Introduction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Constructing an Efficient Bacillus Subtilis Spore Display by Using
molecules Article Constructing an Efficient Bacillus subtilis Spore Display by Using Cohesin−Dockerin Interactions He Wang 1,*,†, Xiaomin Jiang 2,†, Yongchang Qian 3 and Lianghong Yin 3 1 School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China 2 School of Agricultural and Food Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; [email protected] 3 School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; [email protected] (Y.Q.); [email protected] (L.Y.) * Correspondence: [email protected]; Tel.: +86-511-84423559 † These authors contributed equally to this work. Abstract: Bacillus subtilis spore display has become a field of increasing interest in the past two decades. To improve the efficiency of B. subtilis spore display, its directed modification was performed based on the cellulosome architecture by introducing onto them divergent cohesin (Coh) modules that can specifically bind to the target enzyme bearing the matching dockerins (Doc). In this study, five different pairs of cohesins and dockerins, selected from four cellulolytic microbes, were examined for their capabilities in displaying a tetrameric enzyme β-galactosidase from Bacillus stearothermophilus IAM11001 on the surface of B. subtilis WB600 spores. Immunofluorescence microscopy, western blotting, dot blotting, and enzyme assay was applied to confirm its surface expression. All the resultant five Coh–Doc based spore display can hydrolyze o-nitrophenyl-β-D-galactopyranoside. Citation: Wang, H.; Jiang, X.; Qian, Further, the optimized Coh–Doc based spore display exhibited the highest display efficiency. Overall, Y.; Yin, L. Constructing an Efficient the results of current study may open new perspectives on the use of Coh–Doc interaction, which Bacillus subtilis Spore Display by will find application in improving the efficiency of B. -
Epidemiology of Mucopolysaccharidoses Update
diagnostics Review Epidemiology of Mucopolysaccharidoses Update Betul Celik 1,2 , Saori C. Tomatsu 2 , Shunji Tomatsu 1 and Shaukat A. Khan 1,* 1 Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; [email protected] (B.C.); [email protected] (S.T.) 2 Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; [email protected] * Correspondence: [email protected]; Tel.: +302-298-7335; Fax: +302-651-6888 Abstract: Mucopolysaccharidoses (MPS) are a group of lysosomal storage disorders caused by a lysosomal enzyme deficiency or malfunction, which leads to the accumulation of glycosaminoglycans in tissues and organs. If not treated at an early stage, patients have various health problems, affecting their quality of life and life-span. Two therapeutic options for MPS are widely used in practice: enzyme replacement therapy and hematopoietic stem cell transplantation. However, early diagnosis of MPS is crucial, as treatment may be too late to reverse or ameliorate the disease progress. It has been noted that the prevalence of MPS and each subtype varies based on geographic regions and/or ethnic background. Each type of MPS is caused by a wide range of the mutational spectrum, mainly missense mutations. Some mutations were derived from the common founder effect. In the previous study, Khan et al. 2018 have reported the epidemiology of MPS from 22 countries and 16 regions. In this study, we aimed to update the prevalence of MPS across the world. We have collected and investigated 189 publications related to the prevalence of MPS via PubMed as of December 2020. In total, data from 33 countries and 23 regions were compiled and analyzed. -
Pharmacological Analysis of Cyclooxygenase-1 in Inflammation
Proc. Natl. Acad. Sci. USA Vol. 95, pp. 13313–13318, October 1998 Pharmacology Pharmacological analysis of cyclooxygenase-1 in inflammation CHRISTOPHER J. SMITH,YAN ZHANG,CAROL M. KOBOLDT,JERRY MUHAMMAD,BEN S. ZWEIFEL,ALEX SHAFFER, JOHN J. TALLEY,JAIME L. MASFERRER,KAREN SEIBERT, AND PETER C. ISAKSON* Searle Research and Development, 700 Chesterfield Parkway North, St. Louis, MO 63198 Communicated by Philip Needleman, Monsanto Company, St. Louis, MO, August 25, 1998 (received for review May 11, 1998) ABSTRACT The enzymes cyclooxygenase-1 and cycloox- and is expressed constitutively in most tissues and cells (17), ygenase-2 (COX-1 and COX-2) catalyze the conversion of although it can be induced in some cell lines under certain arachidonic acid to prostaglandin (PG) H2, the precursor of conditions (18). A second, inducible, form of COX was PGs and thromboxane. These lipid mediators play important hypothesized to exist on the basis of the finding of a glucocor- roles in inflammation and pain and in normal physiological ticoid-regulated increase in COX activity observed in vitro and functions. While there are abundant data indicating that the in vivo in response to inflammatory stimuli (19, 20). The inducible isoform, COX-2, is important in inflammation and isolation of a distinct gene and enzyme for COX-2 confirmed pain, the constitutively expressed isoform, COX-1, has also this hypothesis and led to the supposition that selective inhi- been suggested to play a role in inflammatory processes. To bition of inducible COX-2 would be anti-inflammatory, while address the latter question pharmacologically, we used a preserving the physiological functions of COX-1 derived PGs. -
Quality Control in Immunocytochemistry: Experiences with the Oestrogen Receptor Assay J Clin Pathol: First Published As 10.1136/Jcp.45.2.120 on 1 February 1992
120 J Clin Pathol 1992;45:120-124 Quality control in immunocytochemistry: Experiences with the oestrogen receptor assay J Clin Pathol: first published as 10.1136/jcp.45.2.120 on 1 February 1992. Downloaded from F T Bosman, A F P M de Goeij, M Rousch Abstract ted specificity to be produced, and the develop- Aims: To evaluate the feasibility of an ment of very sensitive second step reagents. As interlaboratory quality control pro- a consequence, almost every surgical pathology gramme in immunohistochemistry. laboratory routinely uses immunocyto- chemistry on a daily basis. As recently Methods: Several pathology laboratories ' were asked to carry out immunohisto- indicated by Elias et al, however, an important chemical oestrogen receptor staining on a source of variability in the performance of set of freeze dried cryostat sections of immunocytochemistry techniques is the vari- breast cancer tissue. The sections and ation among laboratories in tissue processing protocols for staining and semi- and histochemical procedures. This could be quantitative scoring were mailed to the improved by standardisation, monitored by participating laboratories in two trials. quality control programmes. The oestrogen receptor content of the A typical example of an immunocyto- breast cancer samples was determined by chemical test which requires such an approach radioligand binding assay on the tumour is the evaluation of the oestrogen receptor cytosol. content in breast cancer. About 60% of Results: In the first trial 11 laboratories patients with an oestrogen receptor positive (response rate 60%) participated. Eight tumour will respond to some form ofendocrine (73%) of the participants scored within a treatment; less than 10% of oestrogen receptor 95% confidence interval and all but one negative neoplasms respond.23 Expression of correctlyclassified thetumour as receptor oestrogen receptor protein may also be regar- positive. -
NIH Public Access Author Manuscript Trends Biotechnol
NIH Public Access Author Manuscript Trends Biotechnol. Author manuscript; available in PMC 2012 May 1. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Trends Biotechnol. 2011 May ; 29(5): 222±230. doi:10.1016/j.tibtech.2011.01.003. Measuring enzyme activity in single cells Michelle L. Kovarik1 and Nancy L. Allbritton1,2 1Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599 2Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599 and North Carolina State University, Raleigh, NC 27695 Abstract Seemingly identical cells can differ in their biochemical state, function and fate, and this variability plays an increasingly recognized role in organism-level outcomes. Cellular heterogeneity arises in part from variation in enzyme activity, which results from interplay between biological noise and multiple cellular processes. As a result, single-cell assays of enzyme activity, particularly those that measure product formation directly, are crucial. Recent innovations have yielded a range of techniques to obtain these data, including image-, flow- and separation- based assays. Research to date has focused on easy-to-measure glycosylases and clinically- relevant kinases. Expansion of these techniques to a wider range and larger number of enzymes will answer contemporary questions in proteomics and glycomics, specifically with respect to biological noise and cellular heterogeneity. The role of enzyme activity in cellular heterogeneity Biochemical measurements of single cells are becoming more prevalent as appreciation grows for heterogeneity among seemingly identical cells [1-3]. Cellular heterogeneity is now recognized to have substantial impact at the organism level on processes such as embryonic development [4], immune response [5-6], efficacy of chemotherapy [7-8], and evolutionary fitness [3]. -
Enzyme Activity and Assays Introductory Article
Enzyme Activity and Assays Introductory article Robert K Scopes, La Trobe University, Bundoora, Victoria, Australia Article Contents . Factors that Affect Enzymatic Analysis Enzyme activity refers to the general catalytic properties of an enzyme, and enzyme assays . Initial Rates and Steady State Turnover are standardized procedures for measuring the amounts of specific enzymes in a sample. Measurement of Enzyme Activity . Measurement of Protein Concentration Factors that Affect Enzymatic Analysis . Methods for Purifying Enzymes . Summary Enzyme activity is measured in vitro under conditions that often do not closely resemble those in vivo. The objective of measuring enzyme activity is normally to determine the exactly what the concentration is (some preparations of amount of enzyme present under defined conditions, so unusual substrates may be impure, or the exact amount that activity can be compared between one sample and present may not be known). This is because the rate another, and between one laboratory and another. The measured varies with substrate concentration more rapidly conditions chosen are usually at the optimum pH, as the substrate concentration decreases, as can be seen in ‘saturating’ substrate concentrations, and at a temperature Figure 1. In most cases an enzyme assay has already been that is convenient to control. In many cases the activity is established, and the substrate concentration, buffers and measured in the opposite direction to that of the enzyme’s other parameters used previously should be used again. natural function. Nevertheless, with a complete study of There are many enzymes which do not obey the simple the parameters that affect enzyme activity it should be Michaelis–Menten formula. -
Clinical Pharmacology 1: Phase 1 Studies and Early Drug Development
Clinical Pharmacology 1: Phase 1 Studies and Early Drug Development Gerlie Gieser, Ph.D. Office of Clinical Pharmacology, Div. IV Objectives • Outline the Phase 1 studies conducted to characterize the Clinical Pharmacology of a drug; describe important design elements of and the information gained from these studies. • List the Clinical Pharmacology characteristics of an Ideal Drug • Describe how the Clinical Pharmacology information from Phase 1 can help design Phase 2/3 trials • Discuss the timing of Clinical Pharmacology studies during drug development, and provide examples of how the information generated could impact the overall clinical development plan and product labeling. Phase 1 of Drug Development CLINICAL DEVELOPMENT RESEARCH PRE POST AND CLINICAL APPROVAL 1 DISCOVERY DEVELOPMENT 2 3 PHASE e e e s s s a a a h h h P P P Clinical Pharmacology Studies Initial IND (first in human) NDA/BLA SUBMISSION Phase 1 – studies designed mainly to investigate the safety/tolerability (if possible, identify MTD), pharmacokinetics and pharmacodynamics of an investigational drug in humans Clinical Pharmacology • Study of the Pharmacokinetics (PK) and Pharmacodynamics (PD) of the drug in humans – PK: what the body does to the drug (Absorption, Distribution, Metabolism, Excretion) – PD: what the drug does to the body • PK and PD profiles of the drug are influenced by physicochemical properties of the drug, product/formulation, administration route, patient’s intrinsic and extrinsic factors (e.g., organ dysfunction, diseases, concomitant medications, -
Affinity-Based, Biophysical Methods to Detect and Analyze Ligand Binding
Journal of Structural Biology 172 (2010) 142–157 Contents lists available at ScienceDirect Journal of Structural Biology journal homepage: www.elsevier.com/locate/yjsbi Affinity-based, biophysical methods to detect and analyze ligand binding to recombinant proteins: Matching high information content with high throughput Geoff A. Holdgate a, Malcolm Anderson a, Fredrik Edfeldt b, Stefan Geschwindner b,* a Lead Generation Sciences, AstraZeneca R&D Alderley Park, 50F49 Mereside, Alderley Park, United Kingdom b Lead Generation Sciences, AstraZeneca R&D Mölndal, S-43183 Mölndal, Sweden article info abstract Article history: Affinity-based technologies have become impactful tools to detect, monitor and characterize molecular Available online 4 July 2010 interactions using recombinant target proteins. This can aid the understanding of biological function by revealing mechanistic details, and even more importantly, enables the identification of new improved Keywords: ligands that can modulate the biological activity of those targets in a desired fashion. The selection of the Affinity appropriate technology is a key step in that process, as each one of the currently available technologies Thermodynamic offers a characteristic type of biophysical information about the ligand-binding event. Alongside the Interaction indisputable advantages of each of those technologies they naturally display diverse restrictions that Fragment are quite frequently related to the target system to be studied but also to the affinity, solubility and Ligand Screening molecular size of the ligands. This paper discusses some of the theoretical and experimental aspects of the most common affinity-based methods, what type of information can be gained from each one of those approaches, and what requirements as well as limitations are expected from working with recombinant proteins on those platforms and how those can be optimally addressed. -
Recommendations for the Bioanalytical Method Validation Of
Pharmaceutical Research, Vol. 20, No. 11, November 2003 (© 2003) Research Paper Recommendations for the studies was held more than a decade ago in Crystal City, VA (1,2). The proceedings and recommendations of that meeting Bioanalytical Method Validation of essentially became a de facto guideline for bioanalytical meth- Ligand-binding Assays to Support ods validation within the pharmaceutical industry. The con- ference addressed validation of bioanalytical methods in gen- Pharmacokinetic Assessments eral, but acknowledged differences between chromatographic of Macromolecules and nonchromatographic assays, including immunoassays and microbiological-based methods. After the original Crystal City conference, bioanalytical methods validation was ad- dressed subsequently several times at meetings and in publi- Binodh DeSilva,1 Wendell Smith,2 Russell Weiner,3 cations (3–6). Most emphasis to date has been on validation of Marian Kelley,4,11 JoMarie Smolec,5 Ben Lee,6 bioanalytical methods for conventional small molecular Masood Khan,7 Richard Tacey,8 Howard Hill,9 and weight drugs, principally due to the rapid growth during the Abbie Celniker10 1990s in the use of hyphenated mass-spectrometry as a rou- tine analytical tool. Because of the evolution in divergent analytical tech- Received July 2, 2003; accepted July 30, 2003 nologies for conventional small molecules and macromol- Purpose. With this publication a subcommittee of the AAPS Ligand ecules and the growth in the interest of macromolecular Binding Assay Bioanalytical Focus Group (LBABFG) makes recom- therapeutics, the topic of bioanalytical methods validation mendations for the development, validation, and implementation of was revisited in 2000 in 2 meetings, one focused on small ligand binding assays (LBAs) that are intended to support pharma- molecule analytes (7) and the other focused on macromol- cokinetic and toxicokinetic assessments of macromolecules. -
Challenges Associated with the Development and Validation of Flow Cytometry Assays
Challenges associated with the development and validation of flow cytometry assays Carolyne Dumont, Eliane Moisan, Martin Poirier, Marie-Hélène Côté, and Marie-Soleil Piché 1 INTRODUCTION 2 Case Study 1 3 Case Study 2 Development of a PD marker by flow cytometry to assess the efficacy of Development of a flow cytometry assay for the measurement of basophil Flow cytometry is a technology allowing multi-parametric analysis of thousands of particles per second and helps to a chemokine neutralizing antibody activation in the context of a Phase III clinical study adequately identify or functionally characterize complex cell populations of interest. It is often used in basic research, Assay Design: The assay was required for the evaluation of pharmacodynamics (inhibition an agonist’s granulocytes activation activity) in Assay Design: Human whole blood samples were spiked with the different controls (or compounds in the clinical study) and further discovery, preclinical and clinical trials. With the increasing proportion of biologics in the pipeline, flow cytometry has proven preclinical studies. Non-Human Primate (NHP) or rat blood from treated animals was incubated at 3 conditions and granulocyte activation stained with an anti-CCR3 and anti-CD63 antibody. The validations stimulation conditions tested included a negative control (PBS) and itself to be an indispensable tool to assess safety, receptor occupancy (RO) or pharmacodynamics (PD). was measured as CD11b expression by flow cytometry (MFI). The conditions tested included a negative control (PBS), a positive control two positive controls (anti-FcεRI and fMLP). Basophils were identified as CCR3+ and upon activation, CD63 became externalized and (fMLP) and the test condition (agonist). -
Investigations Into the Use of ALDEFLUOR® As an Alternative Method to Classify Leukemia in the Soft-Shell Clam Mya Arenaria
University of New Hampshire University of New Hampshire Scholars' Repository Student Research Projects Student Scholarship Spring 2014 Investigations into the use of ALDEFLUOR® as an alternative method to classify leukemia in the soft-shell clam Mya arenaria. Katherine F. Norwood University of New Hampshire - Main Campus Follow this and additional works at: https://scholars.unh.edu/student_research Part of the Biochemistry Commons, Laboratory and Basic Science Research Commons, Marine Biology Commons, and the Molecular Biology Commons Recommended Citation Norwood, Katherine F., "Investigations into the use of ALDEFLUOR® as an alternative method to classify leukemia in the soft-shell clam Mya arenaria." (2014). Student Research Projects. 18. https://scholars.unh.edu/student_research/18 This Undergraduate Research Project is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Student Research Projects by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. Investigations into the use of ALDEFLUOR® as an alternative method to classify leukemia in the soft-shell clam Mya arenaria. Katherine Norwood University of New Hampshire, College of Life Sciences and Agriculture Department of Molecular, Cellular, & Biomedical Sciences Abstract The soft-shell clam species Mya arenaria is a common model organism in leukemia research. Currently, the typical method for classifying leukemic from non-leukemic specimens is based on visualization of cell concentration and morphology through light microscopy. This approach is highly qualitative, which makes identification of pre-leukemic and semi-leukemic specimens difficult. One more quantitative approach uses flow cytometry to measure levels of aldehyde dehydrogenase (ALDH) expression. -
Simple, Rapid Ligand-Binding Assay Using Immobilized Cellular Membranes
Simple, Rapid Ligand-Binding Assay Using Immobilized Cellular Membranes Paula Denney Eason, Renée C. Benson, Jenny T. Ly, Rachel A. Saxer, James L. Wilbur, George B. Sigal, Eli N. Glezer, Hans A. Biebuyck, Jacob N. Wohlstadter, and Robert M. Umek TM TM A division of Meso Scale Diagnostics,TM LLC. Simple, Rapid Ligand-Binding Assay Using Immobilized Cellular Membranes Abstract This poster presents a robust, receptor-ligand binding assay based upon a novel assay platform developed by Meso Scale DiscoveryTM (MSDTM). MSD’s platform combines array technologies and electrochemiluminescence detection to achieve ultra-fast, highly sensitive assays in a homogeneous format. Cellular membranes containing the EGF receptor were passively adsorbed to MSD proprietary coated electrodes embedded in multi-well plates. Binding of EGF to the EGF receptor was detected by inducing and measuring electrochemi- luminescence from a labeled EGF ligand. Approximately 1000 cell equivalents per well yielded a signal to background ratio of 20. The observed KD agrees with that reported in the literature and demonstrates that immobilization of the membranes and modification of the ligand do not alter the binding affinity. Binding specificity was confirmed with two inhibitors. The assay can be readily adapted to facilitate analysis of a broad array of receptor-ligand interactions. TM TM A division of Meso Scale Diagnostics,TM LLC. Simple, Rapid Ligand-Binding Assay Using Immobilized Cellular Membranes TM Multi-Array TechnologyTM Multi-Array Technology Unified technology platform with instruments, plates and reagents for drug discovery for drug discovery. Combines the power of microarrays with the sensitivity of electrochemiluminescence Combines the power of microarrays with the sensitivity of electrochemiluminescence.96-, 384- and 1536 microplate formats 96-,Multi-Spot 384- TMand plates 1536 with microplate high density formats.