Model-Based Seasonally Adjusted Estimates and Sampling Error

Total Page:16

File Type:pdf, Size:1020Kb

Model-Based Seasonally Adjusted Estimates and Sampling Error Seasonal Adjustment Estimates Model-based seasonally adjusted estimates and sampling error Estimating certain CPS series with a model that filters out sampling error may reduce volatility in the time series, facilitating more meaningful trend analysis Richard Tiller he Current Population Survey (CPS) is the quite challenging. The monthly estimates pro- and source of the Nation’s official estimates of duced for the national aggregated series, such as Marisa Di Natale Ttotal employment and unemployment. The total employment and total unemployment, are CPS is a nationally representative, scientifically highly reliable relative to smaller, disaggregated selected monthly sample survey of approximately series. Many of the more detailed demographic 60,000 households. The survey yields data that series, such as employment and unemployment for are rich in demographic detail, including such blacks, are based on relatively small sample sizes, characteristics as age, sex, race, and Hispanic or so that survey error dominates movements in the Latino ethnicity. Estimates from the survey are underlying level of the series. The standard error published monthly in the BLS news release Em- for a (not seasonally adjusted) month-to-month ployment Situation and in the BLS publication change based on the CPS can be quite high for some Employment and Earnings. of these series. For example, the standard error for In order to make the time-series data collected a change in the unemployment rate of adult black from the CPS more useful to analysts and policy- males can be as large as 0.8 to 0.9 percentage point, makers, the monthly data from the survey are compared with 0.2 percentage point for the unem- adjusted for seasonal fluctuations. As is well ployment rate for all persons aged 16 years and known, the purpose of seasonally adjusting a older. As a result, drawing meaningful conclusions series is to remove seasonal fluctuations in the about trends or month-to-month changes is diffi- data so that users can more easily observe funda- cult, even after the data have been adjusted for mental changes in the level or trend of the series seasonal movements. that are associated with business cycle contrac- As an alternative to conventional seasonal ad- tions and expansions. Approximately 116 time justment, the study reported in this article applies series from the CPS are directly seasonally ad- an experimental model-based method to selected justed, and many more are indirectly seasonally CPS demographic series. The method is designed Richard Tiller is a adjusted, as sums or ratios of the original 116. to remove the effects of sampling error, as well as mathematical statistician on the There is, however, a source of spurious random those of seasonality, from the series, thereby Statistical fluctuations in the CPS data that arises because making it easier to discern underlying trends in the Methods Staff, and Marisa Di the CPS samples only a fraction—1 in 2,200, on data. Natale is an average, of the working-age population each economist formerly in the month: sampling error—the difference between Approaches to seasonal adjustment Division of Labor the survey estimates and the values that would be Force Statistics, Office of Current produced by a complete census of the population. The presence of large survey errors in the detailed Employment Simultaneously removing both seasonality in CPS series represents a major challenge to conven- Analysis, Bureau of Labor Statistics. the data and noise due to sampling error can prove tional methods of seasonal adjustment. Currently, Monthly Labor Review September 2005 27 Seasonal Adjustment Estimates the Bureau of Labor Statistics uses a seasonal adjustment and critics. The major concerns with the model-based program called X-12-ARIMA to seasonally adjust its CPS series. approach are that it may be difficult to develop good models This program is based on the empirical moving-average for some series and that the model may fail occasionally when approach to seasonal adjustment. new data become available. These concerns raise issues An alternative that is gaining increasing attention is the about the robustness of the adjustment and the associated model-based approach to seasonal adjustment. A comparison statistical measures. of the two approaches suggests that the model-based One major criticism of the moving-average approach is approach provides much-needed flexibility in controlling for that it lacks standard statistical measures. The absence of the effects of sampling error. Such flexibility is not possible standard errors for published seasonally adjusted data tends with the conventional moving-average approach. to promote the mistaken impression that the final seasonally Conventional approaches to seasonal adjustment are based adjusted values are exact rather than estimates. Moreover, on the classical decomposition of a time series, which assumes the lack of confidence intervals makes analysis of change in that the series is composed of trend (or trend-cycle), seasonal, the estimates and the location of turning points more difficult. and irregular components, in either an additive or a multiplicative Still, supporters of the method argue that it is robust and relationship. The first two components respectively account for nonparametric; thus, its lack of an explicit statistical model is the long- and short-run systematic variation in the series. The viewed as an advantage. Even so, the absence of statistical irregular component is a residual, usually assumed to be purely measures of reliability remains a major shortcoming.5 random variation with a fixed variance. The model-based approach makes (testable) assumptions Because the three components of the classical de- about the underlying probability distribution generating the composition are not directly observable, they must be esti- data. Along with estimates of the model parameters, these mated in order to perform seasonal adjustment. The moving- assumptions provide the means for constructing confidence average method uses weighted moving averages of the intervals and other statistical measures to quantify the original data over a period of many years to produce a smooth uncertainty in the estimates. Non-model-based estimates do trend and a seasonal pattern. The estimated trend and not, in general, afford a basis for producing measures of seasonal components are removed from the series, and the uncertainty in the estimates. residual is the irregular component. This approach makes no Another criticism of the moving-average approach is that attempt to define, in any formal statistical way, what is being it is not tailored to the specific properties of the series being estimated, but rather applies a series of moving averages adjusted.6 In contrast, the model-based approach develops a directly to a series. While some of the moving averages are model on the basis of goodness-of-fit diagnostics. The result- chosen to satisfy a mathematical smoothness criterion, the ing seasonal adjustment is based on the properties of the method was derived largely from empirical work with a wide series as represented by the model. In theory, under the range of series. assumptions of the model, the seasonal adjustment is By far the most successful application based on the “optimal” for the specific series. While the moving-average moving-average approach is the X-11 program,1 which has method can make no such theoretical claim, its moving gone through several major revisions. The latest, enhanced averages were originally selected because they work well for version is X-12-ARIMA.2 The original X-11 program, however, a very large number of series. This more generic approach remains at the core of X-12. continues to work well in practice and may have an advantage As an alternative to the moving-average approach, model- over the model-based approach when good models for sea- based seasonal adjustment has been gaining increased sonal adjustment cannot be developed. attention. The model-based approach specifies explicit Clearly, both approaches to seasonal adjustment have statistical models of the trend, seasonal, and irregular their merits and limitations. Indeed, there have been a number components of the classical decomposition.3 To seasonally of studies of the relative performance of the two approaches, adjust the data, weighted moving averages of the observed but no general agreement as to how to interpret the results. data actually are used in the model-based approach, but with Perhaps a more balanced approach is to treat them as comple- the important difference that they are derived directly from mentary tools for performing seasonal adjustment.7 the model. An essential characteristic of the approach is its use of standard statistical procedures to estimate the un- Dealing with “noisy” CPS data series observed components of the time series and to provide associated statistical measures such as confidence intervals The types of data series that are the focus of the study and significance tests. discussed in this article—survey series with large sampling There is a large body of literature on the comparative errors—represent a class of series that presents special properties of the two approaches.4 Each has its supporters problems for the moving-average approach to seasonal 28 Monthly Labor Review September 2005 adjustment. For these series, that approach (specifically, the time series for which a separate model can be specified, as is X-12 program) performs poorly, not because it has trouble done with the trend, seasonal, and irregular components of removing seasonality from the series, but because it cannot the series. Then there is the further advantage, in modeling adequately remove the effects of sampling error. The result is survey error, of having external information from the survey a seasonally adjusted series that often is dominated by on the standard errors and correlations. This information can sampling error, masking the underlying trend in the series. be directly used to specify the parameters of the model.
Recommended publications
  • SEASONAL ADJUSTMENT USING the X12 PROCEDURE Tammy Jackson and Michael Leonard SAS Institute, Inc
    SEASONAL ADJUSTMENT USING THE X12 PROCEDURE Tammy Jackson and Michael Leonard SAS Institute, Inc. Introduction program are regARIMA modeling, model diagnostics, seasonal adjustment using enhanced The U.S. Census Bureau has developed a new X-11 methodology, and post-adjustment seasonal adjustment/decomposition algorithm diagnostics. Statistics Canada's X-11 method fits called X-12-ARIMA that greatly enhances the old an ARIMA model to the original series, then uses X-11 algorithm. The X-12-ARIMA method the model forecast and extends the original series. modifies the X-11 variant of Census Method II by This extended series is then seasonally adjusted by J. Shiskin A.H. Young and J.C. Musgrave of the standard X-11 seasonal adjustment method. February 1967 and the X-11-ARIMA program The extension of the series improves the estimation based on the methodological research developed by of the seasonal factors and reduces revisions to the Estela Bee Dagum, Chief of the Seasonal seasonally adjusted series as new data become Adjustment and Time Series Staff of Statistics available. Canada, September 1979. The X12 procedure is a new addition to SAS/ETS software that Seasonal adjustment of a series is based on the implements the X-12-ARIMA algorithm developed assumption that seasonal fluctuations can be by the U.S. Census Bureau (Census X12). With the measured in the original series (Ot, t = 1,..., n) and help of employees of the Census Bureau, SAS separated from the trend cycle, trading-day, and employees have incorporated the Census X12 irregular fluctuations. The seasonal component of algorithm into the SAS System.
    [Show full text]
  • Discipline: Statistics
    Discipline: Statistics Offered through the Department of Mathematical Sciences, SSB 154, 786-1744/786-4824 STAT A252 Elementary Statistics 3 credits/(3+0) Prerequisites: Math 105 with minimum grade of C. Registration Restrictions: If prerequisite is not satisfied, appropriate SAT, ACT or AP scores or approved UAA Placement Test required. Course Attributes: GER Tier I Quantitative Skills. Fees Special Note: A student may apply no more than 3 credits from STAT 252 or BA 273 toward the graduation requirements for a baccalaureate degree. Course Description: Introduction to statistical reasoning. Emphasis on concepts rather than in- depth coverage of traditional statistical methods. Topics include sampling and experimentation, descriptive statistics, probability, binomial and normal distributions, estimation, single-sample and two-sample hypothesis tests. Additional topics will be selected from descriptive methods in regression and correlation, or contingency table analysis. STAT A253 Applied Statistics for the Sciences 4 credits/(4+0) Prerequisite: Math A107 or Math A109 Registration Restrictions: If prerequisite is not satisfied, appropriate SAT, ACT or AP scores or approved UAA Placement Test required. Course Attributes: GER Tier I Quantitative Skills. Fees. Course Description: Intensive survey course with applications for the sciences. Topics include descriptive statistics, probability, random variables, binomial, Poisson and normal distributions, estimation and hypothesis testing of common parameters, analysis of variance for single factor and two factors, correlation, and simple linear regression. A major statistical software package will be utilized. STAT A307 Probability 3 credits/(3+0) Prerequisites: Math A200 with minimum grade of C or Math A272 with minimum grade of C. Course Attributes: GER Tier I Quantitative Skills.
    [Show full text]
  • The Effect of Sampling Error on the Time Series Behavior of Consumption Data*
    Journal of Econometrics 55 (1993) 235-265. North-Holland The effect of sampling error on the time series behavior of consumption data* William R. Bell U.S.Bureau of the Census, Washington, DC 20233, USA David W. Wilcox Board of Governors of the Federal Reserve System, Washington, DC 20551, USA Much empirical economic research today involves estimation of tightly specified time series models that derive from theoretical optimization problems. Resulting conclusions about underly- ing theoretical parameters may be sensitive to imperfections in the data. We illustrate this fact by considering sampling error in data from the Census Bureau’s Retail Trade Survey. We find that parameter estimates in seasonal time series models for retail sales are sensitive to whether a sampling error component is included in the model. We conclude that sampling error should be taken seriously in attempts to derive economic implications by modeling time series data from repeated surveys. 1. Introduction The rational expectations revolution has transformed the methodology of macroeconometric research. In the new style, the researcher typically begins by specifying a dynamic optimization problem faced by agents in the model economy. Then the researcher derives the solution to the optimization problem, expressed as a stochastic model for some observable economic variable(s). A trademark of research in this tradition is that each of the parameters in the model for the observable variables is endowed with a specific economic interpretation. The last step in the research program is the application of the model to actual economic data to see whether the model *This paper reports the general results of research undertaken by Census Bureau and Federal Reserve Board staff.
    [Show full text]
  • 13 Collecting Statistical Data
    13 Collecting Statistical Data 13.1 The Population 13.2 Sampling 13.3 Random Sampling 1.1 - 1 • Polls, studies, surveys and other data collecting tools collect data from a small part of a larger group so that we can learn something about the larger group. • This is a common and important goal of statistics: Learn about a large group by examining data from some of its members. 1.1 - 2 Data collections of observations (such as measurements, genders, survey responses) 1.1 - 3 Statistics is the science of planning studies and experiments, obtaining data, and then organizing, summarizing, presenting, analyzing, interpreting, and drawing conclusions based on the data 1.1 - 4 Population the complete collection of all individuals (scores, people, measurements, and so on) to be studied; the collection is complete in the sense that it includes all of the individuals to be studied 1.1 - 5 Census Collection of data from every member of a population Sample Subcollection of members selected from a population 1.1 - 6 A Survey • The practical alternative to a census is to collect data only from some members of the population and use that data to draw conclusions and make inferences about the entire population. • Statisticians call this approach a survey (or a poll when the data collection is done by asking questions). • The subgroup chosen to provide the data is called the sample, and the act of selecting a sample is called sampling. 1.1 - 7 A Survey • The first important step in a survey is to distinguish the population for which the survey applies (the target population) and the actual subset of the population from which the sample will be drawn, called the sampling frame.
    [Show full text]
  • Topics in Compositional, Seasonal and Spatial-Temporal Time Series
    TOPICS IN COMPOSITIONAL, SEASONAL AND SPATIAL-TEMPORAL TIME SERIES BY KUN CHANG A dissertation submitted to the Graduate School|New Brunswick Rutgers, The State University of New Jersey in partial fulfillment of the requirements for the degree of Doctor of Philosophy Graduate Program in Statistics and Biostatistics Written under the direction of Professor Rong Chen and approved by New Brunswick, New Jersey October, 2015 ABSTRACT OF THE DISSERTATION Topics in compositional, seasonal and spatial-temporal time series by Kun Chang Dissertation Director: Professor Rong Chen This dissertation studies several topics in time series modeling. The discussion on sea- sonal time series, compositional time series and spatial-temporal time series brings new insight to the existing methods. Innovative methodologies are developed for model- ing and forecasting purposes. These topics are not isolated but to naturally support each other under rigorous discussions. A variety of real examples are presented from economics, social science and geoscience areas. The second chapter introduces a new class of seasonal time series models, treating the seasonality as a stable composition through time. With the objective of forecasting the sum of the next ` observations, the concept of rolling season is adopted and a structure of rolling conditional distribution is formulated under the compositional time series framework. The probabilistic properties, the estimation and prediction, and the forecasting performance of the model are studied and demonstrated with simulation and real examples. The third chapter focuses on the discussion of compositional time series theories in multivariate models. It provides an idea to the modeling procedure of the multivariate time series that has sum constraints at each time.
    [Show full text]
  • Do Seasonal Adjustments Induce Noncausal Dynamics in Inflation
    econometrics Article Do Seasonal Adjustments Induce Noncausal Dynamics in Inflation Rates? Alain Hecq 1, Sean Telg 1,* and Lenard Lieb 2 1 Department of Quantitative Economics, Maastricht University, School of Business and Economics, P.O. Box 616, 6200 MD Maastricht, The Netherlands; [email protected] 2 Department of General Economics (Macro), Maastricht University, School of Business and Economics, P.O. Box 616, 6200 MD Maastricht, The Netherlands; [email protected] * Correspondence: [email protected]; Tel.: +31-43-38-83578 Academic Editors: Gilles Dufrénot, Fredj Jawadi, Alexander Mihailov and Marc S. Paolella Received: 12 June 2017; Accepted: 17 October 2017; Published: 31 October 2017 Abstract: This paper investigates the effect of seasonal adjustment filters on the identification of mixed causal-noncausal autoregressive models. By means of Monte Carlo simulations, we find that standard seasonal filters induce spurious autoregressive dynamics on white noise series, a phenomenon already documented in the literature. Using a symmetric argument, we show that those filters also generate a spurious noncausal component in the seasonally adjusted series, but preserve (although amplify) the existence of causal and noncausal relationships. This result has has important implications for modelling economic time series driven by expectation relationships. We consider inflation data on the G7 countries to illustrate these results. Keywords: inflation; seasonal adjustment filters; mixed causal-noncausal models JEL Classification: C22; E37 1. Introduction Most empirical macroeconomic studies are based on seasonally adjusted data. Various methods have been proposed in the literature aiming at removing unobserved seasonal patterns without affecting other properties of the time series. Just as the misspecification of a trend may cause spurious cycles in detrended data (e.g., Nelson and Kang 1981), a wrongly specified pattern at the seasonal frequency might have very undesirable effects (see, e.g., Ghysels and Perron 1993; Maravall 1993).
    [Show full text]
  • American Community Survey Accuracy of the Data (2018)
    American Community Survey Accuracy of the Data (2018) INTRODUCTION This document describes the accuracy of the 2018 American Community Survey (ACS) 1-year estimates. The data contained in these data products are based on the sample interviewed from January 1, 2018 through December 31, 2018. The ACS sample is selected from all counties and county-equivalents in the United States. In 2006, the ACS began collecting data from sampled persons in group quarters (GQs) – for example, military barracks, college dormitories, nursing homes, and correctional facilities. Persons in sample in (GQs) and persons in sample in housing units (HUs) are included in all 2018 ACS estimates that are based on the total population. All ACS population estimates from years prior to 2006 include only persons in housing units. The ACS, like any other sample survey, is subject to error. The purpose of this document is to provide data users with a basic understanding of the ACS sample design, estimation methodology, and the accuracy of the ACS data. The ACS is sponsored by the U.S. Census Bureau, and is part of the Decennial Census Program. For additional information on the design and methodology of the ACS, including data collection and processing, visit: https://www.census.gov/programs-surveys/acs/methodology.html. To access other accuracy of the data documents, including the 2018 PRCS Accuracy of the Data document and the 2014-2018 ACS Accuracy of the Data document1, visit: https://www.census.gov/programs-surveys/acs/technical-documentation/code-lists.html. 1 The 2014-2018 Accuracy of the Data document will be available after the release of the 5-year products in December 2019.
    [Show full text]
  • Seasonal Adjustment
    OPEAN CENTRAL BANK Seasonal EUR Adjustment Seasonal Adjustment Titel_16182.pmd 1 12.11.03, 07:33 Seasonal Adjustment Editors: Michele Manna and Romana Peronaci Published by: © European Central Bank, November 2003 Address Kaiserstrasse 29 60311 Frankfurt am Main Germany Postal address Postfach 16 03 19 60066 Frankfurt am Main Germany Telephone +49 69 1344 0 Internet http://www.ecb.int Fax +49 69 1344 6000 Telex 411 144 ecb d This publication is also available as an e-book to be downloaded from the ECB’s website. The views expressed in this publication do not necessarily reflect those of the European Central Bank. No responsibility for them should be attributed to the ECB or to any of the other institutions with which the authors are affiliated. All rights reserved by the authors. Editors: Michele Manna and Romana Peronaci Typeset and printed by: Kern & Birner GmbH + Co. As at January 2003. ISBN 92-9181-412-1 (print) ISBN 92-9181-413-X (online) Contents Foreword by Eugenio Domingo Solans ........................................................................ 5 Notes from the Chairman Michele Manna ..................................................................... 7 1 Comparing direct and indirect seasonal adjustments of aggregate series by Catherine C. Hood and David F. Findley .............................................................. 9 2 A class of diagnostics in the ARIMA-model-based decomposition of a time series by Agustín Maravall ............................................................................... 23 3 Seasonal adjustment of European aggregates: direct versus indirect approach by Dominique Ladiray and Gian Luigi Mazzi ........................................................... 37 4 Criteria to determine the optimal revision policy: a case study based on euro zone monetary aggregates data by Laurent Maurin ....................................... 67 5 Direct versus indirect seasonal adjustment of UK monetary statistics: preliminary discussion by David Willoughby ........................................................
    [Show full text]
  • How to Handle Seasonality
    q:u:z '9* I ~ ,I ~ \l I I I National Criminal Justice Reference Service 1- --------------~~------------------------------------------------------ li nCJrs This microfiche was produced from documents received for inclusion in the NCJRS data base. Since NCJRS cannot exercise control over the physical condition of the documents submitted, HOW TO SEASONALITY the individual frame quality will vary. The resolution chart on HAN~JE this frame may be used to evaluate the document quality. Introduction to the Detection an~ Ana~y~is of Seasonal Fluctuation ln Crlmlnal Justice Time Series L. May 1983 2 5 0 11111 . IIIII 1. IIIII~ .' . .. .' '.. ,,\ 16 \\\\\~ IIIII 1.4 11111 . MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-J963-A Microfilming procedures used to create this fiche comply with the standards set forth in 41CFR 101-11.504. 1 .~ Points of view or opinions stated in this document are those of the author(s) and do not represent the official position or policies of the U. S. Department of Justice. 1 , ~!. ~ , National Institute of Justice j United States Department of Justice I, ,I, Washington, D. C. 20531 , .1 I! d ...:.,. 1 ·1;··'1~~;:~ ~~' ~ ; ~ ., 3/30/84 \ , ,;;:'. 1 ... ,'f '\! 1*,,-: ,j '"-=-~-~'- f qq .... 191f' I III I to( ' .. ~J ( ,] (J ,(] ....,.. t ~\ . 1 HOW TO HANDJE SEASONALITY Introduction to the Detection and Analysis of Seasonal Fluctuation in Criminal Justice Time Series _i. May 1983 by Carolyn Rebecca Blocv. Statistical Analysis Center ILLINOIS CRIMINAL JUSTICE INFORMATION AUTHORITY William Gould, Chairman J. David Coldren, Executive Director U.S. DopsrtrMnt of •• u~lIce NatlonaIlattiut. of Juallce II Thi. documont has .os"n reproouood (!)(actty t.\l received from the /1 _on or organl.tation originating II.
    [Show full text]
  • A Diagnostic for Seasonality Based Upon Autoregressive Roots
    A Diagnostic for Seasonality Based Upon Autoregressive Roots Tucker McElroy U.S. Census Bureau NTTS, March 13, 2019 Disclaimer These slides are released to inform interested parties of research and to encourage discussion. The views expressed on statistical issues are those of the author and not necessarily those of the U.S. Census Bureau. Outline 1. Background on Seasonality 2. Criteria for a Diagnostic of Seasonality 3. Persistent Oscillations 4. Seasonality Hypothesis Testing 5. Simulation Evidence 6. Data Application Background on Seasonality Seasonality in Official Time Series. Many official time series { such as gross domestic product (GDP) and unemployment rate data { have an enormous impact on public policy, and the seasonal patterns often obscure the long-run and mid-range dynamics. What is Seasonality? Persistency in a time series over seasonal periods that is not explainable by intervening time periods. • Requires persistence year to year • Non-seasonal trending series have persistence, which comes through intervening seasons { we must screen out such cases Background on Seasonality The Seasonal Adjustment Task. Given a raw time series: 1. Does it have seasonality? If so, seasonally adjust. 2. Does the seasonal adjustment have seasonality? If not, publish. Both these tasks require a seasonality diagnostic, although the properties of a time series before and after seasonal adjustment can be quite different. Background on Seasonality Pre-Testing. Testing for seasonality in a raw series, where the seasonality could be deterministic (stable), moving and stationary (dynamic), or moving and non-stationary (unit root). These categories are not mutually exclusive, e.g., we could have both unit root and deterministic seasonality.
    [Show full text]
  • SEASONAL ADJUSTMENT in ECONOMIC TIME SERIES: the EXPERIENCE of the BANCO DE ESPAÑA (With the Model•Based Method)
    SEASONAL ADJUSTMENT IN ECONOMIC TIME SERIES: THE EXPERIENCE OF THE BANCO DE ESPAÑA (with the model•based method) Alberto Cabrero Banco de España Banco de España — Servicio de Estudios Documento de Trabajo n.º 0002 SEASONAL ADJUSTMENT IN ECONOMIC TIME SERIES: THE EXPERIENCE OF THE BANCO DE ESPAÑA (with the model-based method) Alberto Cabrero(*) (*) A first version of this paper was presented at a meeting of the Task Force on Seasonal Adjustment in Frankfurt (November, 1999). I am grateful for helpful comments to the members of the TFSEA. Also, I am especially grateful to A. Maravall for his suggestions and comments. Of course, any remaining errors are the author´s own. BANCO DE ESPAÑA-DOCUMENTO DE TRABAJO Nº 0002 Abstract. For over 20 years the Banco de España has been using seasonally adjusted series for economic analysis and, more specifically, for monitoring the main monetary and financial magnitudes. This paper presents the Banco de España's experience in this field, describing the various methodological aspects that lead a central bank to use seasonally adjusted series in monetary monitoring and analysis. The paper further describes and substantiates the use of a procedure such as ARIMA model-based signal extraction for seasonally adjusting economic series. Lastly, a specific instance of seasonal adjustment using this methodology is offered: the analysis of the seasonality of the Spanish component of the euro area M3 aggregate. This case study illustrates in detail how the Banco de España has been regularly conducting its monetary and credit aggregate seasonal adjustment exercises up to 1999. Key words: monetary aggregates, seasonal adjustment, model-based signal extraction, TRAMO/SEATS procedure.
    [Show full text]
  • Gretl User's Guide
    Gretl User’s Guide Gnu Regression, Econometrics and Time-series Allin Cottrell Department of Economics Wake Forest university Riccardo “Jack” Lucchetti Dipartimento di Economia Università Politecnica delle Marche December, 2008 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1 or any later version published by the Free Software Foundation (see http://www.gnu.org/licenses/fdl.html). Contents 1 Introduction 1 1.1 Features at a glance ......................................... 1 1.2 Acknowledgements ......................................... 1 1.3 Installing the programs ....................................... 2 I Running the program 4 2 Getting started 5 2.1 Let’s run a regression ........................................ 5 2.2 Estimation output .......................................... 7 2.3 The main window menus ...................................... 8 2.4 Keyboard shortcuts ......................................... 11 2.5 The gretl toolbar ........................................... 11 3 Modes of working 13 3.1 Command scripts ........................................... 13 3.2 Saving script objects ......................................... 15 3.3 The gretl console ........................................... 15 3.4 The Session concept ......................................... 16 4 Data files 19 4.1 Native format ............................................. 19 4.2 Other data file formats ....................................... 19 4.3 Binary databases ..........................................
    [Show full text]