QT-interval, and detecting drug-induced prolongation of the QT-interval, which is important for medical diagnostics. -
Macular Hole: Perceptual Wlling-In Across Central Scotomas ଝ
Vision Research 46 (2006) 4064–4070 www.elsevier.com/locate/visres Macular hole: Perceptual Wlling-in across central scotomas ଝ Walter Wittich a,¤, Olga Overbury a,b, Michael A. Kapusta a, Donald H. Watanabe c, Jocelyn Faubert b a Department of Ophthalmology, Sir Mortimer B. Davis Jewish General Hospital, Lady Davis Institute for Medical Research, Pavilion E-008, 3755 Cote-Sainte-Catherine, Montreal, Que., Canada H3T 1E2 b School of Optometry, University of Montreal, Canada c Concordia University, Department of Psychology, Montreal, Canada Received 17 May 2006; received in revised form 4 July 2006 Abstract The present study examined perceptual distortions of a vertical line before and after macular hole (MH) surgery in 25 eyes of 24 patients. Participants’ perceptual reports of distortions were classiWed as solid, bent right/left, thinned at the center, or broken. The major- ity of patients (72%) reported symmetrical distortions of the line pre-operatively. After surgery, participants with larger MHs were more likely to retain residual distortions. Of particular interest is the group reporting thinning of the line preoperatively, as the center should be perceptually missing. Examination of MH diameters in relation to the line perceptions indicated that the shape of the perceived line can be explained at the retinal level, while its continuity must be perceptually created at the cortical level. © 2006 Elsevier Ltd. All rights reserved. Keywords: Perceptual Wlling-in; Macular hole 1. Introduction chard, 1993). Furthermore, patients may be able to percep- tually Wll in the missing information and, with time, become Macular hole (MH) is an age-related visual pathology unaware of their deWcit (Safran, 1997; Safran & Landis, that creates a circular defect in the central area of the retina 1999). -
Deep Learning-Based Electroencephalography
DEEP LEARNING-BASED ELECTROENCEPHALOGRAPHY ANALYSIS: A SYSTEMATIC REVIEW Yannick Roy∗ Hubert Banville∗ Isabela Albuquerque Alexandre Gramfort Faubert Lab Inria MuSAE Lab Inria Université de Montréal Université Paris-Saclay INRS-EMT Université Paris-Saclay Montréal, Canada Paris, France & Université du Québec Paris, France [email protected] InteraXon Inc. Montréal, Canada Toronto, Canada Tiago H. Falk Jocelyn Faubert MuSAE Lab Faubert Lab INRS-EMT Université de Montréal Université du Québec Montréal, Canada Montréal, Canada ABSTRACT Context. Electroencephalography (EEG) is a complex signal and can require several years of train- ing, as well as advanced signal processing and feature extraction methodologies to be correctly interpreted. Recently, deep learning (DL) has shown great promise in helping make sense of EEG signals due to its capacity to learn good feature representations from raw data. Whether DL truly presents advantages as compared to more traditional EEG processing approaches, however, remains an open question. Objective. In this work, we review 156 papers that apply DL to EEG, published between Jan- uary 2010 and July 2018, and spanning different application domains such as epilepsy, sleep, brain- computer interfacing, and cognitive and affective monitoring. We extract trends and highlight inter- esting approaches from this large body of literature in order to inform future research and formulate recommendations. Methods. Major databases spanning the fields of science and engineering were queried to identify relevant studies published in scientific journals, conferences, and electronic preprint repositories. arXiv:1901.05498v2 [cs.LG] 20 Jan 2019 Various data items were extracted for each study pertaining to 1) the data, 2) the preprocessing methodology, 3) the DL design choices, 4) the results, and 5) the reproducibility of the experiments. -
Cognitive Training After Pediatric Mild Traumatic Brain Injury: Towards a Sensitive Marker of Recovery
Perceptual-cognitive training after pediatric mild traumatic brain injury: Towards a sensitive marker of recovery Laurie-Ann Corbin-Berrigan B.Sc (Athletic Therapy), CAT(C), M.Sc (Experimental Medicine) School of Physical and Occupational Therapy Faculty of Medicine McGill University, Montreal December, 2018 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Doctorate in Philosophy (Rehabilitation Science) ©Laurie-Ann Corbin-Berrigan, 2018 For Sylvie & Kenneth, my greatest collaborators For Émy, may auntie’s work have a positive impact on your generation ii Table of Contents LIST OF TABLES ..................................................................................................................................... VI LIST OF FIGURES ................................................................................................................................. VII ABSTRACT ............................................................................................................................................ VIII ABRÉGÉ .................................................................................................................................................. XII ACKNOWLEDGEMENTS ..................................................................................................................... XV PREFACE ............................................................................................................................................ XVIII Statement of originality -
Comparison of Magnetocardiography and Electrocardiography
20 Original Investigation Comparison of magnetocardiography and electrocardiography Fiona E. Smith, Philip Langley, Peter van Leeuwen*, Birgit Hailer**, Lutz Trahms***, Uwe Steinhoff***, John P. Bourke****, Alan Murray Medical Physics Department, Freeman Hospital Unit, Newcastle upon Tyne, UK *Research and Development Centre for Microtherapy (EFMT), Bochum, Germany **Department of Medicine, Philippusstift, Essen, Germany ***Physikalisch Technische Bundesanstalt (PTB), Berlin, Germany ****Academic Cardiology Department, Freeman Hospital, Newcastle upon Tyne, UK ABSTRACT Objective: Automated techniques were developed for the measurement of cardiac repolarisation using magnetocardiography. Methods: This was achieved by collaboration with the Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany and the Grönemeyer Institute of Microtherapy, Bochum, Germany, to obtain recordings of magnetocardiograms (MCGs) in cardiac patients and healthy subjects. Manual and automated ventricular repolarisation measurements from MCGs were evaluated to determine the clinical relevance of these measurements compared with electrocardiograms (ECGs). Results: Results showed that MCG and ECG T-wave shapes differed and that manual repolarisation measurement was significantly influenced by T-wave amplitude. Automatic measurements of repolarisation in both MCGs and ECGs differed between techniques. The effects of filtering on the waveforms showed that filtering in some MCG research systems could significantly influence the results, with 20 ms differences common. In addition, MCGs were better able to identify differences in the distribution of cardiac magnetic field strength during repolarisation and depolarisation between normal subjects and cardiac patients. Differences were also determined in ventricular repolarisa- tion between MCGs and ECGs, which cannot be explained by channel/lead numbers or amplitude effects alone. Conclusion: The techniques developed are essential, because of the many extra MCG channels to analyse, and will encourage the use of MCG facilities. -
September 17-20, 2014 Hyatt Regency Minneapolis 1300 Nicolett Mall Minneapolis, Minnesota
A multidisciplinary low vision rehabilitation & research conference by ENVISION UNIVERSITY September 17-20, 2014 Hyatt Regency Minneapolis 1300 Nicolett Mall Minneapolis, Minnesota www.envisionconference.org To improve the quality of life and provide inspiration for the blind and visually impaired through employment, outreach, rehabilitation, education and research. www.envisionus.com Envision Conference 2014 About Envision University About Envision University The number of individuals in the United States aged 65 or older is expected to more than double to nearly 70 million by 2030. As the population of older adults increases, so too does the number of people with vision impairments that significantly impact their quality of life. Additionally, vision loss or blindness can originate from injury or trauma, congenital or genetic origin, or disease beginning at birth or early childhood. That means virtually every medical professional education opportunities each year as well as a will come into contact with a patient with low journal publication, Visibility. As the need for vision. As such, they need the most up-to-date education increases, so does our responsibility research and education available to make good to provide it. It was with this in mind that clinical decisions for patients in their care. Envision University was established. It was with this growing need to educate The mission of Envision University is to vision rehabilitation service providers that the provide multidisciplinary continuing education Envision Conference was created. In 2006, and research opportunities for low vision the Envision Conference was launched as the rehabilitation professionals, establishing first multidisciplinary low vision rehabilitation best practices to ensure continued research and research conference of its kind. -
Original Article Diagnostic Outcomes of Magnetocardiography in Patients with Coronary Artery Disease
Int J Clin Exp Med 2015;8(2):2441-2446 www.ijcem.com /ISSN:1940-5901/IJCEM0003872 Original Article Diagnostic outcomes of magnetocardiography in patients with coronary artery disease Yingmei Li1*, Zaiqian Che2*, Weiwei Quan3, Rong Yuan3, Yue Shen3, Zongjun Liu4, Weiqing Wang4, Huigen Jin4, Guoping Lu3 1Department of Geratology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China; 2Department of Emergency, Ruijin Hospital North, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China; 3Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China; 4Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China. *Equal contributors. Received November 15, 2014; Accepted January 8, 2015; Epub February 15, 2015; Published February 28, 2015 Abstract: Objective: To evaluate the diagnostic outcomes of magnetocardiography (MCG) on the patients with coronary artery disease and compared the outcomes between MCG, ECG and Echocardiography. Methods: MCG measurements were performed on 101 patients with coronary artery disease and 116 healthy volunteers with a seven-channel magnetocardiographic system (MCG7, SQUID AG, Germany) installed in an unshielded room. CAD was diagnosed when stenosis ≥ 70% in ≥ 1 vessel. Three quantitative indicators were analyzed, R-max/T-max ratio, R value and á average angle. Results: R-max/T-max ratio of CAD group (6.30 ± 4.07) was much higher than that of healthy group (3.73 ± 1.41) (P < 0.001), R value of CAD group (69.16 ± 27.87)% was significantly higher than that of healthy group (34.96 ± 19.09)% (P < 0.001), á average angle of CAD group (221.46° ± 64.53°) was higher than that of healthy group (24.32° ± 20.70°) (P < 0.01). -
Professional Athletes Have Extraordinary Skills for Rapidly
Professional athletes have extraordinary skills for rapidly learning complex and SUBJECT AREAS: VISUAL SYSTEM neutral dynamic visual scenes PSYCHOLOGY Jocelyn Faubert COGNITIVE NEUROSCIENCE LEARNING AND MEMORY NSERC-Essilor Industrial Research Chair, Visual Psychophysics and Perception Laboratory, School of Optometry, University of Montreal. Received 10 December 2012 Evidence suggests that an athlete’s sports-related perceptual-cognitive expertise is a crucial element of Accepted top-level competitive sports1. When directly assessing whether such experience-related abilities correspond to 7 January 2013 fundamental and non-specific cognitive laboratory measures such as processing speed and attention, studies have shown moderate effects leading to the conclusion that their special abilities are context-specific2.We Published trained 308 observers on a complex dynamic visual scene task void of context and motor control 31 January 2013 requirements3 and demonstrate that professionals as a group dramatically differ from high-level amateur athletes, who dramatically differ from non-athlete university students in their capacity to learn such stimuli. This demonstrates that a distinguishing factor explaining the capacities of professional athletes is their ability to learn how to process complex dynamic visual scenes. This gives us an insight as to what is so special about Correspondence and the elite athletes’ mental abilities, which allows them to express great prowess in action. requests for materials should be addressed to J.F. (jocelyn.faubert@ umontreal.ca) hat makes elite athletes so special? Do brains of athletes anatomically and functionally differ from non-athletes and does this difference relate to performance level? A recent paper showed that high-level athletes have increased cortical thickness in a few areas of the brain and that this W 4 increased anatomical volume is correlated with the level of athletic training .