Programming in Python 3

Total Page:16

File Type:pdf, Size:1020Kb

Programming in Python 3 Programming in Python 3 A Complete Introduction to the Python Language Second Edition Mark Summerfield Upper Saddle River, NJ · Boston · Indianapolis · San Francisco New York · Toronto · Montreal · London · Munich · Paris · Madrid Capetown · Sydney · Tokyo · Singapore · Mexico City Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals. The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein. The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may include electronic versions and/or custom covers and content particular to your business, training goals, marketing focus, and branding interests. For more information, please contact: U.S. Corporate and Government Sales (800) 382-3419 [email protected] For sales outside the United States, please contact: International Sales [email protected] Visit us on the Web: informit.com/aw Library of Congress Cataloging-in-Publication Data Summerfield, Mark. Programming in Python 3 : a complete introduction to the Python language / Mark Summerfield.—2nd ed. p. cm. Includes bibliographical references and index. ISBN 978-0-321-68056-3 (pbk. : alk. paper) 1. Python (Computer program language) 2. Object-oriented programming (Computer science) I. Title. QA76.73.P98S86 2010 005.13’3—dc22 2009035430 Copyright © 2010 Pearson Education, Inc. All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, write to: Pearson Education, Inc. Rights and Contracts Department 501 Boylston Street, Suite 900 Boston, MA 02116 Fax: (617) 671-3447 ISBN-13: 978-0-321-68056-3 ISBN-10: 0-321-68056-1 Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana. First printing, November 2009 Contents at a Glance List of Tables ...................................................... xv Introduction ...................................................... 1 Chapter 1. Rapid Introduction to Procedural Programming ... 9 Chapter 2. Data Types ............................................ 51 Chapter 3. Collection Data Types ................................ 107 Chapter 4. Control Structures and Functions ................... 159 Chapter 5. Modules ...............................................195 Chapter 6. Object-Oriented Programming ...................... 233 Chapter 7. File Handling ......................................... 287 Chapter 8. Advanced Programming Techniques ................ 339 Chapter 9. Debugging, Testing, and Profiling ................... 413 Chapter 10. Processes and Threading ........................... 439 Chapter 11. Networking ..........................................457 Chapter 12. Database Programming ............................. 475 Chapter 13. Regular Expressions ................................ 489 Chapter 14. Introduction to Parsing ............................. 513 Chapter 15. Introduction to GUI Programming ................. 569 Epilogue ...........................................................595 Selected Bibliography ............................................ 597 Index .............................................................. 599 www.qtrac.eu/py3book.html Contents List of Tables ..................................................... xv Introduction ...................................................... 1 Chapter 1. Rapid Introduction to Procedural Programming ... 9 Creating and Running Python Programs ........................ 9 Python’s “Beautiful Heart” ...................................... 14 Piece #1: Data Types ....................................... 14 Piece #2: Object References ................................. 16 Piece #3: Collection Data Types ............................. 18 Piece #4: Logical Operations ................................ 21 Piece #5: Control Flow Statements .......................... 26 Piece #6: Arithmetic Operators .............................. 30 Piece #7: Input/Output ..................................... 33 Piece #8: Creating and Calling Functions .................... 36 Examples ...................................................... 39 bigdigits.py ................................................ 39 generate_grid.py ........................................... 42 Summary ...................................................... 44 Exercises ...................................................... 47 Chapter 2. Data Types ........................................... 51 Identifiers and Keywords ....................................... 51 Integral Types .................................................. 54 Integers ................................................... 54 Booleans ................................................... 58 Floating-Point Types ........................................... 58 Floating-Point Numbers .................................... 59 Complex Numbers ......................................... 62 Decimal Numbers .......................................... 63 Strings ......................................................... 65 Comparing Strings ......................................... 68 Slicing and Striding Strings ................................ 69 String Operators and Methods .............................. 71 ix String Formatting with the str.format() Method .............. 78 Character Encodings ....................................... 91 Examples ...................................................... 94 quadratic.py ............................................... 94 csv2html.py ................................................ 97 Summary ...................................................... 102 Exercises ...................................................... 104 Chapter 3. Collection Data Types ................................ 107 Sequence Types ................................................ 107 Tuples ..................................................... 108 Named Tuples ............................................. 111 Lists ....................................................... 113 Set Types ...................................................... 120 Sets ....................................................... 121 Frozen Sets ................................................ 125 Mapping Types ................................................. 126 Dictionaries ................................................ 126 Default Dictionaries ........................................ 135 Ordered Dictionaries ....................................... 136 Iterating and Copying Collections ............................... 138 Iterators and Iterable Operations and Functions ............. 138 Copying Collections ........................................ 146 Examples ...................................................... 148 generate_usernames.py .................................... 149 statistics.py ................................................ 152 Summary ...................................................... 156 Exercises ...................................................... 158 Chapter 4. Control Structures and Functions ................... 159 Control Structures .............................................. 159 Conditional Branching ..................................... 159 Looping .................................................... 161 Exception Handling ............................................ 163 Catching and Raising Exceptions ........................... 163 Custom Exceptions ......................................... 168 Custom Functions .............................................. 171 Names and Docstrings ...................................... 176 Argument and Parameter Unpacking ....................... 177 x Accessing Variables in the Global Scope ..................... 180 Lambda Functions ......................................... 182 Assertions ................................................. 183 Example: make_html_skeleton.py ............................... 185 Summary ...................................................... 191 Exercise ....................................................... 192 Chapter 5. Modules .............................................. 195 Modules and Packages .......................................... 195 Packages .................................................. 199 Custom Modules ........................................... 202 Overview of Python’s Standard Library .......................... 212 String Handling ........................................... 213 Command-Line Programming .............................. 214 Mathematics and Numbers ................................. 216 Times and Dates ........................................... 216 Algorithms and Collection Data Types ....................... 217 File Formats, Encodings, and Data Persistence ..............
Recommended publications
  • PRE PROCESSOR DIRECTIVES in –C LANGUAGE. 2401 – Course
    PRE PROCESSOR DIRECTIVES IN –C LANGUAGE. 2401 – Course Notes. 1 The C preprocessor is a macro processor that is used automatically by the C compiler to transform programmer defined programs before actual compilation takes place. It is called a macro processor because it allows the user to define macros, which are short abbreviations for longer constructs. This functionality allows for some very useful and practical tools to design our programs. To include header files(Header files are files with pre defined function definitions, user defined data types, declarations that can be included.) To include macro expansions. We can take random fragments of C code and abbreviate them into smaller definitions namely macros, and once they are defined and included via header files or directly onto the program itself it(the user defined definition) can be used everywhere in the program. In other words it works like a blank tile in the game scrabble, where if one player possesses a blank tile and uses it to state a particular letter for a given word he chose to play then that blank piece is used as that letter throughout the game. It is pretty similar to that rule. Special pre processing directives can be used to, include or exclude parts of the program according to various conditions. To sum up, preprocessing directives occurs before program compilation. So, it can be also be referred to as pre compiled fragments of code. Some possible actions are the inclusions of other files in the file being compiled, definitions of symbolic constants and macros and conditional compilation of program code and conditional execution of preprocessor directives.
    [Show full text]
  • Feature Tracking & Visualization in 'Visit'
    FEATURE TRACKING & VISUALIZATION IN ‘VISIT’ By NAVEEN ATMAKURI A thesis submitted to the Graduate School—New Brunswick Rutgers, The State University of New Jersey in partial fulfillment of the requirements for the degree of Master of Science Graduate Program in Electrical and Computer Engineering written under the direction of Professor Deborah Silver and approved by New Brunswick, New Jersey October 2010 ABSTRACT OF THE THESIS Feature Tracking & Visualization in VisIt by Naveen Atmakuri Thesis Director: Professor Deborah Silver The study and analysis of large experimental or simulation datasets in the field of science and engineering pose a great challenge to the scientists. These complex simulations generate data varying over a period of time. Scientists need to glean large quantities of time-varying data to understand the underlying physical phenomenon. This is where visualization tools can assist scientists in their quest for analysis and understanding of scientific data. Feature Tracking, developed at Visualization & Graphics Lab (Vizlab), Rutgers University, is one such visualization tool. Feature Tracking is an automated process to isolate and analyze certain regions or objects of interest, called ‘features’ and to highlight their underlying physical processes in time-varying 3D datasets. In this thesis, we present a methodology and documentation on how to port ‘Feature Tracking’ into VisIt. VisIt is a freely available open-source visualization software package that has a rich feature set for visualizing and analyzing data. VisIt can successfully handle massive data quantities in the range of tera-scale. The technology covered by this thesis is an improvement over the previous work that focused on Feature Tracking in VisIt.
    [Show full text]
  • Python for Economists Alex Bell
    Python for Economists Alex Bell [email protected] http://xkcd.com/353 This version: October 2016. If you have not already done so, download the files for the exercises here. Contents 1 Introduction to Python 3 1.1 Getting Set-Up................................................. 3 1.2 Syntax and Basic Data Structures...................................... 3 1.2.1 Variables: What Stata Calls Macros ................................ 4 1.2.2 Lists.................................................. 5 1.2.3 Functions ............................................... 6 1.2.4 Statements............................................... 7 1.2.5 Truth Value Testing ......................................... 8 1.3 Advanced Data Structures .......................................... 10 1.3.1 Tuples................................................. 10 1.3.2 Sets .................................................. 11 1.3.3 Dictionaries (also known as hash maps) .............................. 11 1.3.4 Casting and a Recap of Data Types................................. 12 1.4 String Operators and Regular Expressions ................................. 13 1.4.1 Regular Expression Syntax...................................... 14 1.4.2 Regular Expression Methods..................................... 16 1.4.3 Grouping RE's ............................................ 18 1.4.4 Assertions: Non-Capturing Groups................................. 19 1.4.5 Portability of REs (REs in Stata).................................. 20 1.5 Working with the Operating System....................................
    [Show full text]
  • C and C++ Preprocessor Directives #Include #Define Macros Inline
    MODULE 10 PREPROCESSOR DIRECTIVES My Training Period: hours Abilities ▪ Able to understand and use #include. ▪ Able to understand and use #define. ▪ Able to understand and use macros and inline functions. ▪ Able to understand and use the conditional compilation – #if, #endif, #ifdef, #else, #ifndef and #undef. ▪ Able to understand and use #error, #pragma, # and ## operators and #line. ▪ Able to display error messages during conditional compilation. ▪ Able to understand and use assertions. 10.1 Introduction - For C/C++ preprocessor, preprocessing occurs before a program is compiled. A complete process involved during the preprocessing, compiling and linking can be read in Module W. - Some possible actions are: ▪ Inclusion of other files in the file being compiled. ▪ Definition of symbolic constants and macros. ▪ Conditional compilation of program code or code segment. ▪ Conditional execution of preprocessor directives. - All preprocessor directives begin with #, and only white space characters may appear before a preprocessor directive on a line. 10.2 The #include Preprocessor Directive - The #include directive causes copy of a specified file to be included in place of the directive. The two forms of the #include directive are: //searches for header files and replaces this directive //with the entire contents of the header file here #include <header_file> - Or #include "header_file" e.g. #include <stdio.h> #include "myheader.h" - If the file name is enclosed in double quotes, the preprocessor searches in the same directory (local) as the source file being compiled for the file to be included, if not found then looks in the subdirectory associated with standard header files as specified using angle bracket. - This method is normally used to include user or programmer-defined header files.
    [Show full text]
  • Fortran 90 Overview
    1 Fortran 90 Overview J.E. Akin, Copyright 1998 This overview of Fortran 90 (F90) features is presented as a series of tables that illustrate the syntax and abilities of F90. Frequently comparisons are made to similar features in the C++ and F77 languages and to the Matlab environment. These tables show that F90 has significant improvements over F77 and matches or exceeds newer software capabilities found in C++ and Matlab for dynamic memory management, user defined data structures, matrix operations, operator definition and overloading, intrinsics for vector and parallel pro- cessors and the basic requirements for object-oriented programming. They are intended to serve as a condensed quick reference guide for programming in F90 and for understanding programs developed by others. List of Tables 1 Comment syntax . 4 2 Intrinsic data types of variables . 4 3 Arithmetic operators . 4 4 Relational operators (arithmetic and logical) . 5 5 Precedence pecking order . 5 6 Colon Operator Syntax and its Applications . 5 7 Mathematical functions . 6 8 Flow Control Statements . 7 9 Basic loop constructs . 7 10 IF Constructs . 8 11 Nested IF Constructs . 8 12 Logical IF-ELSE Constructs . 8 13 Logical IF-ELSE-IF Constructs . 8 14 Case Selection Constructs . 9 15 F90 Optional Logic Block Names . 9 16 GO TO Break-out of Nested Loops . 9 17 Skip a Single Loop Cycle . 10 18 Abort a Single Loop . 10 19 F90 DOs Named for Control . 10 20 Looping While a Condition is True . 11 21 Function definitions . 11 22 Arguments and return values of subprograms . 12 23 Defining and referring to global variables .
    [Show full text]
  • Quick Overview: Complex Numbers
    Quick Overview: Complex Numbers February 23, 2012 1 Initial Definitions Definition 1 The complex number z is defined as: z = a + bi (1) p where a, b are real numbers and i = −1. Remarks about the definition: • Engineers typically use j instead of i. • Examples of complex numbers: p 5 + 2i; 3 − 2i; 3; −5i • Powers of i: i2 = −1 i3 = −i i4 = 1 i5 = i i6 = −1 i7 = −i . • All real numbers are also complex (by taking b = 0). 2 Visualizing Complex Numbers A complex number is defined by it's two real numbers. If we have z = a + bi, then: Definition 2 The real part of a + bi is a, Re(z) = Re(a + bi) = a The imaginary part of a + bi is b, Im(z) = Im(a + bi) = b 1 Im(z) 4i 3i z = a + bi 2i r b 1i θ Re(z) a −1i Figure 1: Visualizing z = a + bi in the complex plane. Shown are the modulus (or length) r and the argument (or angle) θ. To visualize a complex number, we use the complex plane C, where the horizontal (or x-) axis is for the real part, and the vertical axis is for the imaginary part. That is, a + bi is plotted as the point (a; b). In Figure 1, we can see that it is also possible to represent the point a + bi, or (a; b) in polar form, by computing its modulus (or size), and angle (or argument): p r = jzj = a2 + b2 θ = arg(z) We have to be a bit careful defining φ, since there are many ways to write φ (and we could add multiples of 2π as well).
    [Show full text]
  • Fortran Math Special Functions Library
    IMSL® Fortran Math Special Functions Library Version 2021.0 Copyright 1970-2021 Rogue Wave Software, Inc., a Perforce company. Visual Numerics, IMSL, and PV-WAVE are registered trademarks of Rogue Wave Software, Inc., a Perforce company. IMPORTANT NOTICE: Information contained in this documentation is subject to change without notice. Use of this docu- ment is subject to the terms and conditions of a Rogue Wave Software License Agreement, including, without limitation, the Limited Warranty and Limitation of Liability. ACKNOWLEDGMENTS Use of the Documentation and implementation of any of its processes or techniques are the sole responsibility of the client, and Perforce Soft- ware, Inc., assumes no responsibility and will not be liable for any errors, omissions, damage, or loss that might result from any use or misuse of the Documentation PERFORCE SOFTWARE, INC. MAKES NO REPRESENTATION ABOUT THE SUITABILITY OF THE DOCUMENTATION. THE DOCU- MENTATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. PERFORCE SOFTWARE, INC. HEREBY DISCLAIMS ALL WARRANTIES AND CONDITIONS WITH REGARD TO THE DOCUMENTATION, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR- TICULAR PURPOSE, OR NONINFRINGEMENT. IN NO EVENT SHALL PERFORCE SOFTWARE, INC. BE LIABLE, WHETHER IN CONTRACT, TORT, OR OTHERWISE, FOR ANY SPECIAL, CONSEQUENTIAL, INDIRECT, PUNITIVE, OR EXEMPLARY DAMAGES IN CONNECTION WITH THE USE OF THE DOCUMENTATION. The Documentation is subject to change at any time without notice. IMSL https://www.imsl.com/ Contents Introduction The IMSL Fortran Numerical Libraries . 1 Getting Started . 2 Finding the Right Routine . 3 Organization of the Documentation . 4 Naming Conventions .
    [Show full text]
  • Diabetes Care Diagnostics Diagnostics Diagnostics (RDC) (RPD) (RMD) (RTD)
    Committed to innovation and growth Roland Diggelmann, COO Roche Diagnostics UBS Best of Switzerland, Wolfsberg September 19, 2013 HY 2013 Group Results Diagnostics Overview & Strategy HY 2013 Companion Diagnostics Outlook HY 2013: Roche Group highlights HY 2013 performance • Strong Pharma performance, driven by US; solid growth for Diagnostics • 12% core EPS growth1, driven largely by strong underlying business • Solid operating free cash flow (+4%1) Innovation • Move into phase III: Bcl2 inhibitor and anti-PDL1 • Data read-outs for potential phase III decisions: etrolizumab and anti-factor D • Positive CHMP recommendation for Herceptin SC • Discontinued: aleglitazar and GA201 3 1 CER=Constant Exchange Rates HY 2013: Strong sales momentum continues HY 2013 HY 2012 Change in % CHF bn CHF bn CHF CER Pharmaceuticals Division 18.2 17.4 4 6 Diagnostics Division 5.1 5.0 2 3 Roche Group 23.3 22.4 4 5 4 CER=Constant Exchange Rates HY 2013 Group Results Diagnostics Overview & Strategy HY 2013 Companion Diagnostics Outlook In-Vitro Diagnostics market overview Large and growing market; Roche is market leader Market share Market size USD 50 bn Roche Professional Diagnostics 20% Others 39% Molecular Diagnostics 11% Abbott Tissue Diagnostics 10% 3% Siemens Diabetes Monitoring Biomerieux 8% 8% Danaher J&J 6 Source: Roche Analysis, Company reports for 2012 validated by an independent IVD consultancy Overview of Roche Diagnostics New reporting structure In Vitro Diagnostics & Life Sciences Professional Molecular Tissue Diabetes Care Diagnostics Diagnostics
    [Show full text]
  • Section “Common Predefined Macros” in the C Preprocessor
    The C Preprocessor For gcc version 12.0.0 (pre-release) (GCC) Richard M. Stallman, Zachary Weinberg Copyright c 1987-2021 Free Software Foundation, Inc. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation. A copy of the license is included in the section entitled \GNU Free Documentation License". This manual contains no Invariant Sections. The Front-Cover Texts are (a) (see below), and the Back-Cover Texts are (b) (see below). (a) The FSF's Front-Cover Text is: A GNU Manual (b) The FSF's Back-Cover Text is: You have freedom to copy and modify this GNU Manual, like GNU software. Copies published by the Free Software Foundation raise funds for GNU development. i Table of Contents 1 Overview :::::::::::::::::::::::::::::::::::::::: 1 1.1 Character sets:::::::::::::::::::::::::::::::::::::::::::::::::: 1 1.2 Initial processing ::::::::::::::::::::::::::::::::::::::::::::::: 2 1.3 Tokenization ::::::::::::::::::::::::::::::::::::::::::::::::::: 4 1.4 The preprocessing language :::::::::::::::::::::::::::::::::::: 6 2 Header Files::::::::::::::::::::::::::::::::::::: 7 2.1 Include Syntax ::::::::::::::::::::::::::::::::::::::::::::::::: 7 2.2 Include Operation :::::::::::::::::::::::::::::::::::::::::::::: 8 2.3 Search Path :::::::::::::::::::::::::::::::::::::::::::::::::::: 9 2.4 Once-Only Headers::::::::::::::::::::::::::::::::::::::::::::: 9 2.5 Alternatives to Wrapper #ifndef ::::::::::::::::::::::::::::::
    [Show full text]
  • FME® Desktop Copyright © 1994 – 2018, Safe Software Inc. All Rights Reserved
    FME® Desktop Copyright © 1994 – 2018, Safe Software Inc. All rights reserved. FME® is the registered trademark of Safe Software Inc. All brands and their product names mentioned herein may be trademarks or registered trademarks of their respective holders and should be noted as such. FME Desktop includes components licensed as described below: Autodesk FBX This software contains Autodesk® FBX® code developed by Autodesk, Inc. Copyright 2016 Autodesk, Inc. All rights, reserved. Such code is provided “as is” and Autodesk, Inc. disclaims any and all warranties, whether express or implied, including without limitation the implied warranties of merchantability, fitness for a particular purpose or non-infringement of third party rights. In no event shall Autodesk, Inc. be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of such code. Autodesk Libraries Contains Autodesk® RealDWG by Autodesk, Inc., Copyright © 2017 Autodesk, Inc. All rights reserved. Home page: www.autodesk.com/realdwg Belge72/b.Lambert72A NTv2 Grid Copyright © 2014-2016 Nicolas SIMON and validated by Service Public de Wallonie and Nationaal Geografisch Instituut. Under Creative Commons Attribution license (CC BY). Bentley i-Model SDK This software includes some components from the Bentley i-Model SDK. Copyright © Bentley Systems International Limited CARIS CSAR GDAL Plugin CARIS CSAR GDAL Plugin is owned by and copyright © 2013 Universal Systems Ltd.
    [Show full text]
  • IEEE Standard 754 for Binary Floating-Point Arithmetic
    Work in Progress: Lecture Notes on the Status of IEEE 754 October 1, 1997 3:36 am Lecture Notes on the Status of IEEE Standard 754 for Binary Floating-Point Arithmetic Prof. W. Kahan Elect. Eng. & Computer Science University of California Berkeley CA 94720-1776 Introduction: Twenty years ago anarchy threatened floating-point arithmetic. Over a dozen commercially significant arithmetics boasted diverse wordsizes, precisions, rounding procedures and over/underflow behaviors, and more were in the works. “Portable” software intended to reconcile that numerical diversity had become unbearably costly to develop. Thirteen years ago, when IEEE 754 became official, major microprocessor manufacturers had already adopted it despite the challenge it posed to implementors. With unprecedented altruism, hardware designers had risen to its challenge in the belief that they would ease and encourage a vast burgeoning of numerical software. They did succeed to a considerable extent. Anyway, rounding anomalies that preoccupied all of us in the 1970s afflict only CRAY X-MPs — J90s now. Now atrophy threatens features of IEEE 754 caught in a vicious circle: Those features lack support in programming languages and compilers, so those features are mishandled and/or practically unusable, so those features are little known and less in demand, and so those features lack support in programming languages and compilers. To help break that circle, those features are discussed in these notes under the following headings: Representable Numbers, Normal and Subnormal, Infinite
    [Show full text]
  • Linux from Scratch 版本 R11.0-36-中⽂翻译版 发布于 2021 年 9 ⽉ 21 ⽇
    Linux From Scratch 版本 r11.0-36-中⽂翻译版 发布于 2021 年 9 ⽉ 21 ⽇ 由 Gerard Beekmans 原著 总编辑:Bruce Dubbs Linux From Scratch: 版本 r11.0-36-中⽂翻译版 : 发布于 2021 年 9 ⽉ 21 ⽇ 由 由 Gerard Beekmans 原著和总编辑:Bruce Dubbs 版权所有 © 1999-2021 Gerard Beekmans 版权所有 © 1999-2021, Gerard Beekmans 保留所有权利。 本书依照 Creative Commons License 许可证发布。 从本书中提取的计算机命令依照 MIT License 许可证发布。 Linux® 是Linus Torvalds 的注册商标。 Linux From Scratch - 版本 r11.0-36-中⽂翻译版 ⽬录 序⾔ .................................................................................................................................... viii i. 前⾔ ............................................................................................................................ viii ii. 本书⾯向的读者 ............................................................................................................ viii iii. LFS 的⽬标架构 ............................................................................................................ ix iv. 阅读本书需要的背景知识 ................................................................................................. ix v. LFS 和标准 ..................................................................................................................... x vi. 本书选择软件包的逻辑 .................................................................................................... xi vii. 排版约定 .................................................................................................................... xvi viii. 本书结构 .................................................................................................................
    [Show full text]