Research Progresses of Flash Evaporation in Aerospace Applications
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Considerations and Simulations About Pulse Detonation Engine
MATEC Web of Conferences 290, 04009 (2019) https://doi.org/10.1051/matecconf /2019290 04009 MSE 2019 Considerations and simulations about Pulse Detonation Engine Vasile Prisacariu1,*, Constantin Rotaru1, and Mihai Leonida Niculescu2 1Henri Coandă Air Force Academy, Aviation Department, Brașov, Romania 2INCAS, Aerodynamic Department, București, Romania Abstract. PDE propulsion can work from a subsonic regime to hypersonic regimes; this type of engine can have higher thermodynamic efficiency compared to other turbojet or turbofan engines due to the removal of rotating construction elements (compressors and turbines) that can reduce the mass and total cost of propulsion system. The PDE experimental researches focused on both the geometric configuration and the thermo- gas-dynamic flow aspects to prevent uncontrolled self-ignition. This article presents a series of numerical simulations on the functioning of PDE with hydrogen at supersonic regimens. Acronyms and symbols PDE pulse detonation engine AB PDE after burner pulse detonation engine DDT deflagration-to-detonation transition PDRE pulse detonation rocket engine ZDN Zel'dovich-von Neumann-Doering Mx, My Mach numbers p pressure v volume T temperature ρ density u1, u2 velocity h1, h2 enthalpy s1, s2 (S) entropy Vo,V∞ speed 1 INTRODUCTION Detonation is an effective means of burning a fuel mixture and transforming chemical energy into mechanical energy. However, this concept of running the propulsion systems involves difficulties both in rapidly achieving the fuel mixture at high speeds and in initiating and sustaining detonation in a controlled manner. PDE differs from conventional propulsion systems in two main aspects: it generates an intermittent pulse and produces high pressure increase in the combustion chamber, which also represents a major advantage of a PDE, see Figure 1. -
Study and Numerical Simulation of Unconventional Engine Technology
STUDY AND NUMERICAL SIMULATION OF UNCONVENTIONAL ENGINE TECHNOLOGY by ANJALI SHEKHAR B.E Aeronautical Engineering VTU, Karnataka, 2013 A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science, Aerospace Engineering, College of Engineering and Applied Science, University of Cincinnati, Ohio 2018 Thesis Committee: Chair: Ephraim Gutmark, Ph.D. Member: Shaaban Abdallah, Ph.D. Member: Mark Turner, Sc.D. An Abstract of Study and Numerical Simulation of Unconventional Engine Technology by Anjali Shekhar Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Master of Science Degree in Aerospace Engineering University of Cincinnati December 2018 The aim of this thesis is to understand the working of two unconventional aircraft propul- sion systems and to setup a two-dimensional transient simulation to analyze its operational mechanism. The air traffic has nearly increased by about 40% in past three decades and calls for alternative propulsion techniques to replace or support the current traditional propulsion methodology. In the light of current demand, the thesis draws motivation from renewed inter- est in two non-conventional propulsion techniques designed in the past and had not been given due importance due to various flaws/drawbacks associated. The thesis emphasizes on the work- ing of Von Ohains thermal compression engine and pulsejet combustors. Computational Fluid Dynamics is used in current study as it offers very high flexibility and can be modified easily to incorporate the required changes. Thermal Compression engine is a design suggested by Von Ohain in 1948. The engine works on the principle of pressure rise caused inside the engine which completely depends on the temperature of working fluid and independent of rotations per minute. -
Automobile Air Bag Inflation System Using Pressurized Carbon Dioxide Bart Adams New Jersey Institute of Technology
New Jersey Institute of Technology Digital Commons @ NJIT Dissertations Theses and Dissertations Spring 1998 Automobile air bag inflation system using pressurized carbon dioxide Bart Adams New Jersey Institute of Technology Follow this and additional works at: https://digitalcommons.njit.edu/dissertations Part of the Mechanical Engineering Commons Recommended Citation Adams, Bart, "Automobile air bag inflation system using pressurized carbon dioxide" (1998). Dissertations. 939. https://digitalcommons.njit.edu/dissertations/939 This Dissertation is brought to you for free and open access by the Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital Commons @ NJIT. For more information, please contact [email protected]. Cprht Wrnn & trtn h prht l f th Untd Stt (tl , Untd Stt Cd vrn th n f phtp r thr rprdtn f prhtd trl. Undr rtn ndtn pfd n th l, lbrr nd rhv r thrzd t frnh phtp r thr rprdtn. On f th pfd ndtn tht th phtp r rprdtn nt t b “d fr n prp thr thn prvt td, hlrhp, r rrh. If , r rt fr, r ltr , phtp r rprdtn fr prp n x f “fr tht r b lbl fr prht nfrnnt, h ntttn rrv th rht t rf t pt pn rdr f, n t jdnt, flfllnt f th rdr ld nvlv vltn f prht l. l t: h thr rtn th prht hl th r Inttt f hnl rrv th rht t dtrbt th th r drttn rntn nt: If d nt h t prnt th p, thn lt “ fr: frt p t: lt p n th prnt dl rn h n tn lbrr h rvd f th prnl nfrtn nd ll ntr fr th pprvl p nd brphl th f th nd drttn n rdr t prtt th dntt f I rdt nd flt. -
Aeronautical Engineering
NASA/S P--1999-7037/S U P PL407 September 1999 AERONAUTICAL ENGINEERING A CONTINUING BIBLIOGRAPHY WITH INDEXES National Aeronautics and Space Administration Langley Research Center Scientific and Technical Information Program Office The NASA STI Program Office... in Profile Since its founding, NASA has been dedicated CONFERENCE PUBLICATION. Collected to the advancement of aeronautics and space papers from scientific and technical science. The NASA Scientific and Technical conferences, symposia, seminars, or other Information (STI) Program Office plays a key meetings sponsored or cosponsored by NASA. part in helping NASA maintain this important role. SPECIAL PUBLICATION. Scientific, technical, or historical information from The NASA STI Program Office is operated by NASA programs, projects, and missions, Langley Research Center, the lead center for often concerned with subjects having NASA's scientific and technical information. substantial public interest. The NASA STI Program Office provides access to the NASA STI Database, the largest collection TECHNICAL TRANSLATION. of aeronautical and space science STI in the English-language translations of foreign world. The Program Office is also NASA's scientific and technical material pertinent to institutional mechanism for disseminating the NASA's mission. results of its research and development activities. These results are published by NASA in the Specialized services that complement the STI NASA STI Report Series, which includes the Program Office's diverse offerings include following report types: creating custom thesauri, building customized databases, organizing and publishing research TECHNICAL PUBLICATION. Reports of results.., even providing videos. completed research or a major significant phase of research that present the results of For more information about the NASA STI NASA programs and include extensive data or Program Office, see the following: theoretical analysis. -
Sunday Monday
Sunday Sunday, 29 July 2012 1-RECPT-1 Sunday Opening Reception Exhibit Hall 1830 - 2000 hrs Monday Monday, 30 July 2012 2-JPC-1/IECEC-1 JPC/IECEC Opening Monday Keynote Centennial Ballroom I 0800 - 0900 hrs Overview of NASA major program thrusts and Technology Development Opportunities Robert Lightfoot Associate Administrator NASA Monday, 30 July 2012 3-ABPSI-1/GTE-1 Turboelectric Distributed Propulsion I Hanover C Chaired by: H. KIM, NASA Glenn Research Center and A. GIBSON, Empirical Systems Aerospace LLC 1000 hrs 1030 hrs 1100 hrs 1130 hrs AIAA-2012-3700 AIAA-2012-3701 AIAA-2012-3702 Oral Presentation (Invited) Turboelectric Distributed Sensitivity of Mission Fuel Burn Hybrid Axial and Cross-Flow Evaluation of the Propulsion Propulsion System Modelling to Turboelectric Distributed Fan Propulsion for Transonic Integration Aerodynamics on a for Hybrid-Wing-Body Aircraft Propulsion Design Assumptions Blended Wing Body Aircraft Hybrid Wing Body Concept C. Liu, Self, Cranfield, United on the N3-X Hybrid Wing Body J. Kummer, J. Allred, Propulsive J. Chu, NASA Langley Research Kingdom Aircraft Wing, LLC, Elbridge, NY; J. Felder, Center, Hampton, VA J. Felder, G. Brown, NASA Glenn NASA Glenn Research Center, Research Center, Cleveland, OH; J. Cleveland, OH Chu, NASA Langley Research Center, Hampton, VA; M. Tong, NASA Glenn Research Center, Cleveland, OH Monday, 30 July 2012 4-HSABP/HYP-1/PC-1 Constant Volume Combustion Engines Regency VII Chaired by: V. TANGIRALA, General Electric Company and D. DAUSEN, Naval Postgraduate School 1000 hrs 1030 hrs 1100 hrs 1130 hrs AIAA-2012-3703 AIAA-2012-3704 AIAA-2012-3705 AIAA-2012-3706 Development of a Wave Disk Thermodynamics of the Wave Experimental Optimization of Experimental Study of Shock Engine Experimental Facility Disk Engine Static Valveless Self-Aspiration Transfer in a Multiple Pulse N. -
Volatile Liquid Precursors for the Chemical Vapor Deposition (Cvd) of Thin Films Containing Tungsten
Mat. Res. Soc. Symp. Proc. Vol. 612 © 2000 Materials Research Society VOLATILE LIQUID PRECURSORS FOR THE CHEMICAL VAPOR DEPOSITION (CVD) OF THIN FILMS CONTAINING TUNGSTEN Roy G. Gordon, Seán Barry, Randy N. R. Broomhall-Dillard, Valerie A. Wagner and Ying Wang Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138 ABSTRACT A new CVD process is described for depositing conformal layers containing tungsten, tungsten nitride or tungsten oxide. A film of tungsten metal is deposited by vaporizing liquid tungsten(0) pentacarbonyl 1-methylbutylisonitrile and passing the vapors over a surface heated to 400 to 500 oC. This process can be used to form gate electrodes compatible with ultrathin dielectric layers. Tungsten nitride films are deposited by combining ammonia gas with this tungsten-containing vapor and using substrates at temperatures of 250 to 400 oC. Tungsten nitride can act as a barrier to diffusion of copper in microelectronic circuits. Tungsten oxide films are deposited by adding oxygen gas to the tungsten-containing vapor and using substrates at temperatures of 200 to 300 oC. These tungsten oxide films can be used as part of electrochromic windows, mirrors or displays. Physical properties of several related liquid tungsten compounds are described. These low-viscosity liquids are stable to air and water. These new compounds have a number of advantages over tungsten-containing CVD precursors used previously. INTRODUCTION Chemical vapor deposition (CVD) is a widely-used process for forming solid materials, such as coatings, from reactants in the vapor phase. CVD processes can have many advantages: good step coverage, dense films, high deposition rates, scalability to larger areas and low cost. -
Bubble Growth in Superheated Solutions with a Non-Volatile Solute
Chemical Engineering Science, Vol. 49, No.9, pp. 1301- 1)12, 1994 Copyright tJ 1994 Elsevier Science Ltd Printed in Great Britain . All rights reserved 0009- 2509/94 $6.00 + 0.00 BUBBLE GROWTH IN SUPERHEATED SOLUTIONS WITH A NON-VOLATILE SOLUTE OSAMU MIYATAKE Department of Chemical Engineering, Kyushu University, Fukuoka 812, Japan ITSUO TANAKA Division of Biological Production System, Gifu University, Gifu 501-1 I, Japan and NOAM LIOR! Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104-6315. U.SA (First received 30 April 1993; accepted in revised form 9 September 1993) Abstract-Growth of single bubbles in a uniformly superheated binary solution containing a non-volatile solute was studied both experimentally, using an aqueous solution of NaCI at mass fractions of 0.05 and 0.20, an initial temperature range of 40-80°C and an applied initial superheat range of 1.7-16.5°C, and theoretically, with very good agreement between the experimental and theoretical results. The experimental technique developed, using an electrolytically nucleated bubble, was found to be excellent for single-bubble growth studies and photography. Some of the principal conclusions are that increasing the concentration of the non-volatile solute at a given initial solution temperature reduces the bubble growth rate when the far-field pressure is dropped to a fixed value. The effect of concentration on the bubble growth rate becomes smaller when the far-field pressure is reduced to bring the solution to either a fixed superheat, or to a fixed initial pressure difference between the bubble interior and exterior, leading to a conclusion that it is preferable to study and correlate bubble growth rates by using the superheat and this pressure difference as parameters. -
Program Schedule
Program Schedule AIAA Propulsion and Energy Forum and Exposition July 25 - 27, 2016 The Program Report was last updated July 20, 2016 at 01:01 AM EDT. To view the most recent meeting schedule online, visit https://aiaa-mpe16.abstractcentral.com/planner.jsp Monday, July 25, 2016 Time Session or Event Info 8:00 AM-9:00 AM, Ballroom A-D, PLNRY-01. INNOVATE OR DIE! (Note: Dying is easier) , Plenary, Forum Event 8:45 AM-9:30 AM, Exhibit Hall C, NW-01. Networking Coffee Break, Networking 9:30 AM-12:00 PM, 255 F, ABPSI-01. Nozzles and Exhaust, Technical Paper, 52nd AIAA/SAE/ASEE Joint Propulsion Conference, Chair: Chen Chuck, [email protected], Boeing Commercial Airplanes; Co-Chair: Darius Sanders, [email protected], Air Force Reseach Laboratory AIAA-2016-4500. Reducing residue in aluminized fuel-rich propellant 9:30-10:00 AM for Ramjets. N. Rathi; P. Ramakrishna AIAA-2016-4501. Prediction of NO Emissions Using a Stirred x 10:00-10:30 AM Reactor Modelling Approach for an Aero-Engine with RQL Combustor A. Prakash AIAA-2016-4502. Hot Streak Characterization in Serpentine Exhaust 10:30-11:00 AM Nozzles D.S. Crowe; C.L. Martin AIAA-2016-4503. Propulsion AerodynamicWorkshop II, Summary of 11:00-11:30 AM Participant Results for a Dual Separate Flow Reference Nozzle, Including Some Experimental Results R.L. Thornock AIAA-2016-4504. Open and Closed-Loop Responses of a Dual- 11:30-12:00 PM Throat Nozzle during Fluidic Thrust Vectoring M. Ferlauto; R. Marsilio 9:30 AM-12:00 PM, 255 E, ADP-01. -
Imece2007-44068-Pde
Proceedings of IMECE 2007 2007 ASME International Mechanical Engineering Congress and Exposition November 11–17, 2007, Seattle, Washington, USA IMECE2007–44068 PRACTICAL ISSUES IN GROUND TESTING OF PULSED DETONATION ENGINES Philip K. Panicker, Frank K. Lu, Donald R. Wilson Aerodynamics Research Center, Mechanical and Aerospace Engineering Department University of Texas at Arlington Arlington, Texas 76019 U.S.A. [email protected], [email protected], [email protected] ABSTRACT with or replaced by a low-pressure fan. Compact designs may be feasible, thereby achieving high thrust-to-weight ratios. In Pulsed detonation engines can potentially revolutionize aero- addition, various combinations and hybrids have been space propulsion and they are the subject of intense study. proposed, including ejector-augmented and combined cycle However, most of the studies involve single shot and very short engines [6–8], thereby extending the PDEs versatility. There duration test runs. Some of the practical issues in developing are also other potential non-aerospace applications of pulse PDEs are discussed from the viewpoint of developing ground- detonations, including electric power generation [9,10], slag based demonstrators. This represents only the beginning of a removal [11] and others [12]. roadmap toward the successful development of flightweight While a roadmap has been proposed for developing PDEs engines. Viable solutions are offered that may help overcome [13], there are no known operational PDEs presently. Instead, the difficulties posed by the high temperature and pressures on it appears that the lion’s share of experimental studies have the test rig and instrumentation. Commercial solenoid valves been performed using single-shot test beds or with short run and electronic fuel injectors are presented as means to achiev- times at frequencies below 50 Hz in the range of 10 to 20 s. -
2020 NASA Technology Taxonomy the Page Intentionally Left Blank
National Aeronautics and Space Administration 2020 NASA Technology Taxonomy The page intentionally left blank. i CONTENTS Letter from the Chief Technologist . iii Introduction . v TX01: Propulsion Systems . 1 TX02: Flight Computing and Avionics . 15 TX03: Aerospace Power and Energy Storage . 27 TX04: Robotic Systems . 35 TX05: Communications, Navigation, and Orbital Debris Tracking and Characterization Systems . 51 TX06: Human Health, Life Support, and Habitation Systems . 65 TX07: Exploration Destination Systems . 83 TX08: Sensors and Instruments . 95 TX09: Entry, Descent, and Landing . 105 TX10: Autonomous Systems . 115 TX11: Software, Modeling, Simulation, and Information Processing . 127 TX12: Materials, Structures, Mechanical Systems, and Manufacturing . 145 TX13: Ground, Test, and Surface Systems . 157 TX14: Thermal Management Systems . 173 TX15: Flight Vehicle Systems . 185 TX16: Air Traffic Management and Range Tracking Systems . 195 TX17: Guidance, Navigation, and Control . 201 Acronyms . 222 Acknowledgements . 225 ii Letter from the Chief Technologist “And as we renew our commitment to lead in space, let’s go with confidence and let’s go with faith. Faith in the vision and the goal that’s articulated today: that we can achieve it; that Americans can achieve anything that we put our minds to. Faith in the extraordinary ingenuity and capability of the men and women of NASA and America’s space enterprise, and their ability to meet those challenges if given the resources and the support to do it. And especially faith in the courage of the men and women who are now, and those who will join, the storied ranks of American astronauts—that next generation of restless pioneers that will carry American leadership into space. -
FINAL PROGRAM Innovations in Propulsion and Energy Driving System Solutions
2O16 25–27 JULY 2016 SALT LAKE CITY, UT Innovations in Propulsion and Energy Driving System Solutions FINAL PROGRAM www.aiaa-propulsionenergy.org #aiaaPropEnergy 16-1225 Real-Time Q&A and Polling during AIAA Propulsion NEW! and Energy 2016 withwith ConferenceConference IO!IO! During Plenary and Forum 360 Sessions, go to aiaa.cnf.io Getting Your Question Answered is as EASY as 1-2-3! 1. Click the “Ask” button to submit a question. 2. Check out the questions that other attendees are asking. 3. If you see a question that you want answered, click on the arrow on the left. The most popular questions automatically rise to the top. Participate in Session Polls 1. If Polls are available they will appear at the top of the page. Simply click/tap on a Poll to respond. 2. Choose your response(s) and hit “submit”. 3. After responding you will be able to see the results on your own device!* * Some Poll results may be hidden NO DOWNLOADING REQUIRED! Executive Steering Committee 2O16 AIAA Propulsion and Energy 2016 Welcome Welcome to Salt Lake City, Utah, and AIAA Propulsion and Energy 2016. We are excited to share the next few days with you as we explore the most pressing issues facing the future of propulsion and energy systems – the true heart of aerospace. With so many insightful and dynamic speakers and panelists, we are confident you will find the information presented here thought-provoking, impactful, and immediately useful to you in your work. Daniel “Dan” Michael Heil During the forum you will hear from thought leaders, learn about the latest technical Dumbacher Ohio Aerospace breakthroughs, and most importantly collaborate with other attendees from Purdue University Institute (Ret.) government, industry, and academia. -
Cooling Under Vacuum
Cooling under Vacuum GEA Wiegand GmbH Table of Contents Introduction Cooling is an expensive process. Ongoing increases in Introduction 2 energy costs demand alternatives to traditional systems Comparison between compression cooling plants (mechanical compressors). More and more, flash cooling and steam jet cooling plants 2 plants offer an environmentally friendly and economical solution. Steam Jet Cooling Plants – Construction Details GEA Wiegand has more than fifty years of experience in and How They Work 3 the design and construction of flash cooling plants. Advantages of flash cooling plants 3 Vapour compression using jet pumps 4 GEA Wiegand reference plants: Flash cooling 4 water Steam Jet Cooling Plants – Types 5 aqueous nitric acid/phosphoric acid Steam jet cooling plants of compact design 5 aqueous plaster suspension Steam jet cooling plants of column design 6 calcium milk Steam jet cooling plants of bridge design 7 barium hydroxide solutions Standardised steam jet cooling plants – sizes 8 various waste waters fruit juice Installation and Control 10 milk Possible combinations 10 glue Installation alternatives 11 Control of steam jet cooling plants 12 The steam jet cooling plants may have a capacity between Heat Recovery Plants 14 approximately 10 and 20 000 kilowatts. As an example, water may be cooled down to a temperature of approxi- Criteria for the Design mately 5 °C. of Steam Jet Cooling Plants 15 Comparison between compression cooling plants and steam jet cooling plants Type of cooling plant Compression cooling plant Steam