DOT1L-Controlled Cell-Fate Determination and Transcription Elongation Are Independent of H3K79 Methylation

Total Page:16

File Type:pdf, Size:1020Kb

DOT1L-Controlled Cell-Fate Determination and Transcription Elongation Are Independent of H3K79 Methylation DOT1L-controlled cell-fate determination and transcription elongation are independent of H3K79 methylation Kaixiang Caoa,b,1, Michal Ugarenkoa,b, Patrick A. Ozarka,b, Juan Wanga,b, Stacy A. Marshalla,b, Emily J. Rendlemana,b, Kaiwei Lianga,b,2, Lu Wanga,b,c, Lihua Zoua,b,c, Edwin R. Smitha,b,c, Feng Yuea,b,c, and Ali Shilatifarda,b,c,3 aDepartment of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611; bSimpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611; and cRobert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 Edited by Shiv I. S. Grewal, National Institutes of Health, Bethesda, MD, and approved September 8, 2020 (received for review January 18, 2020) Actively transcribed genes in mammals are decorated by H3K79 Unlike other known lysine methyltransferases, DOT1L lacks a methylation, which is correlated with transcription levels and is SET domain and is structurally more similar to arginine methyl- catalyzed by the histone methyltransferase DOT1L. DOT1L is re- transferases (14–16). DOT1L is the core component of the DOT1- quired for mammalian development, and the inhibition of its containing multisubunit complex named DotCom that includes catalytic activity has been extensively studied for cancer therapy; the MLL translocation partners AF10, AF17, AF9, and ENL (17). however, the mechanisms underlying DOT1L’s functions in normal AF9 and ENL are also subunits—along with additional MLL development and cancer pathogenesis remain elusive. To dissect the translocation partners AFF1, AFF4, and ELL—of the super relationship between H3K79 methylation, cellular differentiation, elongation complex (SEC). and transcription regulation, we systematically examined the role SEC is a positive transcription elongation factor (P-TEFb)- of DOT1L and its catalytic activity in embryonic stem cells (ESCs). containing complex that is required for rapid transcriptional in- DOT1L is dispensable for ESC self-renewal but is required for estab- duction and expression of key leukemia genes (18–20). The ma- lishing the proper expression signature of neural progenitor cells, jority of P-TEFb in cells is sequestered by HEXIM1 and HEXIM2 while catalytic inactivation of DOT1L has a lesser effect. Further- in the 7SK small nuclear RNA-containing complex (21, 22). Once BIOCHEMISTRY more, DOT1L loss, rather than its catalytic inactivation, causes de- released from the 7SK-P-TEFb complex, P-TEFb can associate fects in glial cell specification. Although DOT1L loss by itself has no with SEC or BRD4 to form active complexes, phosphorylate the major defect in transcription elongation, transcription elongation serine 2 residues of the RNA Polymerase II C-terminal domain defects seen with the super elongation complex inhibitor KL-2 are exacerbated in DOT1L knockout cells, but not in catalytically dead (Pol II CTD), and facilitate the release of paused Pol II into gene DOT1L cells, revealing a role of DOT1L in promoting productive bodies (20, 23, 24). Multiple lines of evidence have pointed to a transcription elongation that is independent of H3K79 methylation. critical role for SEC in human diseases including MLL-rearranged Taken together, our study reveals a catalytic-independent role of DOT1L in modulating cell-fate determination and in transcriptional Significance elongation control. DOT1L is a histone methyltransferase that catalyzes histone transcription | chromatin | gene expression | epigenetics | cancer H3K79 methylation, a chromatin modification that is correlated with active transcription. Inhibition of DOT1L’s catalytic activity pigenetic landscapes of higher eukaryotes are implicated in has been studied for cancer therapy; however, the mechanisms Etranscription modulation, cell-fate determination, and diseases underlying its function in development and cancer pathogen- such as cancer. Posttranslational modifications of core histone esis remain elusive. To understand the catalytic-dependent and tails have been intensely investigated for the past few decades catalytic-independent functions of DOT1L, we generated cata- while the modifications of histone cores are relatively under- lytic dead and null DOT1L embryonic stem cells and found that DOT1L, but not its catalytic activity, is required for establishing studied. Lysine 79 methylation of histone H3 (H3K79) was the the proper expression signature of neural progenitor cells, first core histone modification identified outside the histone tail suggesting that DOTlL has biological functions that are inde- (1–4), the distribution of which is highly correlated with actively – pendent of its methyltransferase activity. We propose that the transcribed genes (5 8). DOT1L, the only enzyme catalyzing loss/degradation of DOT1L could be beneficial for cancer mono, di-, and trimethylation of H3K79 in metazoans, plays a therapeutics. critical role in embryogenesis and leukemia transformation (9–11), suggesting a potential function of H3K79 methylation in normal Author contributions: K.C. and A.S. designed research; K.C., M.U., S.A.M., and E.J.R. per- development and human disorders. formed research; K.C., K.L., L.W., and A.S. contributed new reagents/analytic tools; K.C., DOT1L null mouse embryos die around 10.5 d post coitum with P.A.O., J.W., L.Z., E.R.S., F.Y., and A.S. analyzed data; and K.C., E.R.S., and A.S. wrote the paper. developmental arrest and cardiac dilation, while DOT1L null The authors declare no competing interest. embryonic stem cells (ESCs) cultured in serum-containing media This article is a PNAS Direct Submission. maintain self-renewal capability despite having elongated telo- meres and reduced proliferation (9). An independent study showed Published under the PNAS license. 1Present address: Department of Biochemistry, School of Medicine, Case Western Reserve that DOT1L knockdown by short hairpin RNA led to significant University, Cleveland, OH 44106. proliferation defects of ESCs only under differentiation conditions 2Present address: Medical Structural Biology Research Center, Wuhan University, 430071 (12), supporting the notion that DOT1L facilitates cellular differ- Wuhan, Hubei, People’s Republic of China. entiation. Furthermore, DOT1L inhibition enhanced the conver- 3To whom correspondence may be addressed. Email: [email protected]. sion efficiency of induced pluripotent stem cells from fibroblasts This article contains supporting information online at https://www.pnas.org/lookup/suppl/ (13), suggesting that DOT1L and H3K79 methylation are major doi:10.1073/pnas.2001075117/-/DCSupplemental. roadblocks of somatic cell reprogramming. First published October 19, 2020. www.pnas.org/cgi/doi/10.1073/pnas.2001075117 PNAS | November 3, 2020 | vol. 117 | no. 44 | 27365–27373 Downloaded by guest on September 28, 2021 leukemia (19, 25), HIV (26, 27), and high-MYC–expressing solid sequencing of genomic DNA and complementary DNA (cDNA) tumors (24, 28). The existence of common subunits between SEC (SI Appendix,Fig.S1A and B). The morphology and growth rate of and DotCom, together with the observation that the bodies of both KO and CI mutant cells are comparable to wild-type (WT) active genes are decorated by H3K79 methylation, suggests that cells (SI Appendix,Fig.S1C and D). Furthermore, RNA sequencing DOT1L may play a role in regulating transcription elongation and (RNA-seq) results confirmed the removal of exon 5 in DOT1L KO disorders related to it. Here, we aim to elucidate the functions of cell lines (SI Appendix,Fig.S1E). We noted that the deletion of DOT1L and H3K79 methylation in cellular differentiation and exon 5 leads to a reduction in RNA levels of DOT1L (SI Appendix, transcription elongation. Unexpectedly, our results reveal that Fig. S1E), suggesting that the stability of the exon 5 null transcript is DOT1L harbors H3K79 methyltransferase-activity-independent impaired. Western blotting results indicated that DOT1L is unde- functions in modulating neural differentiation and productive tectable in KO cells, while its levels in CI cells are comparable to transcription elongation. that in WT ESCs (Fig. 1C). All three types of H3K79 methylation are abolished in respective DOT1L KO and CI cells (SI Appendix, Results Fig. S1 F and G and Fig. 1D), indicating the lack of in vivo catalytic DOT1L and H3K79 Methylation Are Dispensable for ESC Self-Renewal. activity of the catalytic mutant DOT1L in CI ESCs. Consistent with To investigate the role of DOT1L and its catalytic activity in tran- previous results, H3K79 methylation is enriched at genes with scription regulation, we first generated DOT1L knockout (KO) higher RNA Polymerase II (Pol II) levels (SI Appendix,Fig.S1H ESCs by deleting exon 5 of the DOT1L gene, which generates a and I and Fig. 1D). To examine if the loss of DOT1L or its activity frameshift mutant DOT1L with premature termination (9) has any impact on the ESC transcriptome, we performed differ- (Fig. 1A). DOT1L catalytic inactive (CI) ESCs were derived by ential gene expression analyses of RNA-seq data from WT, DOT1L mutating the catalytic pocket Gly163 and Ser164 of the endogenous KO, and DOT1L CI ESCs. We found that a limited number of DOT1L as suggested previously (1, 14) (Fig. 1B). The genotypes of genes were altered by DOT1L deletion or catalytic inactivation mutant cell lines were validated by PCR genotyping and Sanger (Fig. 1E). In addition, RNA Pol II levels at transcription start sites Fig. 1. DOT1L deletion has limited impact on gene expression in ESCs. (A) Schematic representation of the generation of the DOT1L KO allele. (B) Sequences of WT (Top) and CI DOT1L alleles at exon 5. Mutated bases and amino acid residues are in red. PAM sequences are in orange. (C) Western blotting of total cell lysates of WT, DOT1L KO, and DOT1L CI ESCs. Antibodies used are labeled on the left. (D) Heatmaps showing the occupancy of H3K79me1 (Left), H3K79me2 (Middle), and H3K79me3 (Right) in WT, DOT1L KO, and DOT1L CI ESCs at the 7,362 RNA Pol II-positive genes of ESCs. The profiles are sorted by descending occupancy of Pol II in WT ESCs. cpm, counts per million mapped reads.
Recommended publications
  • Regular Article
    Regular Article MYELOID NEOPLASIA Potent inhibition of DOT1L as treatment of MLL-fusion leukemia Scott R. Daigle, Edward J. Olhava, Carly A. Therkelsen, Aravind Basavapathruni, Lei Jin, P. Ann Boriack-Sjodin, Christina J. Allain, Christine R. Klaus, Alejandra Raimondi, Margaret Porter Scott, Nigel J. Waters, Richard Chesworth, Mikel P. Moyer, Robert A. Copeland, Victoria M. Richon, and Roy M. Pollock Epizyme, Inc., Cambridge, MA Key Points Rearrangements of the MLL gene define a genetically distinct subset of acute leukemias with poor prognosis. Current treatment options are of limited effectiveness; thus, there • EPZ-5676 is a potent DOT1L is a pressing need for new therapies for this disease. Genetic and small molecule inhibitor inhibitor that causes tumor studies have demonstrated that the histone methyltransferase DOT1L is required for regressions in a rat xenograft the development and maintenance of MLL-rearranged leukemia in model systems. Here model of MLL-rearranged we describe the characterization of EPZ-5676, a potent and selective aminonucleoside leukemia. inhibitor of DOT1L histone methyltransferase activity. The compound has an inhibition constant value of 80 pM, and demonstrates 37 000-fold selectivity over all other methyltransferases tested. In cellular studies, EPZ-5676 inhibited H3K79 methylation and MLL-fusion target gene expression and demonstrated potent cell killing that was selective for acute leukemia lines bearing MLL translocations. Continuous IV infusion of EPZ-5676 in a rat xenograft model of MLL-rearranged leukemia caused complete tumor regressions that were sustained well beyond the compound infusion period with no significant weight loss or signs of toxicity. EPZ-5676 is therefore a potential treatment of MLL-rearranged leukemia and is under clinical investigation.
    [Show full text]
  • The Histone Methyltransferase DOT1L Prevents Antigen-Independent
    bioRxiv preprint doi: https://doi.org/10.1101/826255; this version posted November 18, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The histone methyltransferase DOT1L prevents antigen-independent differentiation and safeguards epigenetic identity of CD8+ T cells Eliza Mari Kwesi-Maliepaard1*, Muhammad Assad Aslam2,3*, Mir Farshid Alemdehy2*, Teun van den Brand4, Chelsea McLean1, Hanneke Vlaming1, Tibor van Welsem1, Tessy Korthout1, Cesare Lancini1, Sjoerd Hendriks1, Tomasz Ahrends5, Dieke van Dinther6, Joke M.M. den Haan6, Jannie Borst5, Elzo de Wit4, Fred van Leeuwen1,7,#, and Heinz Jacobs2,# 1Division of Gene Regulation, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands 2Division of Tumor Biology & Immunology, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands 3Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, 60800 Multan, Pakistan 4Division of Gene Regulation, Netherlands Cancer Institute, 1066CX Amsterdam, and Oncode Institute, The Netherlands 5Division of Tumor Biology & Immunology, Netherlands Cancer Institute, 1066CX Amsterdam, and Oncode Institute, The Netherlands 6Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Location VUmc, 1081HV Amsterdam, The Netherlands 7Department of Medical Biology, Amsterdam UMC, location AMC, UvA, 1105 AZ Amsterdam, The Netherlands * These authors contributed equally to this work. # Equal contribution and corresponding authors [email protected]; [email protected] Lead contact: Fred van Leeuwen 1 bioRxiv preprint doi: https://doi.org/10.1101/826255; this version posted November 18, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • MLL1 and DOT1L Cooperate with Meningioma-1 to Induce Acute Myeloid Leukemia
    RESEARCH ARTICLE The Journal of Clinical Investigation MLL1 and DOT1L cooperate with meningioma-1 to induce acute myeloid leukemia Simone S. Riedel,1 Jessica N. Haladyna,1 Matthew Bezzant,1 Brett Stevens,2 Daniel A. Pollyea,2 Amit U. Sinha,3 Scott A. Armstrong,3 Qi Wei,4 Roy M. Pollock,5 Scott R. Daigle,5 Craig T. Jordan,2 Patricia Ernst,1 Tobias Neff,1 and Kathrin M. Bernt1 1Division of Pediatric Hematology/Oncology/BMT, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, Colorado, USA. 2Division of Hematology, University of Colorado Denver, Aurora, Colorado, USA. 3Division of Hematology/Oncology, Children’s Hospital, and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA. 4Department of Pathology, Children’s Hospital Colorado, Aurora, Colorado, USA. 5Epizyme Inc., Cambridge, Massachusetts, USA. Meningioma-1 (MN1) overexpression is frequently observed in patients with acute myeloid leukemia (AML) and is predictive of poor prognosis. In murine models, forced expression of MN1 in hematopoietic progenitors induces an aggressive myeloid leukemia that is strictly dependent on a defined gene expression program in the cell of origin, which includes the homeobox genes Hoxa9 and Meis1 as key components. Here, we have shown that this program is controlled by two histone methyltransferases, MLL1 and DOT1L, as deletion of either Mll1 or Dot1l in MN1-expressing cells abrogated the cell of origin– derived gene expression program, including the expression of Hoxa cluster genes. In murine models, genetic inactivation of either Mll1 or Dot1l impaired MN1-mediated leukemogenesis. We determined that HOXA9 and MEIS1 are coexpressed with MN1 in a subset of clinical MN1hi leukemia, and human MN1hi/HOXA9hi leukemias were sensitive to pharmacologic inhibition of DOT1L.
    [Show full text]
  • Development and Validation of a One-Step RT-Qpcr
    Development and Validation of a One-Step RT-qPCR Assay for Identifying Common Fusion Gene Transcripts Associated with the Prognosis of Mexican Children with B-Lineage Acute Lymphoblastic Leukemia Juan Manuel Mejía-Aranguré ( [email protected] ) IMSS: Instituto Mexicano del Seguro Social https://orcid.org/0000-0003-0949-461X Minerva Mata-Rocha CONACYT: Consejo Nacional de Ciencia y Tecnologia Angelica Rangel-López IMSS: Instituto Mexicano del Seguro Social Juan Carlos Núñez-Enríquez IMSS: Instituto Mexicano del Seguro Social Elva Jiménez-Hernández IMSS: Instituto Mexicano del Seguro Social Blanca Angélica Morales-Castillo IMSS: Instituto Mexicano del Seguro Social Norberto Sánchez-Escobar UABJO Faculty of Medicine: Universidad Autonoma Benito Juarez de Oaxaca Facultad de Medicina Omar Alejandro Sepúlveda-Robles CONACYT: Consejo Nacional de Ciencia y Tecnologia Juan Carlos Bravata-Alcántara Hospital Juárez de México: Hospital Juarez de Mexico Alan Steve Nájera-Cortés Hospital Juárez de México: Hospital Juarez de Mexico María Luisa Pérez-Saldivar IMSS: Instituto Mexicano del Seguro Social Janet Flores-Lujano IMSS: Instituto Mexicano del Seguro Social David Aldebarán Duarte-Rodríguez IMSS: Instituto Mexicano del Seguro Social Norma Angélica Oviedo de Anda IMSS: Instituto Mexicano del Seguro Social Page 1/22 Carmen Alaez Verson INMEGEN: Instituto Nacional de Medicina Genomica Jorge Alfonso Martín-Trejo IMSS: Instituto Mexicano del Seguro Social María de Los Ángeles Del Campo-Martínez IMSS: Instituto Mexicano del Seguro Social José Esteban
    [Show full text]
  • Amlexanox Downregulates S100A6 to Sensitize KMT2A/AFF1-Positive
    Published OnlineFirst June 23, 2017; DOI: 10.1158/0008-5472.CAN-16-2974 Cancer Therapeutics, Targets, and Chemical Biology Research Amlexanox Downregulates S100A6 to Sensitize KMT2A/AFF1-Positive Acute Lymphoblastic Leukemia to TNFa Treatment Hayato Tamai1, Hiroki Yamaguchi1, Koichi Miyake2, Miyuki Takatori3, Tomoaki Kitano1, Satoshi Yamanaka1, Syunsuke Yui1, Keiko Fukunaga1, Kazutaka Nakayama1, and Koiti Inokuchi1 Abstract Acute lymphoblastic leukemias (ALL) positive for KMT2A/ to inhibit S100A6 expression in the presence of TNF-a.InKMT2A/ AFF1 (MLL/AF4) translocation, which constitute 60% of all infant AFF1-positive transgenic (Tg) mice, amlexanox enhanced tumor ALL cases, have a poor prognosis even after allogeneic hemato- immunity and lowered the penetrance of leukemia development. poietic stem cell transplantation (allo-HSCT). This poor progno- Similarly, in a NOD/SCID mouse model of human KMT2A/AFF1- sis is due to one of two factors, either resistance to TNFa, which positive ALL, amlexanox broadened GVL responses and extended mediates a graft-versus-leukemia (GVL) response after allo-HSCT, survival. Our findings show how amlexanox degrades the resis- or immune resistance due to upregulated expression of the tance of KMT2A/AFF1-positive ALL to TNFa by downregulating immune escape factor S100A6. Here, we report an immune S100A6 expression, with immediate potential implications for stimulatory effect against KMT2A/AFF1-positive ALL cells by improving clinical management of KMT2A/AFF1-positive ALL. treatment with the anti-allergy drug amlexanox, which we found Cancer Res; 77(16); 1–8. Ó2017 AACR. Introduction involved in the graft-versus-leukemia (GVL) effect, or tumor immunity by upregulation of S100A6 expression followed The most prevalent mixed-lineage leukemia (MLL) rearrange- by interference with the p53–caspase pathway (3).
    [Show full text]
  • DOT1L Primarily Acts As a Transcriptional Repressor in Hematopoietic Progenitor Cells
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.15.341255; this version posted October 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. DOT1L primarily acts as a transcriptional repressor in hematopoietic progenitor cells Shaon Borosha1, Anamika Ratri1, Sami M. Housami1, Shubham Rai1, Subhra Ghosh1, Carrie A. Malcom1, V. Praveen Chakravarthi1, Jay L. Vivian1, Timothy A. Fields1, M.A. Karim Rumi1*, and Patrick E. Fields1*# 1Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS. *These authors contributed equally; #Corresponding author Short title: DOT1L regulated genes in the hematopoietic progenitors Keywords: DOT1L methyltransferase, mutant murine models, erythroid-myeloid progenitors, erythroid-myeloid differentiation. * Correspondence: Patrick E. Fields, Email: [email protected] Acknowledgements: This work was supported by the National Institutes of Health (R01DK091277). Disclosure: The authors do not have any conflicts of interest. bioRxiv preprint doi: https://doi.org/10.1101/2020.10.15.341255; this version posted October 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. ABSTRACT DOT1L is essential for early hematopoiesis but the precise mechanisms remain largely unclear. The only known function of DOT1L is histone H3 lysine 79 (H3K79) methylation. We generated two mouse models; a Dot1L-knockout (Dot1L-KO), and another possessing a point mutation in its methyltransferase domain (Dot1L-MM) to determine the role of its catalytic activity during early hematopoiesis. We observed that Dot1L-KO embryos suffered from severe anemia, while Dot1L- MM embryos showed minimal to no anemia.
    [Show full text]
  • The Diverse Functions of Dot1 and H3K79 Methylation
    Downloaded from genesdev.cshlp.org on October 8, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW The diverse functions of Dot1 and H3K79 methylation Anh Tram Nguyen1,2 and Yi Zhang1,2,3 1Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA; 2Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA DOT1 (disruptor of telomeric silencing; also called ute to transcriptional regulation is to serve as a platform Kmt4) was initially discovered in budding yeast in a genetic for the recruitment of effector proteins. The well-studied screen for genes whose deletion confers defects in telo- lysine methylation residues include K4, K9, K27, K36, meric silencing. Since the discovery ~10 years ago that and K79 of histone H3, and K20 of histone H4. In general, Dot1 and its mammalian homolog, DOT1L (DOT1-Like), methylation at H3K9, H3K27, and H4K20 correlates with possess histone methyltransferase activity toward histone transcriptional repression, while methylation at H3K4, H3 Lys 79, great progress has been made in characterizing H3K36, and H3K79 correlates with gene transcription their enzymatic activities and the role of Dot1/DOT1L- (Kouzarides 2002; Peterson and Laniel 2004; Martin and mediated H3K79 methylation in transcriptional regula- Zhang 2005). In addition to its role in transcriptional tion, cell cycle regulation, and the DNA damage response. regulation, methylation has also been linked to X inacti- In addition, gene disruption in mice has revealed that vation, cell fate determination, terminal differentiation, mouse DOT1L plays an essential role in embryonic de- and the spatiotemporal patterning of Hox genes (Cavalli velopment, hematopoiesis, cardiac function, and the de- 2006; Minard et al.
    [Show full text]
  • Dynamics of Transcription-Dependent H3k36me3 Marking by the SETD2:IWS1:SPT6 Ternary Complex
    bioRxiv preprint doi: https://doi.org/10.1101/636084; this version posted May 14, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Dynamics of transcription-dependent H3K36me3 marking by the SETD2:IWS1:SPT6 ternary complex Katerina Cermakova1, Eric A. Smith1, Vaclav Veverka2, H. Courtney Hodges1,3,4,* 1 Department of Molecular & Cellular Biology, Center for Precision Environmental Health, and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA 2 Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic 3 Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA 4 Department of Bioengineering, Rice University, Houston, TX, 77005, USA * Lead contact; Correspondence to: [email protected] Abstract The genome-wide distribution of H3K36me3 is maintained SETD2 contributes to gene expression by marking gene through various mechanisms. In human cells, H3K36 is bodies with H3K36me3, which is thought to assist in the mono- and di-methylated by eight distinct histone concentration of transcription machinery at the small portion methyltransferases; however, the predominant writer of the of the coding genome. Despite extensive genome-wide data trimethyl mark on H3K36 is SETD21,11,12. Interestingly, revealing the precise localization of H3K36me3 over gene SETD2 is a major tumor suppressor in clear cell renal cell bodies, the physical basis for the accumulation, carcinoma13, breast cancer14, bladder cancer15, and acute maintenance, and sharp borders of H3K36me3 over these lymphoblastic leukemias16–18. In these settings, mutations sites remains rudimentary.
    [Show full text]
  • A KMT2A-AFF1 Gene Regulatory Network Highlights the Role of Core Transcription Factors and Reveals the Regulatory Logic of Key Downstream Target Genes
    Downloaded from genome.cshlp.org on October 7, 2021 - Published by Cold Spring Harbor Laboratory Press Research A KMT2A-AFF1 gene regulatory network highlights the role of core transcription factors and reveals the regulatory logic of key downstream target genes Joe R. Harman,1,7 Ross Thorne,1,7 Max Jamilly,2 Marta Tapia,1,8 Nicholas T. Crump,1 Siobhan Rice,1,3 Ryan Beveridge,1,4 Edward Morrissey,5 Marella F.T.R. de Bruijn,1 Irene Roberts,3,6 Anindita Roy,3,6 Tudor A. Fulga,2,9 and Thomas A. Milne1,6 1MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, United Kingdom; 2MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, United Kingdom; 3MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Department of Paediatrics, University of Oxford, Oxford, OX3 9DS, United Kingdom; 4Virus Screening Facility, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, United Kingdom; 5Center for Computational Biology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom; 6NIHR Oxford Biomedical Research Centre Haematology Theme, University of Oxford, Oxford, OX3 9DS, United Kingdom Regulatory interactions mediated by transcription factors (TFs) make up complex networks that control cellular behavior. Fully understanding these gene regulatory networks (GRNs) offers greater insight into the consequences of disease-causing perturbations than can be achieved by studying single TF binding events in isolation. Chromosomal translocations of the lysine methyltransferase 2A (KMT2A) gene produce KMT2A fusion proteins such as KMT2A-AFF1 (previously MLL-AF4), caus- ing poor prognosis acute lymphoblastic leukemias (ALLs) that sometimes relapse as acute myeloid leukemias (AMLs).
    [Show full text]
  • 16-0368 Technical Data Sheet
    Nucleosome, Recombinant Human, H3K79me2 dNuc, Biotinylated Catalog No. 16-0368 Lot No. 19045001 Pack Size 50 µg Product Description: 1 2 Mononucleosomes assembled from recombinant human histones expressed in E. coli (two each of histones H2A, H2B, H3 and H4; accession numbers: H2A-P04908; H2B- O60814; H3.1-P68431; H4-P62805) wrapped by 147 base pairs of 601 positioning sequence DNA. Histone H3 (created by a proprietary synthetic method) contains dimethyl-lysine at position 79. The nucleosome is the basic subunit of chromatin. The 601 sequence, identified by Lowary and Widom, is a 147-base pair sequece that has high affinity for histone octamers and is useful for nucleosome assembly and contains a 5’ biotin-TEG group. Western Blot Data: Western Analysis of Nucleosome, Recombinant Human, H3K79me2. Top Panel: Unmodified H3 Formulation: (Lane 1) and H3K79me2 containing nucleosomes (Lane 2) were Nucleosome, Recombinant Human, H3K79me2 (27.3 µg probed with an anti-H3K79me2 antibody and analyzed via ECL protein weight, 50 µg total weight) in µl of 10 mM Tris readout. Only the H3K79me2sample produced a detectable signal. HCl, pH 7.5, 25 mM NaCl, 1 mM EDTA, 2 mM DTT, 20% Bottom Panel: Detailfrom Coomassie stained gel showing glycerol. unmodified nucleosomes (Lane 1) and H3K79me2 nucleosomes Molarity = μmolar. MW = Da. (Lane 2). Storage and Stability: Stable for six months at -80°C from date of receipt. For best results, aliquot and avoid multiple freeze/thaws. Application Notes: Nucleosome, Recombinant Human, H3K79me2 dNucs are highly purified and are suitable for use as substrates in enzyme screening assays or for effector protein binding experiments.
    [Show full text]
  • DOT1L Inhibition Is Lethal for Multiple Myeloma Due to Perturbation of the Endoplasmic Reticulum Stress Pathway
    www.oncotarget.com Oncotarget, 2020, Vol. 11, (No. 11), pp: 956-968 Research Paper DOT1L inhibition is lethal for multiple myeloma due to perturbation of the endoplasmic reticulum stress pathway Caroline Dafflon1, Swann Gaulis1, Louise Barys1, Karen Kapur2, Vanessa Cornacchione3, Lina Schukur1, Sebastian Bergling4, Elisabetta Traggiai3, Selina Jansky1, Leon Hellmann1, Barbara Schacher Engstler1, Grainne Kerr1, Antoine de Weck1, David A. Ruddy5, Ulrike Naumann6, Frédéric Stauffer7, Christoph Gaul7, Ying Lin8, Eric Billy1, Andreas Weiss1, Francesco Hofmann1, Moriko Ito1 and Ralph Tiedt1 1Novartis Institutes for BioMedical Research (NIBR) Oncology, Basel, Switzerland 2NIBR Informatics, Basel, Switzerland 3NIBR Biologics, Basel, Switzerland 4NIBR Chemical Biology and Therapeutics, Basel, Switzerland 5NIBR Oncology, Cambridge, MA, USA 6NIBR Analytical Sciences and Imaging, Basel, Switzerland 7NIBR Global Discovery Chemistry, Basel, Switzerland 8China Novartis Institutes for BioMedical Research, Shanghai, China Correspondence to: Ralph Tiedt, email: [email protected] Keywords: DOT1L; multiple myeloma; epigenetics; histone methylation; unfolded protein response Received: June 17, 2019 Accepted: January 29, 2020 Published: March 17, 2020 Copyright: Dafflon et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT The histone 3 lysine 79 (H3K79) methyltransferase (HMT) DOT1L is known to play a critical role for growth and survival of MLL-rearranged leukemia. Serendipitous observations during high-throughput drug screens indicated that the use of DOT1L inhibitors might be expandable to multiple myeloma (MM). Through pharmacologic and genetic experiments, we could validate that DOT1L is essential for growth and viability of a subset of MM cell lines, in line with a recent report from another team.
    [Show full text]
  • Le G´Enome En Action
    LEGENOME´ EN ACTION SEQUENC´ ¸ AGE HAUT DEBIT´ ET EPIG´ ENOMIQUE´ Epig´enomique´ ? IFT6299 H2014 ? UdeM ? Mikl´osCs}ur¨os Regulation´ d’expression la transcription d’une region´ de l’ADN necessite´ ? liaisons proteine-ADN´ (facteur de transcription et son site reconnu) ? accessibilite´ de la chromatine REVIEWS Identification of regions that control transcription An initial step in the analysis of any gene is the identifi- cation of larger regions that might harbour regulatory control elements. Several advances have facilitated the prediction of such regions in the absence of knowl- edge about the specific characteristics of individual cis- Chromatin regulatory elements. These tools broadly fall into two categories: promoter (transcription start site; TSS) and enhancer detection. The methods are influenced Distal TFBS by sequence conservation between ORTHOLOGOUS genes (PHYLOGENETIC FOOTPRINTING), nucleotide composition and the assessment of available transcript data. Functional regulatory regions that control transcrip- tion rates tend to be proximal to the initiation site(s) of transcription. Although there is some circularity in the Co-activator complex data-collection process (regulatory sequences are sought near TSSs and are therefore found most often in these regions), the current set of laboratory-annotated regula- tory sequences indicates that sequences near a TSS are Transcription more likely to contain functionally important regulatory initiation complex Transcription controls than those that are more distal. However, specifi- initiation cation of the position of a TSS can be difficult. This is fur- ther complicated by the growing number of genes that CRM Proximal TFBS selectively use alternative start sites in certain contexts. Underlying most algorithms for promoter prediction is a Figure 1 | Components of transcriptional regulation.
    [Show full text]