Honeywell Gas Detection 1 Introduction

Total Page:16

File Type:pdf, Size:1020Kb

Honeywell Gas Detection 1 Introduction GasBook Honeywell Gas Detection 1 Introduction The Gas Book is intended to offer a simple guide to anyone considering the use of fixed and portable gas detection equipment. The aim has been to provide a complete and comprehensive introduction to the subject– from detailing the principles of detection that different devices employ to providing information on certifications and application suitability. A diverse variety of applications n most industries, one of the key parts of any safety plan for reducing and processes increasingly involve risks to personnel and plant is the use of early warning devices such as gas detectors. These can help to provide more time in which to take the use and manufacture of highly I remedial or protective action. They can also be used as part of a total, dangerous substances, particularly integrated monitoring and safety system which may include various other safety aspects including fire detection and emergency process shutdown. flammable, toxic and Oxygen gases. Gas detection can be divided into two overriding categories; fixed gas Inevitably, occasional escapes of detection and portable gas detection. As the name might suggest, fixed gas detection represents a static type of detection system for flammable, toxic gas occur, which create a potential and Oxygen gas hazards and is designed to monitor processes, and protect hazard to the industrial plants, their plant and assets as well as personnel on-site. employees and people living nearby. Portable gas detection is designed specifically to protect personnel from Worldwide incidents, involving the threat of flammable, toxic or Oxygen gas hazards and is typically a small device worn by an operator to monitor the breathing zone. Many sites asphyxiation, explosions and loss of incorporate a mix of both fixed and portable gas detection as part of their life, are a constant reminder of this safety philosophy, but the suitability of which type to use will depend on problem. several factors, including how often the area is accessed by personnel. 2 www.honeywellanalytics.com / www.gasmonitors.com Contents Section Subject Page Section Subject Page 1 Introduction 2 18 ATEX 80-81 2 Honeywell Gas Detection brands 4-5 IEC Standards 82-83 Equipment markings 84-85 3 What is gas? 6 19 Area classification 86-87 4 Gas hazards 7 20 Apparatus design 88-89 5 Flammable gas hazards 8 Flammable limit 9 21 Apparatus classification 90-91 Flammable gas properties 10-11 22 Ingress protection of enclosures 92-93 Flammable gases data 12-19 23 Safety integrity levels (SIL) 94-95 6 Toxic gas hazards 20 24 Gas detection systems 96-97 Workplace exposure limits 21 Location of sensors 98-99 Toxic exposure limits 22-25 Typical sensor mounting options 100 Toxic gases data 26-29 Typical system configurations 100-101 7 Asphyxiant (Oxygen deficiency) hazard 30 25 Installation 102 8 Oxygen enrichment 31 26 Gas detection maintenance and ongoing care 106-109 9 Typical areas that require gas detection 32-35 27 Glossary 110-113 10 Principles of detection 36 Combustible gas sensor 36 Catalytic sensor 36 Speed of response 37 Sensor output 37 Calibration 38 Infrared gas detector 39 Open path flammable infrared gas detector 40 Electrochemical cell sensors 41 Photo Ionised Detection (PID) 42 Chemcassette® sensor 42 Comparison of gas detection techniques 43 11 Selecting gas detection 44-45 12 Maximising time and efficiency 46-47 13 Communications protocols 48-49 14 Fixed gas detection from Honeywell 50-51 15 Portable gas detectors 52 Why are portable gas detectors so important? 54 Breathing zone 55 Typical gases requiring portable detection 55 Portable gas detector types 56 Operational modes of a gas detector 56 Features and functionality 57 Accessories 58 Alarms and status indication 59 Typical applications for portable gas detectors 60 Confined spaces 60-61 Marine 62 Water treatment industry 63 Military 64-65 Hazardous Material (HAZMAT) emergency response 66 Oil and gas (on and offshore) 67 PID Information 68 Measuring Solvent, Fuel and VOC Vapour in the workplace environment 68-71 Maintaining portable gas detection 72 Reducing the cost of device testing 73 How to perform a manual bump test 73 Portable gas detectors from Honeywell 74-75 16 North American hazardous area standards and approvals 76 North American Ex marking and area classification 77 17 European hazardous area standards and approvals 78-79 3 2 Honeywell Gas Detection brands At Honeywell Analytics our key focus is our customers. We believe that the evolution of gas detection should be driven by the people using our equipment, rather than engineers deciding the needs of industry. With this in mind, we listen to what our customers want, refine our solutions to meet changing demands and we grow as our customers grow to ensure we are able to provide an added value service that meets individual requirements. Working with Industry… since the birth of gas detection ith 50 years experience in the industry, we have been Our Technical Support Centre and Product Application and Training influential in gas detection since the very beginning. Specialists, field engineers and in-house engineering support represent Many of our historic products set new benchmarks some of the very best the industry has to offer, providing over 1,100 W for gas detection in terms of performance, ease of years cumulative expertise, allowing us to deliver local business use and innovation. Today, our product lines have evolved to meet support on a corporate scale. the requirements of diverse industries and applications, delivering comprehensive solutions designed to drive down the cost of gas detection, whilst providing enhanced safety. 4 www.honeywellanalytics.com / www.gasmonitors.com Honeywell Gas Detection brands GAS FACT The word gas was coined in 1650–60 by J. B. van Helmont (1577–1644), a Flemish chemist. It comes from the Greek word for chaos. W Technologies by Honeywell is a World leader in the gas Delivering value added solutions at detection industry with a strong commitment to providing affordable prices for 25 years customers with high performance, dependable portable products that are backed up by exceptional customer B BW Technologies by Honeywell was originally established in 1987 service and ongoing support. in Calgary, Canada. Over the last 25 years, we have been bringing innovative gas detection solutions to market that add value, enhance We design, manufacture and market innovative portable gas detection safety and help to reduce the ongoing cost of portable gas detection. solutions for a wide variety of applications and industries, with options to suit all budgets and hazard monitoring requirements. With offices all over the World, and a diverse and talented team of industry experts on hand to provide support to customers, we offer a Our comprehensive range includes options from single gas units that large corporate infrastructure supported by locally focused teams that require no ongoing maintenance, to feature-rich multi-gas devices that have a unique understanding of industry and applications as well as deliver additional value-added functionality. regional needs. As a leading expert in the field of portable gas detection, we provide customised on-site/field based training to meet specific customer needs and application support to assist customers with the selection and integration of solutions that are entirely fit for purpose. When it comes to device care, we also offer cost-effective benchmark support and maintenance through our comprehensive approved partner network. 5 Vehicle engines combust fuel and Oxygen and 3 What is produce exhaust gases that include Nitrogen Oxides, Carbon Monoxide and Gas? Carbon Dioxide. The name gas comes from the word chaos. Gas is a swarm of molecules moving randomly and chaotically, constantly colliding with each other and anything else around them. Gases fill any available volume and due to the very high speed at which they move will mix rapidly into any atmosphere in which they are released. Different gases are all around us in everyday life. The air we breathe is made up of several different gases including Oxygen and Nitrogen. Air Composition The table gives the Name Symbol Percent by Volume sea-level composition Nitrogen N2 78.084% of air (in Oxygen O2 20.9476% percent by volume at the Argon Ar 0.934% temperature of Carbon Dioxide CO2 0.0314% 15°C and the pressure of Neon Ne 0.001818% 101325 Pa). Methane CH4 0.0002% Helium He 0.000524% Krypton Kr 0.000114% Hydrogen H2 0.00005% Xenon Xe 0.0000087% 6 www.honeywellanalytics.com / www.gasmonitors.com 4 Gas Hazards There are three main types of gas hazard: Gases can be lighter, Flammable heavier or about the same RISK OF FIRE density as air. Gases can have an odour or AND/OR EXPLOSION be odourless. Gases e.g. can have colour or be Methane, colourless. If you can’t Butane, Propane see it, smell it or touch it, it doesn’t mean that it is not there. Toxic RISK OF POISONING e.g. Carbon Monoxide, Hydrogen, Chlorine Asphyxiant RISK OF SUFFOCATION e.g. Oxygen deficiency. Oxygen can be consumed or displaced by another gas Natural Gas (Methane) is used in many homes for heating and cooking. ! 7 5 Flammable Gas Hazards Combustion is a fairly simple chemical reaction in which The Fire Oxygen is combined rapidly Triangle with another substance The process of combustion can be resulting in the release of represented by the well known fire triangle. energy. This energy appears Three factors are always needed to cause combustion: mainly as heat – sometimes in the form of flames. A SOURCE OF The igniting substance is 1 IGNITION normally, but not always, a Hydrocarbon compound and OXYGEN can be solid, liquid, vapour 2 or gas. However, only gases FUEL IN THE FORM and vapours are considered 3 OF A GAS in this publication.
Recommended publications
  • Determination of Total Methane Emissions from the Aliso Canyon
    CALIFORNIA AIR RESOURCES BOARD Determination of Total Methane October 21, 2016 Emissions from the Aliso Canyon Natural Gas Leak Incident This report documents the California Air Resources Board (ARB) staff’s determination of the total methane emissions from the Aliso Canyon natural gas leak incident and the amount needed for full mitigation of the climate impacts. The mitigation is expected to be accomplished with projects funded by the Southern California Gas Company. The report summarizes the various efforts by ARB and others to measure methane emissions from the Aliso Canyon natural gas leak incident, and how they were used to estimate the total methane emitted from the incident. The total amount of methane needed to fully mitigate the climate impacts of the leak is 109,000 metric tons. CALIFORNIA AIR RESOURCES BOARD Table of Contents Summary ..................................................................................................................................................... 1 Background ................................................................................................................................................. 2 Quantifying the Amount of Methane Emitted ......................................................................................... 5 Preliminary ARB Estimate ..................................................................................................................... 5 Emission Estimates from Southern California Gas Company ........................................................
    [Show full text]
  • Heat Generation Technology Landscaping Study, Scotland's
    Heat Generation Technology Landscaping Study, Scotland’s Energy Efficiency Programme (SEEP) BRE August 2017 Summary This landscaping study has reviewed the status and suitability of a number of near-term heat generation technologies that are not already significantly established in the market-place. The study has been conducted to inform Scottish Government on the status and the technologies so that they can make informed decisions on the potential suitability of the technologies for inclusion within Scotland’s Energy Efficiency Programme (SEEP). Some key findings which have emerged from the research include: • High temperature, hybrid and gas driven heat pumps all have the potential to increase the uptake of low carbon heating solutions in the UK in the short to medium term. • High temperature heat pumps are particularly suited for off-gas grid retrofit projects, whereas hybrids and gas driven products are suited to on-gas grid properties. They may all be used with no or limited upgrades to existing heating systems, and each offers some advantages (but also some disadvantages) compared with standard electric heat pumps. • District heating may continue to have a significant role to play – albeit more on 3rd and 4th generation systems than the large high temperature systems typical in other parts of Europe in the 1950s and 60s – due to lower heating requirements of modern retrofitted buildings. • Longer term, the development of low carbon heating fuel markets may also present significant opportunity e.g. biogas, and possibly hydrogen.
    [Show full text]
  • 5Th-Generation Thermox WDG Flue Gas Combustion Analyzer
    CONTROL EXCLUSIVE 5th-Generation Thermox WDG Flue Gas Combustion Analyzer “For more than 40 years, we have been a leader in combustion gas analysis,” says Mike Fuller, divison VP of sales and marketing and business development for Ametek Process Instruments, “and we believe the WDG-V is the combustion analyzer of the future.” WDG analyzers are based on a zirconium oxide cell that provides a reliable and cost-effective solution for measuring excess oxygen in flue gas as well as CO and methane levels. This information allows operators to obtain the highest fuel effi- ciency, while lowering emissions for NOx, CO and CO2. The zir- conium oxide cell responds to the difference between the concen- tration of oxygen in the flue gas versus an air reference. To assure complete combustion, the flue gas should contain several percent oxygen. The optimum excess oxygen concentration is dependent on the fuel type (natural gas, hydrocarbon liquids and coal). The WDG-V mounts directly to the process flange, and is heated to maintain all sample-wetted components above the acid dewpoint. Its air-operated aspirator draws a sample into the ana- lyzer and returns it to the process. A portion of the sample rises into the convection loop past the combustibles and oxygen cells, Ametek’s WDG-V flue gas combustion analyzer meets SIL-2 and then back into the process. standards for safety instrumented systems. This design gives a very fast response and is perfect for process heat- ers. It features a reduced-drift, hot-wire catalytic detector that is resis- analyzer with analog/HART, discrete and Modbus RS-485 bi-direc- tant to sulfur dioxide (SO ) degradation, and the instrument is suitable 2 tional communications, or supplied in a typical “sensor/controller” for process streams up to 3200 ºF (1760 ºC).
    [Show full text]
  • Integrating Fire and Gas Safety with Process Control Systems: Why, What and How
    WHITE PAPER Integrating Fire and Gas Safety with Process Control Systems: Why, What and How If a fire, smoke or gas leak is detected in an industrial facility, prescriptive actions must be taken by the fire and gas safety system, as well as the process control system, to mitigate and control the hazard. Using a certified, documented fire and gas safety system that can communicate appropriate messages to the process control system during an event is vital to the safety of a facility and its occupants. But, specifying and integrating these two systems is no simple matter. Under certain conditions, the processes in industrial, defined risk reduction target. Methods to help define the high-hazard manufacturing or processing plants can be performance requirements are available in standards, a threat — to the safety of employees, operations and directives and recommended practices. the environment. In these settings, a fire and gas (F&G) safety system is the layer of protection responsible for But first, here is a simple overview of what makes up the mitigating the consequences of a hazardous event once it process control system and the safety systems, including has occurred. the subsystems of the F&G safety system. Consider a chemical plant where flammable materials Process Control continue to be pumped into an area where fire has 1. Process control system (PCS) been detected. In hazardous situations like this, it is 2. Process instrumentation imperative that an F&G safety system communicate with Safety the process control system (PCS). The performance 1. Process shutdown system (PSD) requirements of both of these systems require 2.
    [Show full text]
  • Humidity in Gas-Fired Kilns Proportion of Excess Combustion
    HUMIDITY OF COMBUSTION PRODUCTS FROM WOOD AND GASEOUS FUELS George Bramhall Western Forest Products Laboratory Vancouver, British Columbia The capital and operating costs of steam kilns and the boilers necessary for their operation are so high-in Canada that they are not economically feasible for small operations drying softwoods. About thirty years ago, direct fired or hot-air kilns were intro- duced. In such kilns natural gas, propane, butane or oil is burned and the combustion products conducted directly into the drying chamber. This design eliminates the high capital and operating costs of the steam boiler, and permits the small operator to dry lumber economically. However, such kilns are not as versatile as steam kilns. While they permit good temperature control, their humidity control is limited: they can only reduce excess humidity by venting, they cannot increase it and therefore cannot relieve drying stresses at the end of drying. For this reason, they are usually limited to the drying of structural lumber. Due to the decreasing supplies and increasing costs of fossil fuels, there is growing interest in burning wood residues to pro- vide the heat for drying. Although wood residue was often the fuel for steam boilers, the capital and operating costs of boilers are no more acceptable now to the smaller operator than they were a few years ago. The present trend is rather to burn wood cleanly and conduct the combustion products into the kiln in the same man- ner as is done with gaseous fossil fuels. This is now being done successfully with at least one type of burner, and others are in the pilot stage.
    [Show full text]
  • Air Separation, Flue Gas Compression and Purification Units for Oxy-Coal Combustion Systems
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Energy Energy Procedia 4 (2011) 966–971 www.elsevier.com/locate/procediaProcedia Energy Procedia 00 (2010) 000–000 www.elsevier.com/locate/XXX GHGT-10 Air Separation, flue gas compression and purification units for oxy-coal combustion systems Jean-Pierre Traniera, Richard Dubettierb, Arthur Dardeb, Nicolas Perrinc aAir Liquide SA-Centre de Recherche Claude Delorme,Chemin de la porte des Loges, Les Loges en Josas, Jouy en Josas F-78354, France bAir Liquide Engineering, 57 Ave. Carnot BP 313,Champigny-sur-Marne F-94503, France cAir Liquide SA, 57 Ave. Carnot BP 313, Champigny-sur-Marne F-94503, France Elsevier use only: Received date here; revised date here; accepted date here Abstract Air Liquide (AL) has been actively involved in the development of oxy-coal technologies for CO2 capture from power plants for almost 10 years. Large systems for oxygen production and flue gas purification are required for this technology. Air Liquide has been a leader in building large Air Separation Units (ASUs) and more developments have been performed to customize the air separation process for coal-fired power plants. Air Liquide is also actively involved in developing processes for purification of flue gas from oxy-coal combustion systems for enhanced oil recovery applications as well as sequestration in saline aquifers. Through optimization of the overall oxy-coal combustion system, it has been possible to identify key advantages of this solution: minimal efficiency loss associated with CO2 capture (less than 6 pts penalty on HHV efficiency compared to no capture), near zero emission, energy storage, high CO2 purity and high CO2 recovery capability.
    [Show full text]
  • Refrigerant Gas Detector
    2. Safety Instructions (Continued) 5. Installation CODE COMPLIANCE: Comply with all local and national laws, particular industry / country. This document is only intended as IMPORTANT: The manufacturer of this product requires that a rules and regulations associated with this equipment. Operators a guide and the manufacturer bears no responsibility for the bump test or calibration be performed following installation to should be aware of the regulations and standards in their installation or operation of this unit. verify instrument functionality. industry / locality for the operation of the Hansen Gas Detector. Failure to install and operate the unit in accordance with these TECHNICIAN USE ONLY: The Hansen Gas Detector must be instructions and with industry guidelines may cause serious injury or STEP 1 | Mount Gas Detector & Remove Lid Refrigerant Gas Detector installed by a suitably qualified technician who will install this unit death and the manufacturer will not be held responsible in this regard. for Machinery Rooms, Cold Rooms & Freezers in accordance with these instructions and the standards in their WARNING: DO NOT allow the lid / sensor to hang from the ribbon cable. Failure to comply may result in damage to the product. 3. Component Overview 1. Mount the product according to the product dimensions, maximum wiring lengths and following considerations: # COMPONENT DESCRIPTION • Environment: the full range of environmental conditions when selecting a location. 1 M16 Cable Glands (×6) • Application: the specifics of the application (possible leaks, air movement / draft, etc.) when selecting a location. 2 Rubber Gasket (IP66 Version Only) • Accessibility: the degree of accessibility required for maintenance purposes when selecting a location.
    [Show full text]
  • Air Quality Monitoring: the Use of Arduino and Android
    Journal of Modern Science and Technology Vol. 4. No. 1. September 2016 Issue. Pp. 86 – 96 Air Quality Monitoring: The Use of Arduino and Android Ashish M. Husain 1, Tazrin Hassan Rini * 2, Mohammed Ikramul Haque 3 and Md. Rakibul Alam 4 In this paper a cost efficient, portable, easily manageable Arduino based device has been presented to monitor air quality. The device works by collecting data of quantity of specific harmful gases and the amount of dust present in the air. This device can be located at any place and the data can be transferred to an Android phone via Bluetooth or simply by connecting the device to a PC/laptop. Data collected by the device from different places can be later examined to make further decisions and analysis about the state of air quality; furthermore, it can also help concerned individuals to act upon it. Field of Research: Environmental Engineering 1. Introduction Air pollution can be defined as an atmospheric condition in which various substances are present at concentrations high enough, above their normal ambient levels to produce a measurable effect on people, animals, vegetation or materials (Bangladesh environment 2015). Air pollutants are dangerous to human health as well as environment too. If the concentrations of air pollutants increase, it can be fatal for this world and the living things on it. Air pollution contains quantum amounts of Carbon monoxide (CO), Sulfur dioxide (SO2), Nitrogen oxides (NOx), Ozone (O3), Hydrocarbons (HC), lead (Pb) and Suspended Particulate Matter (SPM). These are some of the pollutants that have given rise to diseases and environmental catastrophes.
    [Show full text]
  • Reducing Methane Emissions from Natural Gas Distribution Mains and Services Regulation
    Working with you to protect ​ the environment for wildlife September 18, 2020 ​ Sharon Weber Massachusetts Department of Environmental Protection 1 Winter Street Boston, MA 02108 Submitted via email: [email protected] Program review of the 310 CMR 7.73: Reducing Methane Emissions ​ from Natural Gas Distribution Mains and Services regulation ​ Dear Ms. Weber, Thank you for the opportunity to submit our comments on the program review of the Reducing Methane Emissions from Natural Gas Distribution Mains and Services regulation. Please accept these comments from Berkshire Environmental Action Team (BEAT) and it’s No Fracked Gas in Mass program. BEAT works to protect the environment for wildlife in support of the natural world that sustains us all. No Fracked Gas in Mass works to stop the expansion of fossil fuel infrastructure in the Northeast states and to promote energy efficiency and sustainable, renewable sources of energy and local, permanent jobs in a clean energy economy. In answer to questions asked by DEP at the Stakeholder Meeting: ● Should the decreasing annual emissions limits be extended beyond 2020? Yes. With even the LDC spokesperson agreeing at the stakeholder meeting, continuing decreasing the annual emissions limits should be the bare minimum baseline scenario. If anything there should be a steeper rate of incremental decrease in emissions each year while we phase out fossil fuels to comply with our state’s 2050 Decarbonization goals1. 1 “Determination of Statewide Emissions Limit for 2050,” Karen Theoharidies, Executive Office of Energy and ​ Environmental Affairs. April 20, 2020 https://www.mass.gov/doc/final-signed-letter-of-determination-for-2050-emissions-limit/download ● What are the most appropriate emission factors or other metrics to determine emission limits and evaluate progress? The current method is to only count known leaks from specific utility-identified self-reported locations.
    [Show full text]
  • Don't Let Dollars Disappear up Your Chimney!
    ENERGY SAVINGTIPS DON’T LET DOLLARS DISAPPEAR UP YOUR CHIMNEY! You wouldn’t leave a window wide open in cold weather. Having a fireplace with an open flue damper is the same as having a window open. That sends precious winter heat and money right up the chimney! Here’s how you can heat your home, and not the neighborhood! KEEP THE FIREPLACE DAMPER CLOSED WHEN THE FIREPLACE IS NOT BEING USED The damper is a flap inside the chimney or flue. It has an open and a closed position. When a fire is burning, the damper should be in the open position to allow smoke to escape up the fireplace flue and out the chimney. When you’re not using the fireplace, the damper should be closed. If you can’t see the handle or chain that opens and closes the damper, use a flashlight and look up inside the chimney flue. The handle could be a lever that moves side to side or back and forth. If a chain operates the damper, you may have to pull both sides to determine which one closes or opens the damper. KEEP YOUR HEAT IN YOUR HOME! Even the most energy efficient homes can fall victim to fireplace air leaks. Your fireplace may be reserved for a handful of special occasions or especially cold nights. When it’s not in use, though, your home loses heat – and costs you money – without you knowing it. Using the heat from your fireplace on a cold winter night may be cozy, but that fire is a very inefficient way to warm up the room.
    [Show full text]
  • Indoor Air Quality (IAQ): Combustion By-Products
    Number 65c June 2018 Indoor Air Quality: Combustion By-products What are combustion by-products? monoxide exposure can cause loss of Combustion (burning) by-products are gases consciousness and death. and small particles. They are created by incompletely burned fuels such as oil, gas, Nitrogen dioxide (NO2) can irritate your kerosene, wood, coal and propane. eyes, nose, throat and lungs. You may have shortness of breath. If you have a respiratory The type and amount of combustion by- illness, you may be at higher risk of product produced depends on the type of fuel experiencing health effects from nitrogen and the combustion appliance. How well the dioxide exposure. appliance is designed, built, installed and maintained affects the by-products it creates. Particulate matter (PM) forms when Some appliances receive certification materials burn. Tiny airborne particles can depending on how clean burning they are. The irritate your eyes, nose and throat. They can Canadian Standards Association (CSA) and also lodge in the lungs, causing irritation or the Environmental Protection Agency (EPA) damage to lung tissue. Inflammation due to certify wood stoves and other appliances. particulate matter exposure may cause heart problems. Some combustion particles may Examples of combustion by-products include: contain cancer-causing substances. particulate matter, carbon monoxide, nitrogen dioxide, carbon dioxide, sulphur dioxide, Carbon dioxide (CO2) occurs naturally in the water vapor and hydrocarbons. air. Human health effects such as headaches, dizziness and fatigue can occur at high levels Where do combustion by-products come but rarely occur in homes. Carbon dioxide from? levels are sometimes measured to find out if enough fresh air gets into a room or building.
    [Show full text]
  • Leak Detection in Natural Gas and Propane Commercial Motor Vehicles Course
    Leak Detection in Natural Gas and Propane Commercial Motor Vehicles Course July 2015 Table of Contents 1. Leak Detection in Natural Gas and Propane Commercial Motor Vehicles Course ............................................... 1 1.1 Introduction and Overview ............................................................................................................................ 1 1.2 Welcome ........................................................................................................................................................ 1 1.3 Course Goal .................................................................................................................................................... 1 1.4 Training Outcomes ......................................................................................................................................... 1 1.5 Training Outcomes (Continued) ..................................................................................................................... 2 1.6 Course Objectives .......................................................................................................................................... 2 1.7 Course Topic Areas ........................................................................................................................................ 2 1.8 Course Overview ............................................................................................................................................ 2 1.9 Module One: Overview of CNG, LNG,
    [Show full text]