Mamba.Jl Documentation Release 0.12.0

Total Page:16

File Type:pdf, Size:1020Kb

Mamba.Jl Documentation Release 0.12.0 Mamba.jl Documentation Release 0.12.0 Brian J Smith Oct 20, 2018 Contents 1 Overview 3 1.1 Purpose..................................................3 1.2 Features..................................................3 1.3 Getting Started..............................................4 2 Contents 5 2.1 Introduction...............................................5 2.2 Tutorial..................................................7 2.3 MCMC Types.............................................. 21 2.4 Sampling Functions........................................... 57 2.5 Examples................................................. 93 2.6 Discussion................................................ 165 2.7 Supplement................................................ 165 2.8 References................................................ 166 2.9 Indices.................................................. 166 Bibliography 167 i ii Mamba.jl Documentation, Release 0.12.0 Version 0.12.0 Requires julia releases 1.0.x Date Oct 20, 2018 Maintainer Brian J Smith ([email protected]) Contributors Benjamin Deonovic ([email protected]), Brian J Smith (brian-j- [email protected]), and others Web site https://github.com/brian-j-smith/Mamba.jl License MIT Contents 1 Mamba.jl Documentation, Release 0.12.0 2 Contents CHAPTER 1 Overview 1.1 Purpose Mamba is an open platform for the implementation and application of MCMC methods to perform Bayesian analysis in julia. The package provides a framework for (1) specification of hierarchical models through stated relationships between data, parameters, and statistical distributions; (2) block-updating of parameters with samplers provided, de- fined by the user, or available from other packages; (3) execution of sampling schemes; and (4) posterior inference. It is intended to give users access to all levels of the design and implementation of MCMC simulators to particularly aid in the development of new methods. Several software options are available for MCMC sampling of Bayesian models. Individuals who are primarily in- terested in data analysis, unconcerned with the details of MCMC, and have models that can be fit in JAGS, Stan, or OpenBUGS are encouraged to use those programs. Mamba is intended for individuals who wish to have access to lower-level MCMC tools, are knowledgeable of MCMC methodologies, and have experience, or wish to gain experi- ence, with their application. The package also provides stand-alone convergence diagnostics and posterior inference tools, which are essential for the analysis of MCMC output regardless of the software used to generate it. 1.2 Features • An interactive and extensible interface. • Support for a wide range of model and distributional specifications. • An environment in which all interactions with the software are made through a single, interpreted programming language. – Any julia operator, function, type, or package can be used for model specification. – Custom distributions and samplers can be written in julia to extend the package. • Directed acyclic graph representations of models. • Arbitrary blocking of model parameters and designation of block-specific samplers. • Samplers that can be used with the included simulation engine or apart from it, including 3 Mamba.jl Documentation, Release 0.12.0 – adaptive Metropolis within Gibbs and multivariate Metropolis, – approximate Bayesian computation, – binary, – Hamiltonian Monte Carlo (simple and No-U-Turn), – simplex, and – slice samplers. • Automatic parallel execution of parallel MCMC chains on multi-processor systems. • Restarting of chains. • Command-line access to all package functionality, including its simulation API. • Convergence diagnostics: Gelman, Rubin, and Brooks; Geweke; Heidelberger and Welch; Raftery and Lewis. • Posterior summaries: moments, quantiles, HPD, cross-covariance, autocorrelation, MCSE, ESS. • Gadfly plotting: trace, density, running mean, autocorrelation. • Importing of sampler output saved in the CODA file format. • Run-time performance on par with compiled MCMC software. 1.3 Getting Started The following julia command will install the package: julia> Pkg.add("Mamba") 4 Chapter 1. Overview CHAPTER 2 Contents 2.1 Introduction 2.1.1 MCMC Software Markov chain Monte Carlo (MCMC) methods are a class of algorithms for simulating autocorrelated draws from probability distributions [13][28][39][78]. They are widely used to obtain empirical estimates for and make infer- ence on multidimensional distributions that often arise in Bayesian statistical modelling, computational physics, and computational biology. Because MCMC provides estimates of distributions of interest, and is not limited to point estimates and asymptotic standard errors, it facilitates wide ranges of inferences and provides for more realistic pre- diction errors. An MCMC algorithm can be devised for any probability model. Implementations of algorithms are computational in nature, with the resources needed to execute algorithms directly related to the dimensionality of their associated problems. Rapid increases in computing power and emergence of MCMC software have enabled models of increasing complexity to be fit. For all its advantages, MCMC is regarded as one of the most important developments and powerful tools in modern statistical computing. Several software programs provide Bayesian modelling via MCMC. Programs range from those designed for general model fitting to those for specific models. WinBUGS, its open-source incarnation OpenBUGS, and the ‘BUGS’ clone Just Another Gibbs Sampler (JAGS) are among the most widely used programs for general model fitting [57][71]. These three provide similar programming syntaxes with which users can specify statistical models by simply stating relationships between data, parameters, and statistical distributions. Once a model is specified, the programs auto- matically formulate an MCMC sampling scheme to simulate parameter values from their posterior distribution. All aforementioned tasks can be accomplished with minimal programming and without specific knowledge of MCMC methodology. Users who are adept at both and so inclined can write software modules to add new distributions and samplers to OpenBUGS and JAGS [94][96]. General model fitting is also available with the MCMC procedure found in the SAS/STAT ® software [49]. Stan is a newer and similar-in-scope program worth noting for its accessible syn- tax and automatically tuned Hamiltonian Monte Carlo sampling scheme [98]. PyMC is a Python-based program that allows all modelling tasks to be accomplished in its native language, and gives users more hands-on access to model and sampling scheme specifications [70]. Programs like GRIMS [66] and LaplacesDemon [99] represent another class of programs that fit general models. In their approaches, users work with the functional forms of (unnormalized) probability densities directly, rather a domain specific modelling language (DSL), for model specification. Examples of programs for specific models can be found in the R catalogue of packages. For instance, the arm package pro- 5 Mamba.jl Documentation, Release 0.12.0 vides Bayesian inference for generalized linear, ordered logistic or probit, and mixed-effects regression models [34], MCMCpack fits a wide range of models commonly encountered in the social and behavioral sciences [60], and many others that are more focused on specific classes of models can be found in the “Bayesian Inference” task view on the Comprehensive R Archive Network [69]. 2.1.2 The Mamba Package Mamba [88] is a julia [4] package designed for general Bayesian model fitting via MCMC. Like OpenBUGS and JAGS, it supports a wide range of model and distributional specifications, and provides a syntax for model speci- fication. Unlike those two, and like PyMC, Mamba provides a unified environment in which all interactions with the software are made through a single, interpreted language. Any julia operator, function, type, or package can be used for model specification; and custom distributions and samplers can be written in julia to extend the package. Conversely, interactions with and extensions to OpenBUGS and JAGS can involve three different programming envi- ronments — R wrappers used to call the programs, their DSLs, and the underlying implementations in Component Pascal and C++. Advantages of a unified environment include more flexible model specification; tighter integration with supplied functions for convergence diagnostics and posterior inference; and faster development, testing, and de- bugging of extensions. Advantages of the BUGS DSLs include more concise model specification and facilitation of automated sampling scheme formulation. Indeed, sampling schemes must be selected manually in the initial release of Mamba. Nevertheless, Mamba holds other distinct advantages over existing offerings. In particular, it provides arbitrary blocking of model parameters and designation of block-specific samplers; samplers that can be used with the included simulation engine or apart from it; and command-line access to all package functionality, including its simulation API. Likewise, advantages of the julia language include its familiar syntax, focus on technical comput- ing, and benchmarks showing it to be one or more orders of magnitude faster than R and Python [3]. Finally, the intended audience for Mamba includes individuals interested in programming in julia; who wish to have low-level access to model design and implementation; and, in some cases, are able to derive full conditional distributions of model parameters
Recommended publications
  • Chapter 7 Assessing and Improving Convergence of the Markov Chain
    Chapter 7 Assessing and improving convergence of the Markov chain Questions: . Are we getting the right answer? . Can we get the answer quicker? Bayesian Biostatistics - Piracicaba 2014 376 7.1 Introduction • MCMC sampling is powerful, but comes with a cost: dependent sampling + checking convergence is not easy: ◦ Convergence theorems do not tell us when convergence will occur ◦ In this chapter: graphical + formal diagnostics to assess convergence • Acceleration techniques to speed up MCMC sampling procedure • Data augmentation as Bayesian generalization of EM algorithm Bayesian Biostatistics - Piracicaba 2014 377 7.2 Assessing convergence of a Markov chain Bayesian Biostatistics - Piracicaba 2014 378 7.2.1 Definition of convergence for a Markov chain Loose definition: With increasing number of iterations (k −! 1), the distribution of k θ , pk(θ), converges to the target distribution p(θ j y). In practice, convergence means: • Histogram of θk remains the same along the chain • Summary statistics of θk remain the same along the chain Bayesian Biostatistics - Piracicaba 2014 379 Approaches • Theoretical research ◦ Establish conditions that ensure convergence, but in general these theoretical results cannot be used in practice • Two types of practical procedures to check convergence: ◦ Checking stationarity: from which iteration (k0) is the chain sampling from the posterior distribution (assessing burn-in part of the Markov chain). ◦ Checking accuracy: verify that the posterior summary measures are computed with the desired accuracy • Most
    [Show full text]
  • Getting Started in Openbugs / Winbugs
    Practical 1: Getting started in OpenBUGS Slide 1 An Introduction to Using WinBUGS for Cost-Effectiveness Analyses in Health Economics Dr. Christian Asseburg Centre for Health Economics University of York, UK [email protected] Practical 1 Getting started in OpenBUGS / WinB UGS 2007-03-12, Linköping Dr Christian Asseburg University of York, UK [email protected] Practical 1: Getting started in OpenBUGS Slide 2 ● Brief comparison WinBUGS / OpenBUGS ● Practical – Opening OpenBUGS – Entering a model and data – Some error messages – Starting the sampler – Checking sampling performance – Retrieving the posterior summaries 2007-03-12, Linköping Dr Christian Asseburg University of York, UK [email protected] Practical 1: Getting started in OpenBUGS Slide 3 WinBUGS / OpenBUGS ● WinBUGS was developed at the MRC Biostatistics unit in Cambridge. Free download, but registration required for a licence. No fee and no warranty. ● OpenBUGS is the current development of WinBUGS after its source code was released to the public. Download is free, no registration, GNU GPL licence. 2007-03-12, Linköping Dr Christian Asseburg University of York, UK [email protected] Practical 1: Getting started in OpenBUGS Slide 4 WinBUGS / OpenBUGS ● There are no major differences between the latest WinBUGS (1.4.1) and OpenBUGS (2.2.0) releases. ● Minor differences include: – OpenBUGS is occasionally a bit slower – WinBUGS requires Microsoft Windows OS – OpenBUGS error messages are sometimes more informative ● The examples in these slides use OpenBUGS. 2007-03-12, Linköping Dr Christian Asseburg University of York, UK [email protected] Practical 1: Getting started in OpenBUGS Slide 5 Practical 1: Target ● Start OpenBUGS ● Code the example from health economics from the earlier presentation ● Run the sampler and obtain posterior summaries 2007-03-12, Linköping Dr Christian Asseburg University of York, UK [email protected] Practical 1: Getting started in OpenBUGS Slide 6 Starting OpenBUGS ● You can download OpenBUGS from http://mathstat.helsinki.fi/openbugs/ ● Start the program.
    [Show full text]
  • BUGS Code for Item Response Theory
    JSS Journal of Statistical Software August 2010, Volume 36, Code Snippet 1. http://www.jstatsoft.org/ BUGS Code for Item Response Theory S. McKay Curtis University of Washington Abstract I present BUGS code to fit common models from item response theory (IRT), such as the two parameter logistic model, three parameter logisitic model, graded response model, generalized partial credit model, testlet model, and generalized testlet models. I demonstrate how the code in this article can easily be extended to fit more complicated IRT models, when the data at hand require a more sophisticated approach. Specifically, I describe modifications to the BUGS code that accommodate longitudinal item response data. Keywords: education, psychometrics, latent variable model, measurement model, Bayesian inference, Markov chain Monte Carlo, longitudinal data. 1. Introduction In this paper, I present BUGS (Gilks, Thomas, and Spiegelhalter 1994) code to fit several models from item response theory (IRT). Several different software packages are available for fitting IRT models. These programs include packages from Scientific Software International (du Toit 2003), such as PARSCALE (Muraki and Bock 2005), BILOG-MG (Zimowski, Mu- raki, Mislevy, and Bock 2005), MULTILOG (Thissen, Chen, and Bock 2003), and TESTFACT (Wood, Wilson, Gibbons, Schilling, Muraki, and Bock 2003). The Comprehensive R Archive Network (CRAN) task view \Psychometric Models and Methods" (Mair and Hatzinger 2010) contains a description of many different R packages that can be used to fit IRT models in the R computing environment (R Development Core Team 2010). Among these R packages are ltm (Rizopoulos 2006) and gpcm (Johnson 2007), which contain several functions to fit IRT models using marginal maximum likelihood methods, and eRm (Mair and Hatzinger 2007), which contains functions to fit several variations of the Rasch model (Fischer and Molenaar 1995).
    [Show full text]
  • Stan: a Probabilistic Programming Language
    JSS Journal of Statistical Software MMMMMM YYYY, Volume VV, Issue II. http://www.jstatsoft.org/ Stan: A Probabilistic Programming Language Bob Carpenter Andrew Gelman Matt Hoffman Columbia University Columbia University Adobe Research Daniel Lee Ben Goodrich Michael Betancourt Columbia University Columbia University University of Warwick Marcus A. Brubaker Jiqiang Guo Peter Li University of Toronto, NPD Group Columbia University Scarborough Allen Riddell Dartmouth College Abstract Stan is a probabilistic programming language for specifying statistical models. A Stan program imperatively defines a log probability function over parameters conditioned on specified data and constants. As of version 2.2.0, Stan provides full Bayesian inference for continuous-variable models through Markov chain Monte Carlo methods such as the No-U-Turn sampler, an adaptive form of Hamiltonian Monte Carlo sampling. Penalized maximum likelihood estimates are calculated using optimization methods such as the Broyden-Fletcher-Goldfarb-Shanno algorithm. Stan is also a platform for computing log densities and their gradients and Hessians, which can be used in alternative algorithms such as variational Bayes, expectation propa- gation, and marginal inference using approximate integration. To this end, Stan is set up so that the densities, gradients, and Hessians, along with intermediate quantities of the algorithm such as acceptance probabilities, are easily accessible. Stan can be called from the command line, through R using the RStan package, or through Python using the PyStan package. All three interfaces support sampling and optimization-based inference. RStan and PyStan also provide access to log probabilities, gradients, Hessians, and data I/O. Keywords: probabilistic program, Bayesian inference, algorithmic differentiation, Stan.
    [Show full text]
  • Installing BUGS and the R to BUGS Interface 1. Brief Overview
    File = E:\bugs\installing.bugs.jags.docm 1 John Miyamoto (email: [email protected]) Installing BUGS and the R to BUGS Interface Caveat: I am a Windows user so these notes are focused on Windows 7 installations. I will include what I know about the Mac and Linux versions of these programs but I cannot swear to the accuracy of my comments. Contents (Cntrl-left click on a link to jump to the corresponding section) Section Topic 1 Brief Overview 2 Installing OpenBUGS 3 Installing WinBUGs (Windows only) 4 OpenBUGS versus WinBUGS 5 Installing JAGS 6 Installing R packages that are used with OpenBUGS, WinBUGS, and JAGS 7 Running BRugs on a 32-bit or 64-bit Windows computer 8 Hints for Mac and Linux Users 9 References # End of Contents Table 1. Brief Overview TOC BUGS stands for Bayesian Inference Under Gibbs Sampling1. The BUGS program serves two critical functions in Bayesian statistics. First, given appropriate inputs, it computes the posterior distribution over model parameters - this is critical in any Bayesian statistical analysis. Second, it allows the user to compute a Bayesian analysis without requiring extensive knowledge of the mathematical analysis and computer programming required for the analysis. The user does need to understand the statistical model or models that are being analyzed, the assumptions that are made about model parameters including their prior distributions, and the structure of the data, but the BUGS program relieves the user of the necessity of creating an algorithm to sample from the posterior distribution and the necessity of writing the computer program that computes this algorithm.
    [Show full text]
  • R G M B.Ec. M.Sc. Ph.D
    Rolando Kristiansand, Norway www.bayesgroup.org Gonzales Martinez +47 41224721 [email protected] JOBS & AWARDS M.Sc. B.Ec. Applied Ph.D. Economics candidate Statistics Jobs Events Awards Del Valle University University of Alcalá Universitetet i Agder 2018 Bolivia, 2000-2004 Spain, 2009-2010 Norway, 2018- 1/2018 Ph.D scholarship 8/2017 International Consultant, OPHI OTHER EDUCATION First prize, International Young 12/2016 J-PAL Course on Evaluating Social Programs Macro-prudential Policies Statistician Prize, IAOS Massachusetts Institute of Technology - MIT International Monetary Fund (IMF) 5/2016 Deputy manager, BCP bank Systematic Literature Reviews and Meta-analysis Theorizing and Theory Building Campbell foundation - Vrije Universiteit Halmstad University (HH, Sweden) 1/2016 Consultant, UNFPA Bayesian Modeling, Inference and Prediction Multidimensional Poverty Analysis University of Reading OPHI, Oxford University Researcher, data analyst & SKILLS AND TECHNOLOGIES 1/2015 project coordinator, PEP Academic Research & publishing Financial & Risk analysis 12 years of experience making economic/nancial analysis 3/2014 Director, BayesGroup.org and building mathemati- Consulting cal/statistical/econometric models for the government, private organizations and non- prot NGOs Research & project Mathematical 1/2013 modeling coordinator, UNFPA LANGUAGES 04/2012 First award, BCG competition Spanish (native) Statistical analysis English (TOEFL: 106) 9/2011 Financial Economist, UDAPE MatLab Macro-economic R, RStudio 11/2010 Currently, I work mainly analyst, MEFP Stata, SPSS with MatLab and R . SQL, SAS When needed, I use 3/2010 First award, BCB competition Eviews Stata, SAS or Eviews. I started working in LaTex, WinBugs Python recently. 8/2009 M.Sc. scholarship Python, Spyder RECENT PUBLICATIONS Disjunction between universality and targeting of social policies: Demographic opportunities for depolarized de- velopment in Paraguay.
    [Show full text]
  • Winbugs Lectures X4.Pdf
    Introduction to Bayesian Analysis and WinBUGS Summary 1. Probability as a means of representing uncertainty 2. Bayesian direct probability statements about parameters Lecture 1. 3. Probability distributions Introduction to Bayesian Monte Carlo 4. Monte Carlo simulation methods in WINBUGS 5. Implementation in WinBUGS (and DoodleBUGS) - Demo 6. Directed graphs for representing probability models 7. Examples 1-1 1-2 Introduction to Bayesian Analysis and WinBUGS Introduction to Bayesian Analysis and WinBUGS How did it all start? Basic idea: Direct expression of uncertainty about In 1763, Reverend Thomas Bayes of Tunbridge Wells wrote unknown parameters eg ”There is an 89% probability that the absolute increase in major bleeds is less than 10 percent with low-dose PLT transfusions” (Tinmouth et al, Transfusion, 2004) !50 !40 !30 !20 !10 0 10 20 30 % absolute increase in major bleeds In modern language, given r Binomial(θ,n), what is Pr(θ1 < θ < θ2 r, n)? ∼ | 1-3 1-4 Introduction to Bayesian Analysis and WinBUGS Introduction to Bayesian Analysis and WinBUGS Why a direct probability distribution? Inference on proportions 1. Tells us what we want: what are plausible values for the parameter of interest? What is a reasonable form for a prior distribution for a proportion? θ Beta[a, b] represents a beta distribution with properties: 2. No P-values: just calculate relevant tail areas ∼ Γ(a + b) a 1 b 1 p(θ a, b)= θ − (1 θ) − ; θ (0, 1) 3. No (difficult to interpret) confidence intervals: just report, say, central area | Γ(a)Γ(b) − ∈ a that contains 95% of distribution E(θ a, b)= | a + b ab 4.
    [Show full text]
  • End-User Probabilistic Programming
    End-User Probabilistic Programming Judith Borghouts, Andrew D. Gordon, Advait Sarkar, and Neil Toronto Microsoft Research Abstract. Probabilistic programming aims to help users make deci- sions under uncertainty. The user writes code representing a probabilistic model, and receives outcomes as distributions or summary statistics. We consider probabilistic programming for end-users, in particular spread- sheet users, estimated to number in tens to hundreds of millions. We examine the sources of uncertainty actually encountered by spreadsheet users, and their coping mechanisms, via an interview study. We examine spreadsheet-based interfaces and technology to help reason under uncer- tainty, via probabilistic and other means. We show how uncertain values can propagate uncertainty through spreadsheets, and how sheet-defined functions can be applied to handle uncertainty. Hence, we draw conclu- sions about the promise and limitations of probabilistic programming for end-users. 1 Introduction In this paper, we discuss the potential of bringing together two rather distinct approaches to decision making under uncertainty: spreadsheets and probabilistic programming. We start by introducing these two approaches. 1.1 Background: Spreadsheets and End-User Programming The spreadsheet is the first \killer app" of the personal computer era, starting in 1979 with Dan Bricklin and Bob Frankston's VisiCalc for the Apple II [15]. The primary interface of a spreadsheet|then and now, four decades later|is the grid, a two-dimensional array of cells. Each cell may hold a literal data value, or a formula that computes a data value (and may depend on the data in other cells, which may themselves be computed by formulas).
    [Show full text]
  • Flexible Programming of Hierarchical Modeling Algorithms and Compilation of R Using NIMBLE Christopher Paciorek UC Berkeley Statistics
    Flexible Programming of Hierarchical Modeling Algorithms and Compilation of R Using NIMBLE Christopher Paciorek UC Berkeley Statistics Joint work with: Perry de Valpine (PI) UC Berkeley Environmental Science, Policy and Managem’t Daniel Turek Williams College Math and Statistics Nick Michaud UC Berkeley ESPM and Statistics Duncan Temple Lang UC Davis Statistics Bayesian nonparametrics development with: Claudia Wehrhahn Cortes UC Santa Cruz Applied Math and Statistics Abel Rodriguez UC Santa Cruz Applied Math and Statistics http://r-nimble.org October 2017 Funded by NSF DBI-1147230, ACI-1550488, DMS-1622444; Google Summer of Code 2015, 2017 Hierarchical statistical models A basic random effects / Bayesian hierarchical model Probabilistic model Flexible programming of hierarchical modeling algorithms using NIMBLE (r- 2 nimble.org) Hierarchical statistical models A basic random effects / Bayesian hierarchical model BUGS DSL code Probabilistic model # priors on hyperparameters alpha ~ dexp(1.0) beta ~ dgamma(0.1,1.0) for (i in 1:N){ # latent process (random effects) # random effects distribution theta[i] ~ dgamma(alpha,beta) # linear predictor lambda[i] <- theta[i]*t[i] # likelihood (data model) x[i] ~ dpois(lambda[i]) } Flexible programming of hierarchical modeling algorithms using NIMBLE (r- 3 nimble.org) Divorcing model specification from algorithm MCMC Flavor 1 Your new method Y(1) Y(2) Y(3) MCMC Flavor 2 Variational Bayes X(1) X(2) X(3) Particle Filter MCEM Quadrature Importance Sampler Maximum likelihood Flexible programming of hierarchical modeling algorithms using NIMBLE (r- 4 nimble.org) What can a practitioner do with hierarchical models? Two basic software designs: 1. Typical R/Python package = Model family + 1 or more algorithms • GLMMs: lme4, MCMCglmm • GAMMs: mgcv • spatial models: spBayes, INLA Flexible programming of hierarchical modeling algorithms using NIMBLE (r- 5 nimble.org) What can a practitioner do with hierarchical models? Two basic software designs: 1.
    [Show full text]
  • Bayesian Data Analysis and Probabilistic Programming
    Probabilistic programming and Stan mc-stan.org Outline What is probabilistic programming Stan now Stan in the future A bit about other software The next wave of probabilistic programming Stan even wider adoption including wider use in companies simulators (likelihood free) autonomus agents (reinforcmenet learning) deep learning Probabilistic programming Probabilistic programming framework BUGS started revolution in statistical analysis in early 1990’s allowed easier use of elaborate models by domain experts was widely adopted in many fields of science Probabilistic programming Probabilistic programming framework BUGS started revolution in statistical analysis in early 1990’s allowed easier use of elaborate models by domain experts was widely adopted in many fields of science The next wave of probabilistic programming Stan even wider adoption including wider use in companies simulators (likelihood free) autonomus agents (reinforcmenet learning) deep learning Stan Tens of thousands of users, 100+ contributors, 50+ R packages building on Stan Commercial and scientific users in e.g. ecology, pharmacometrics, physics, political science, finance and econometrics, professional sports, real estate Used in scientific breakthroughs: LIGO gravitational wave discovery (2017 Nobel Prize in Physics) and counting black holes Used in hundreds of companies: Facebook, Amazon, Google, Novartis, Astra Zeneca, Zalando, Smartly.io, Reaktor, ... StanCon 2018 organized in Helsinki in 29-31 August http://mc-stan.org/events/stancon2018Helsinki/ Probabilistic program
    [Show full text]
  • Software Packages – Overview There Are Many Software Packages Available for Performing Statistical Analyses. the Ones Highlig
    APPENDIX C SOFTWARE OPTIONS Software Packages – Overview There are many software packages available for performing statistical analyses. The ones highlighted here are selected because they provide comprehensive statistical design and analysis tools and a user friendly interface. SAS SAS is arguably one of the most comprehensive packages in terms of statistical analyses. However, the individual license cost is expensive. Primarily, SAS is a macro based scripting language, making it challenging for new users. However, it provides a comprehensive analysis ranging from the simple t-test to Generalized Linear mixed models. SAS also provides limited Design of Experiments capability. SAS supports factorial designs and optimal designs. However, it does not handle design constraints well. SAS also has a GUI available: SAS Enterprise, however, it has limited capability. SAS is a good program to purchase if your organization conducts advanced statistical analyses or works with very large datasets. R R, similar to SAS, provides a comprehensive analysis toolbox. R is an open source software package that has been approved for use on some DoD computer (contact AFFTC for details). Because R is open source its price is very attractive (free). However, the help guides are not user friendly. R is primarily a scripting software with notation similar to MatLab. R’s GUI: R Commander provides limited DOE capabilities. R is a good language to download if you can get it approved for use and you have analysts with a strong programming background. MatLab w/ Statistical Toolbox MatLab has a statistical toolbox that provides a wide variety of statistical analyses. The analyses range from simple hypotheses test to complex models and the ability to use likelihood maximization.
    [Show full text]
  • Richard C. Zink, Ph.D
    Richard C. Zink, Ph.D. SAS Institute, Inc. • SAS Campus Drive • Cary, North Carolina 27513 • Office 919.531.4710 • Mobile 919.397.4238 • Blog: http://blogs.sas.com/content/jmp/author/rizink/ • [email protected] • @rczink SUMMARY Richard C. Zink is Principal Research Statistician Developer in the JMP Life Sciences division at SAS Institute. He is currently a developer for JMP Clinical, an innovative software package designed to streamline the review of clinical trial data. Richard joined SAS in 2011 after eight years in the pharmaceutical industry, where he designed and analyzed clinical trials in diverse therapeutic areas including infectious disease, oncology, and ophthalmology, and participated in US and European drug submissions and FDA advisory committee hearings. Richard is the Publications Officer for the Biopharmaceutical Section of the American Statistical Association, and the Statistics Section Editor for the Therapeutic Innovation & Regulatory Science (formerly Drug Information Journal). He holds a Ph.D. in Biostatistics from the University of North Carolina at Chapel Hill, where he serves as an Adjunct Assistant Professor of Biostatistics. His research interests include data visualization, the analysis of pre- and post-market adverse events, subgroup identification for patients with enhanced treatment response, and the assessment of data integrity in clinical trials. He is author of Risk-Based Monitoring and Fraud Detection in Clinical Trials Using JMP and SAS, and co-editor of Modern Approaches to Clinical Trials Using
    [Show full text]