The Chaperones Hsc70 and Hsp70 Bind the Protein PGK Differently Inside Living Cells
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Deletion Variant Against Age-Related Macular Degeneration In
Laboratory Investigation (2017) 97, 43–52 © 2017 USCAP, Inc All rights reserved 0023-6837/17 Protective effects of an HTRA1 insertion–deletion variant against age-related macular degeneration in the Chinese populations Tsz Kin Ng1, Xiao Ying Liang1, Fang Lu2,3, David TL Liu1, Gary HF Yam1,LiMa1, Pancy OS Tam1, Haoyu Chen4, Ling Ping Cen4, Li Jia Chen1, Zhenglin Yang2,3 and Chi Pui Pang1 Age-related macular degeneration (AMD) is a leading cause of visual impairment and irreversible blindness in most developed countries, affecting about 50 million elderly people worldwide. Retinal pigment epithelial (RPE) cell degeneration is the pathophysiological cause of AMD, leading to geographic atrophy and choroidal neovascularization. We and others have previously identified several polymorphisms on chromosome 10q26 (HTRA1 rs11200638 as well as LOC387715 rs10490924 and c.372_815del443ins54) associated with AMD. In this study, we confirmed the association of our previously identified HTRA1 insertion–deletion (indel) variant (c.34delCinsTCCT) in 195 exudative AMD patients and 390 controls from the Hong Kong Chinese cohort with additional 168 patients and 210 controls from the Chengdu Chinese cohort and followed by studying its biological functions in RPE cells. Genetic analysis verified the higher prevalence of c.34delCinsTCCT allele in control subjects (8.0%) than in AMD patients (1.9%; P = 7.87 × 10 − 5, odds ratio = 0.229). This protective effect was validated as the haplotype of the c.34delCinsTCCT allele existed independent of the risk haplotype (P = 1.17 × 10 − 5). In vitro studies showed that recombinant HTRA1 c.34delCinsTCCT variant protein was more localized in the endoplasmic reticulum of RPE cells compared with the wild-type protein, and its secretion was delayed. -
Could Small Heat Shock Protein HSP27 Be a First-Line Target for Preventing Protein Aggregation in Parkinson’S Disease?
International Journal of Molecular Sciences Review Could Small Heat Shock Protein HSP27 Be a First-Line Target for Preventing Protein Aggregation in Parkinson’s Disease? Javier Navarro-Zaragoza 1,2 , Lorena Cuenca-Bermejo 2,3 , Pilar Almela 1,2,* , María-Luisa Laorden 1,2 and María-Trinidad Herrero 2,3,* 1 Department of Pharmacology, School of Medicine, University of Murcia, Campus Mare Nostrum, 30100 Murcia, Spain; [email protected] (J.N.-Z.); [email protected] (M.-L.L.) 2 Institute of Biomedical Research of Murcia (IMIB), Campus de Ciencias de la Salud, 30120 Murcia, Spain 3 Clinical & Experimental Neuroscience (NICE), Institute for Aging Research, School of Medicine, University of Murcia, Campus Mare Nostrum, 30100 Murcia, Spain; [email protected] * Correspondence: [email protected] (P.A.); [email protected] (M.-T.H.); Tel.: +34-868889358 (P.A.); +34-868883954 (M.-T.H.) Abstract: Small heat shock proteins (HSPs), such as HSP27, are ubiquitously expressed molecular chaperones and are essential for cellular homeostasis. The major functions of HSP27 include chaper- oning misfolded or unfolded polypeptides and protecting cells from toxic stress. Dysregulation of stress proteins is associated with many human diseases including neurodegenerative diseases, such as Parkinson’s disease (PD). PD is characterized by the presence of aggregates of α-synuclein in the central and peripheral nervous system, which induces the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and in the autonomic nervous system. Autonomic dys- function is an important non-motor phenotype of PD, which includes cardiovascular dysregulation, Citation: Navarro-Zaragoza, J.; among others. Nowadays, the therapies for PD focus on dopamine (DA) replacement. -
Identification and Characterization of Three Heat Shock Protein 90
G C A T T A C G G C A T genes Article Identification and Characterization of Three Heat Shock Protein 90 (Hsp90) Homologs in the Brown Planthopper Xuan Chen 1,2, Ze-Dong Li 1, Yi-Ting Dai 1, Ming-Xing Jiang 1,* and Chuan-Xi Zhang 1,2,* 1 State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China; [email protected] (X.C.); [email protected] (Z.-D.L.); [email protected] (Y.-T.D.) 2 State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China * Correspondence: [email protected] (M.-X.J.); [email protected] (C.-X.Z.) Received: 9 August 2020; Accepted: 10 September 2020; Published: 12 September 2020 Abstract: Hsp90 (heat shock protein 90) chaperone machinery is considered to be a key regulator of proteostasis under both physiological and stress growth conditions in eukaryotic cells. The high conservation of both the sequence and function of Hsp90 allows for the utilization of various species to explore new phenotypes and mechanisms. In this study, three Hsp90 homologs were identified in the brown planthopper (BPH), Nilaparvata lugens: cytosolic NlHsp90, endoplasmic reticulum (ER) NlGRP94 and mitochondrial NlTRAP1. Sequence analysis and phylogenetic construction showed that these proteins belonged to distinct classes consistent with the predicted localization and suggested an evolutionary relationship between NlTRAP1 and bacterial HtpG (high-temperature protein G). -
Heat Shock Proteins and Cardiovascular Disease
Physiology International, Volume 105 (1), pp. 19–37 (2018) DOI: 10.1556/2060.105.2018.1.4 Heat shock proteins and cardiovascular disease B Rodríguez-Iturbe1, RJ Johnson2 1Instituto Venezolano de Investigaciones Científicas (IVIC-Zulia), Nephrology Service Hospital Universitario, Universidad del Zulia, Maracaibo, Venezuela 2Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA Received: December 14, 2017 Accepted: February 15, 2018 The development of stress drives a host of biological responses that include the overproduction of a family of proteins named heat shock proteins (HSPs), because they were initially studied after heat exposure. HSPs are evolutionarily preserved proteins with a high degree of interspecies homology. HSPs are intracellular proteins that also have extracellular expression. The primary role of HSPs is to protect cell function by preventing irreversible protein damage and facilitating molecular traffic through intracellular pathways. However, in addition to their chaperone role, HSPs are immunodominant molecules that stimulate natural as well as disease-related immune reactivity. The latter may be a consequence of molecular mimicry, generating cross-reactivity between human HSPs and the HSPs of infectious agents. Autoimmune reactivity driven by HSPs could also be the result of enhancement of the immune response to peptides generated during cellular injury and of their role in the delivery of peptides to the major histocompatibility complex in antigen-presenting cells. In humans, HSPs have been found to participate in the pathogenesis of a large number of diseases. This review is focused on the role of HSPs in atherosclerosis and essential hypertension. Keywords: heat shock proteins, atherosclerosis, hypertension, HSP60, HSP70, chaperones and immunity Biology of Heat Shock Proteins (HSPs) In 1962, Feruccio Ritossa (94) described puffiness in Drosophila salivary chromosomes and changes in gene expression in response to heat. -
The HSP70 Chaperone Machinery: J Proteins As Drivers of Functional Specificity
REVIEWS The HSP70 chaperone machinery: J proteins as drivers of functional specificity Harm H. Kampinga* and Elizabeth A. Craig‡ Abstract | Heat shock 70 kDa proteins (HSP70s) are ubiquitous molecular chaperones that function in a myriad of biological processes, modulating polypeptide folding, degradation and translocation across membranes, and protein–protein interactions. This multitude of roles is not easily reconciled with the universality of the activity of HSP70s in ATP-dependent client protein-binding and release cycles. Much of the functional diversity of the HSP70s is driven by a diverse class of cofactors: J proteins. Often, multiple J proteins function with a single HSP70. Some target HSP70 activity to clients at precise locations in cells and others bind client proteins directly, thereby delivering specific clients to HSP70 and directly determining their fate. In their native cellular environment, polypeptides are participates in such diverse cellular functions. Their constantly at risk of attaining conformations that pre- functional diversity is remarkable considering that vent them from functioning properly and/or cause them within and across species, HSP70s have high sequence to aggregate into large, potentially cytotoxic complexes. identity. They share a single biochemical activity: an Molecular chaperones guide the conformation of proteins ATP-dependent client-binding and release cycle com- throughout their lifetime, preventing their aggregation bined with client protein recognition, which is typi- by protecting interactive surfaces against non-productive cally rather promiscuous. This apparent conundrum interactions. Through such inter actions, molecular chap- is resolved by the fact that HSP70s do not work alone, erones aid in the folding of nascent proteins as they are but rather as ‘HSP70 machines’, collaborating with synthesized by ribosomes, drive protein transport across and being regulated by several cofactors. -
Heat Shock Protein 27 Is Involved in SUMO-2&Sol
Oncogene (2009) 28, 3332–3344 & 2009 Macmillan Publishers Limited All rights reserved 0950-9232/09 $32.00 www.nature.com/onc ORIGINAL ARTICLE Heat shock protein 27 is involved in SUMO-2/3 modification of heat shock factor 1 and thereby modulates the transcription factor activity M Brunet Simioni1,2, A De Thonel1,2, A Hammann1,2, AL Joly1,2, G Bossis3,4,5, E Fourmaux1, A Bouchot1, J Landry6, M Piechaczyk3,4,5 and C Garrido1,2,7 1INSERM U866, Dijon, France; 2Faculty of Medicine and Pharmacy, University of Burgundy, Dijon, Burgundy, France; 3Institut de Ge´ne´tique Mole´culaire UMR 5535 CNRS, Montpellier cedex 5, France; 4Universite´ Montpellier 2, Montpellier cedex 5, France; 5Universite´ Montpellier 1, Montpellier cedex 2, France; 6Centre de Recherche en Cance´rologie et De´partement de Me´decine, Universite´ Laval, Quebec City, Que´bec, Canada and 7CHU Dijon BP1542, Dijon, France Heat shock protein 27 (HSP27) accumulates in stressed otherwise lethal conditions. This stress response is cells and helps them to survive adverse conditions. We have universal and is very well conserved through evolution. already shown that HSP27 has a function in the Two of the most stress-inducible HSPs are HSP70 and ubiquitination process that is modulated by its oligomeriza- HSP27. Although HSP70 is an ATP-dependent chaper- tion/phosphorylation status. Here, we show that HSP27 is one induced early after stress and is involved in the also involved in protein sumoylation, a ubiquitination- correct folding of proteins, HSP27 is a late inducible related process. HSP27 increases the number of cell HSP whose main chaperone activity is to inhibit protein proteins modified by small ubiquitin-like modifier aggregation in an ATP-independent manner (Garrido (SUMO)-2/3 but this effect shows some selectivity as it et al., 2006). -
Heat Shock Protein 70 (HSP70) Induction: Chaperonotherapy for Neuroprotection After Brain Injury
cells Review Heat Shock Protein 70 (HSP70) Induction: Chaperonotherapy for Neuroprotection after Brain Injury Jong Youl Kim 1, Sumit Barua 1, Mei Ying Huang 1,2, Joohyun Park 1,2, Midori A. Yenari 3,* and Jong Eun Lee 1,2,* 1 Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea; [email protected] (J.Y.K.); [email protected] (S.B.); [email protected] (M.Y.H.); [email protected] (J.P.) 2 BK21 Plus Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea 3 Department of Neurology, University of California, San Francisco & the San Francisco Veterans Affairs Medical Center, Neurology (127) VAMC 4150 Clement St., San Francisco, CA 94121, USA * Correspondence: [email protected] (M.A.Y.); [email protected] (J.E.L.); Tel.: +1-415-750-2011 (M.A.Y.); +82-2-2228-1646 (ext. 1659) (J.E.L.); Fax: +1-415-750-2273 (M.A.Y.); +82-2-365-0700 (J.E.L.) Received: 17 July 2020; Accepted: 26 August 2020; Published: 2 September 2020 Abstract: The 70 kDa heat shock protein (HSP70) is a stress-inducible protein that has been shown to protect the brain from various nervous system injuries. It allows cells to withstand potentially lethal insults through its chaperone functions. Its chaperone properties can assist in protein folding and prevent protein aggregation following several of these insults. Although its neuroprotective properties have been largely attributed to its chaperone functions, HSP70 may interact directly with proteins involved in cell death and inflammatory pathways following injury. -
Horizontal Gene Transfers and Cell Fusions in Microbiology, Immunology and Oncology (Review)
441-465.qxd 20/7/2009 08:23 Ì ™ÂÏ›‰·441 INTERNATIONAL JOURNAL OF ONCOLOGY 35: 441-465, 2009 441 Horizontal gene transfers and cell fusions in microbiology, immunology and oncology (Review) JOSEPH G. SINKOVICS St. Joseph's Hospital's Cancer Institute Affiliated with the H. L. Moffitt Comprehensive Cancer Center; Departments of Medical Microbiology/Immunology and Molecular Medicine, The University of South Florida College of Medicine, Tampa, FL 33607-6307, USA Received April 17, 2009; Accepted June 4, 2009 DOI: 10.3892/ijo_00000357 Abstract. Evolving young genomes of archaea, prokaryota or immunogenic genetic materials. Naturally formed hybrids and unicellular eukaryota were wide open for the acceptance of dendritic and tumor cells are often tolerogenic, whereas of alien genomic sequences, which they often preserved laboratory products of these unisons may be immunogenic in and vertically transferred to their descendants throughout the hosts of origin. As human breast cancer stem cells are three billion years of evolution. Established complex large induced by a treacherous class of CD8+ T cells to undergo genomes, although seeded with ancestral retroelements, have epithelial to mesenchymal (ETM) transition and to yield to come to regulate strictly their integrity. However, intruding malignant transformation by the omnipresent proto-ocogenes retroelements, especially the descendents of Ty3/Gypsy, (for example, the ras oncogenes), they become defenseless the chromoviruses, continue to find their ways into even the toward oncolytic viruses. Cell fusions and horizontal exchanges most established genomes. The simian and hominoid-Homo of genes are fundamental attributes and inherent characteristics genomes preserved and accommodated a large number of of the living matter. -
REVIEW Heat Shock Proteins – Modulators of Apoptosis in Tumour
Leukemia (2000) 14, 1161–1173 2000 Macmillan Publishers Ltd All rights reserved 0887-6924/00 $15.00 www.nature.com/leu REVIEW Heat shock proteins – modulators of apoptosis in tumour cells EM Creagh, D Sheehan and TG Cotter Tumour Biology Laboratory, Department of Biochemistry, University College Cork, Lee Maltings, Prospect Row, Cork, Ireland Apoptosis is a genetically programmed, physiological method ditions, when the stress level eliminates the capacity for regu- of cell destruction. A variety of genes are now recognised as lated activation of the apoptotic cascade, the cells undergo positive or negative regulators of this process. Expression of inducible heat shock proteins (hsp) is known to correlate with necrosis. At lower levels, injured cells activate their own increased resistance to apoptosis induced by a range of apoptotic programme. However, if the level of stress is low diverse cytotoxic agents and has been implicated in chemo- enough, cells attempt to survive and activate a stress response therapeutic resistance of tumours and carcinogenesis. Inten- system (Figure 1). This response involves a shut-down of all sive research on apoptosis over the past number of years has cellular protein synthesis apart from a rapid induction of heat provided significant insights into the mechanisms and molecu- shock proteins, which results in a transient state of thermotol- lar events that occur during this process. The modulatory 8 effects of hsps on apoptosis are well documented, however, erance. Once the stress element is removed, these cells func- the mechanisms of hsp-mediated protection against apoptosis tion normally and the levels of hsps drop back to basal levels remain to be fully defined, although several hypotheses have with time. -
Prognostic and Functional Significant of Heat Shock Proteins (Hsps)
biology Article Prognostic and Functional Significant of Heat Shock Proteins (HSPs) in Breast Cancer Unveiled by Multi-Omics Approaches Miriam Buttacavoli 1,†, Gianluca Di Cara 1,†, Cesare D’Amico 1, Fabiana Geraci 1 , Ida Pucci-Minafra 2, Salvatore Feo 1 and Patrizia Cancemi 1,2,* 1 Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; [email protected] (M.B.); [email protected] (G.D.C.); [email protected] (C.D.); [email protected] (F.G.); [email protected] (S.F.) 2 Experimental Center of Onco Biology (COBS), 90145 Palermo, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-091-2389-7330 † These authors contributed equally to this work. Simple Summary: In this study, we investigated the expression pattern and prognostic significance of the heat shock proteins (HSPs) family members in breast cancer (BC) by using several bioinfor- matics tools and proteomics investigations. Our results demonstrated that, collectively, HSPs were deregulated in BC, acting as both oncogene and onco-suppressor genes. In particular, two different HSP-clusters were significantly associated with a poor or good prognosis. Interestingly, the HSPs deregulation impacted gene expression and miRNAs regulation that, in turn, affected important bio- logical pathways involved in cell cycle, DNA replication, and receptors-mediated signaling. Finally, the proteomic identification of several HSPs members and isoforms revealed much more complexity Citation: Buttacavoli, M.; Di Cara, of HSPs roles in BC and showed that their expression is quite variable among patients. In conclusion, G.; D’Amico, C.; Geraci, F.; we elaborated two panels of HSPs that could be further explored as potential biomarkers for BC Pucci-Minafra, I.; Feo, S.; Cancemi, P. -
Chaperonin Facilitates Protein Folding by Avoiding Polypeptide Collapse
bioRxiv preprint doi: https://doi.org/10.1101/126623; this version posted April 11, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Chaperonin facilitates protein folding by avoiding polypeptide collapse Fumihiro Motojima1,2,3*, Katsuya Fujii1,4, and Masasuke Yoshida1 1 Department of Molecular Bioscience, Kyoto Sangyo University, Kamigamo-Motoyama, Kyoto, 603-8555, Japan, 2 present address: Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan; 3Asano Active Enzyme Molecule Project, ERATO, JST, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan; 4 present address: Daiichi Yakuhin Kogyo Co.,Ltd., Kusashima 15-1, Toyama, Toyama 930-2201, Japan Running title: Chaperonin inhibits polypeptide collapse To whom correspondence should be addressed: Fumihiro Motojima, Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan, Tel.: +81-766-56-7500; E-mail: [email protected] Keywords: molecular chaperon, chaperonin, GroEL, protein folding, collapsed state 1 bioRxiv preprint doi: https://doi.org/10.1101/126623; this version posted April 11, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Chaperonins assist folding of many cellular proteins, including essential proteins for cell viability. -
DNAJB6 Chaperones PP2A Mediated Dephosphorylation of GSK3&Beta
Oncogene (2012) 31, 4472–4483 & 2012 Macmillan Publishers Limited All rights reserved 0950-9232/12 www.nature.com/onc ORIGINAL ARTICLE DNAJB6 chaperones PP2A mediated dephosphorylation of GSK3b to downregulate b-catenin transcription target, osteopontin A Mitra1, ME Menezes1, LK Pannell1, MS Mulekar2, RE Honkanen3, LA Shevde1 and RS Samant1 1Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA; 2Department of Mathematics and Statistics, University of South Alabama, Mobile, AL, USA and 3Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, USA Elevated levels of the oncoprotein, osteopontin (OPN), Introduction are associated with poor outcome of several types of cancers including melanoma. We have previously reported The human genome codes for more than 40 distinct an important involvement of DNAJB6, a member of heat- heat-shock protein 40 (HSP40) (DNAJ) members (Mitra shock protein 40 (HSP40) family, in negatively impacting et al., 2009). A typical DNAJ protein is characterized by tumor growth. The current study was prompted by our a J domain, a glycine-Phenylalanine (G/F) domain and observations reported here which revealed a reciprocal a C-terminal domain. Depending on the presence of relationship between DNAJB6 and OPN in melanoma these domains, this family is divided into Type I, Type II specimens. The ‘J domain’ is the most conserved domain and Type III (also known as DNAJ A, B and C) types of HSP40 family of proteins. Hence, we assessed the (Ohtsuka and Hata, 2000). The J domain consists of functional role of the J domain in activities of DNAJB6.