Towards Determining Biosignature Retention in Icy World Plumes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Water, Habitability, and Detectability Steve Desch
Water, Habitability, and Detectability Steve Desch PI, “Exoplanetary Ecosystems” NExSS team School of Earth and Space Exploration, Arizona State University with Ariel Anbar, Tessa Fisher, Steven Glaser, Hilairy Hartnett, Stephen Kane, Susanne Neuer, Cayman Unterborn, Sara Walker, Misha Zolotov Astrobiology Science Strategy NAS Committee, Beckmann Center, Irvine, CA (remotely), January 17, 2018 How to look for life on (Earth-like) exoplanets: find oxygen in their atmospheres How Earth-like must an exoplanet be for this to work? Seager et al. (2013) How to look for life on (Earth-like) exoplanets: find oxygen in their atmospheres Oxygen on Earth overwhelmingly produced by photosynthesizing life, which taps Sun’s energy and yields large disequilibrium signature. Caveats: Earth had life for billions of years without O2 in its atmosphere. First photosynthesis to evolve on Earth was anoxygenic. Many ‘false positives’ recognized because O2 has abiotic sources, esp. photolysis (Luger & Barnes 2014; Harman et al. 2015; Meadows 2017). These caveats seem like exceptions to the ‘rule’ that ‘oxygen = life’. How non-Earth-like can an exoplanet be (especially with respect to water content) before oxygen is no longer a biosignature? Part 1: How much water can terrestrial planets form with? Part 2: Are Aqua Planets or Water Worlds habitable? Can we detect life on them? Part 3: How should we look for life on exoplanets? Part 1: How much water can terrestrial planets form with? Theory says: up to hundreds of oceans’ worth of water Trappist-1 system suggests hundreds of oceans, especially around M stars Many (most?) planets may be Aqua Planets or Water Worlds How much water can terrestrial planets form with? Earth- “snow line” Standard Sun distance models of distance accretion suggest abundant water. -
Biosignatures Search in Habitable Planets
galaxies Review Biosignatures Search in Habitable Planets Riccardo Claudi 1,* and Eleonora Alei 1,2 1 INAF-Astronomical Observatory of Padova, Vicolo Osservatorio, 5, 35122 Padova, Italy 2 Physics and Astronomy Department, Padova University, 35131 Padova, Italy * Correspondence: [email protected] Received: 2 August 2019; Accepted: 25 September 2019; Published: 29 September 2019 Abstract: The search for life has had a new enthusiastic restart in the last two decades thanks to the large number of new worlds discovered. The about 4100 exoplanets found so far, show a large diversity of planets, from hot giants to rocky planets orbiting small and cold stars. Most of them are very different from those of the Solar System and one of the striking case is that of the super-Earths, rocky planets with masses ranging between 1 and 10 M⊕ with dimensions up to twice those of Earth. In the right environment, these planets could be the cradle of alien life that could modify the chemical composition of their atmospheres. So, the search for life signatures requires as the first step the knowledge of planet atmospheres, the main objective of future exoplanetary space explorations. Indeed, the quest for the determination of the chemical composition of those planetary atmospheres rises also more general interest than that given by the mere directory of the atmospheric compounds. It opens out to the more general speculation on what such detection might tell us about the presence of life on those planets. As, for now, we have only one example of life in the universe, we are bound to study terrestrial organisms to assess possibilities of life on other planets and guide our search for possible extinct or extant life on other planetary bodies. -
Monday, November 13, 2017 WHAT DOES IT MEAN to BE HABITABLE? 8:15 A.M. MHRGC Salons ABCD 8:15 A.M. Jang-Condell H. * Welcome C
Monday, November 13, 2017 WHAT DOES IT MEAN TO BE HABITABLE? 8:15 a.m. MHRGC Salons ABCD 8:15 a.m. Jang-Condell H. * Welcome Chair: Stephen Kane 8:30 a.m. Forget F. * Turbet M. Selsis F. Leconte J. Definition and Characterization of the Habitable Zone [#4057] We review the concept of habitable zone (HZ), why it is useful, and how to characterize it. The HZ could be nicknamed the “Hunting Zone” because its primary objective is now to help astronomers plan observations. This has interesting consequences. 9:00 a.m. Rushby A. J. Johnson M. Mills B. J. W. Watson A. J. Claire M. W. Long Term Planetary Habitability and the Carbonate-Silicate Cycle [#4026] We develop a coupled carbonate-silicate and stellar evolution model to investigate the effect of planet size on the operation of the long-term carbon cycle, and determine that larger planets are generally warmer for a given incident flux. 9:20 a.m. Dong C. F. * Huang Z. G. Jin M. Lingam M. Ma Y. J. Toth G. van der Holst B. Airapetian V. Cohen O. Gombosi T. Are “Habitable” Exoplanets Really Habitable? A Perspective from Atmospheric Loss [#4021] We will discuss the impact of exoplanetary space weather on the climate and habitability, which offers fresh insights concerning the habitability of exoplanets, especially those orbiting M-dwarfs, such as Proxima b and the TRAPPIST-1 system. 9:40 a.m. Fisher T. M. * Walker S. I. Desch S. J. Hartnett H. E. Glaser S. Limitations of Primary Productivity on “Aqua Planets:” Implications for Detectability [#4109] While ocean-covered planets have been considered a strong candidate for the search for life, the lack of surface weathering may lead to phosphorus scarcity and low primary productivity, making aqua planet biospheres difficult to detect. -
IS HABITABILITY CONSTRAINED by PHYSICS OR BIOLOGY? the CASE for a GAIAN BOTTLENECK. Charles. H. Lineweaver1 and Aditya Chopra1
Astrobiology Science Conference 2015 (2015) 7276.pdf IS HABITABILITY CONSTRAINED BY PHYSICS OR BIOLOGY? THE CASE FOR A GAIAN BOTTLENECK. Charles. H. Lineweaver1 and Aditya Chopra1, 1Planetary Science Institute, Research School of Astronomy and Astrophysics and Research School of Earth Sciences, Australian National University, Australia, [email protected], [email protected] The prerequisites and ingredients for life seem to Earth. We are proposing a sequence of events that can be abundantly available in the universe. However, the be summarized as: (1) uninhabitably hot, high universe does not seem to be teeming with life. The bombardment rate during planetary accretion (2) most common explanation for this is a low probability cooler, reduced bombardment (3) emergence of life in for the emergence of life (an emergence bottleneck), planetary environments that tend to evolve away from notionally due to the intricacies of the molecular habitability, continuous volatile loss. Then either (4a) recipe. Here we present an alternative explanation: a the inability of life to control atmospheric volatiles and Gaian bottleneck [1]. If life emerges on a planet, it maintain habitabililty, thus leading to extinction (left only rarely evolves quickly enough to regulate panel in figure) or (4b) the rapid evolution of Gaian temperature through albedo and atmospheric volatiles regulation and the maintenance of habitability (right and maintain habitability. Such a Gaian bottleneck panel in figure) suggests that (i) extinction is the cosmic default for most life that has ever emerged on the surface of wet Gaian Regulation rocky planets in the universe and (ii) rocky planets +2 Gyr +2 Gyr need to be inhabited, to remain habitable. -
Enceladus Life Finder: the Search for Life in a Habitable Moon
Geophysical Research Abstracts Vol. 17, EGU2015-14923, 2015 EGU General Assembly 2015 © Author(s) 2015. CC Attribution 3.0 License. Enceladus life finder: the search for life in a habitable moon. Jonathan Lunine (1), Hunter Waite (2), Frank Postberg (3), Linda Spilker (4), and Karla Clark (4) (1) Center for Radiophysics and Space Research, Cornell University, Ithaca ([email protected]), (2) Southwest Research Institute,San Antonio, ( [email protected]), (3) U. Stuttgart, Stuttgart, ([email protected]), (4) Jet Propulsion Laboratory, Pasadena CA 91125, ( [email protected]) Is there life elsewhere in the solar system? Guided by the principle that we can most easily recognize life as we know it—life that requires liquid water—Enceladus is particularly attractive because liquid water from its deep interior is actively erupting into space, making sampling of the interior straightforward. The Cassini Saturn Orbiter has provided the motivation. In particular, at high resolution, spatial coincidences between individual geysers and small-scale hot spots revealed the liquid reservoir supplying the eruptions to be not in the near-surface but deeper within the moon [1], putting on a firm foundation the principle that sampling the plume allows us to know the composition of the ocean. Sensitive gravity and topography measurements established the location and dimensions of that reservoir: ∼ 35 km beneath the SPT ice shell and extending out to at least 50 degrees latitude, implying an interior ocean large enough to have been stable over geologic time [2]. The Cassini ion neutral mass spectrometer (INMS) discovered organic and nitrogen-bearing molecules in the plume vapour, and the Cosmic Dust Analyser (CDA) detected salts in the plume icy grains, arguing strongly for ocean water being in con-tact with a rocky core [3], [4]. -
Valuing Life Detection Missions Edwin S
Valuing life detection missions Edwin S. Kite* (University of Chicago), Eric Gaidos (University of Hawaii), Tullis C. Onstott (Princeton University). * [email protected] Recent discoveries imply that Early Mars was habitable for life-as-we-know-it (Grotzinger et al. 2014); that Enceladus might be habitable (Waite et al. 2017); and that many stars have Earth- sized exoplanets whose insolation favors surface liquid water (Dressing & Charbonneau 2013, Gaidos 2013). These exciting discoveries make it more likely that spacecraft now under construction – Mars 2020, ExoMars rover, JWST, Europa Clipper – will find habitable, or formerly habitable, environments. Did these environments see life? Given finite resources ($10bn/decade for the US1), how could we best test the hypothesis of a second origin of life? Here, we first state the case for and against flying life detection missions soon. Next, we assume that life detection missions will happen soon, and propose a framework (Fig. 1) for comparing the value of different life detection missions: Scientific value = (Reach × grasp × certainty × payoff) / $ (1) After discussing each term in this framework, we conclude that scientific value is maximized if life detection missions are flown as hypothesis tests. With hypothesis testing, even a nondetection is scientifically valuable. Should the US fly more life detection missions? Once a habitable environment has been found and characterized, life detection missions are a logical next step. Are we ready to do this? The case for emphasizing habitable environments, not life detection: Our one attempt to detect life, Viking, is viewed in hindsight as premature or at best uncertain. In-space life detection experiments are expensive. -
2015 October
TTSIQ #13 page 1 OCTOBER 2015 www.nasa.gov/press-release/nasa-confirms-evidence-that-liquid-water-flows-on-today-s-mars Flash! Sept. 28, 2015: www.space.com/30674-flowing-water-on-mars-discovery-pictures.html www.space.com/30673-water-flows-on-mars-discovery.html - “boosting odds for life!” These dark, narrow, 100 meter~yards long streaks called “recurring slope lineae” flowing downhill on Mars are inferred to have been formed by contemporary flowing water www.space.com/30683-mars-liquid-water-astronaut-exploration.html INDEX 2 Co-sponsoring Organizations NEWS SECTION pp. 3-56 3-13 Earth Orbit and Mission to Planet Earth 13-14 Space Tourism 15-20 Cislunar Space and the Moon 20-28 Mars 29-33 Asteroids & Comets 34-47 Other Planets & their moons 48-56 Starbound ARTICLES & ESSAY SECTION pp 56-84 56 Replace "Pluto the Dwarf Planet" with "Pluto-Charon Binary Planet" 61 Kepler Shipyards: an Innovative force that could reshape the future 64 Moon Fans + Mars Fans => Collaboration on Joint Project Areas 65 Editor’s List of Needed Science Missions 66 Skyfields 68 Alan Bean: from “Moonwalker” to Artist 69 Economic Assessment and Systems Analysis of an Evolvable Lunar Architecture that Leverages Commercial Space Capabilities and Public-Private-Partnerships 71 An Evolved Commercialized International Space Station 74 Remembrance of Dr. APJ Abdul Kalam 75 The Problem of Rational Investment of Capital in Sustainable Futures on Earth and in Space 75 Recommendations to Overcome Non-Technical Challenges to Cleaning Up Orbital Debris STUDENTS & TEACHERS pp 85-96 Past TTSIQ issues are online at: www.moonsociety.org/international/ttsiq/ and at: www.nss.org/tothestarsOO TTSIQ #13 page 2 OCTOBER 2015 TTSIQ Sponsor Organizations 1. -
ISSN: 2320-5407 Int. J. Adv. Res. 8(07), 47-56
ISSN: 2320-5407 Int. J. Adv. Res. 8(07), 47-56 Journal Homepage: -www.journalijar.com Article DOI:10.21474/IJAR01/11261 DOI URL: http://dx.doi.org/10.21474/IJAR01/11261 RESEARCH ARTICLE NANOTECHNOLOGY IN SPACE EXPLORATION– A REVIEW. Pranjali Pandurang Sankpal ,Vipul Sanjeev Patil and Satya Sandeep Chaganti Aerospace Engineering Sandip University Nashik, 422213, India. …………………………………………………………………………………………………….... Manuscript Info Abstract ……………………. ……………………………………………………………… Manuscript History Nanotechnology is one of the innovative technology in the world. Received: 05 May 2020 Today, most of the Nanotechnology is one of the innovative technology Final Accepted: 10 June 2020 in the world. Today, most of the researchers and technologists are Published: July 2020 looking for different ways to utilize nanotechnology to ameliorate the world. There are many applications of nanotechnology in aerospace Key words:- Nanotechnology in Space, Carbon and space explorer. Nanotechnology keystone in lowering mission cost Nanotubes, Space Elevator and mass with increasing efficiency and effectiveness. The paper shows a review of nanotechnology applications, advantages, and risks. Copy Right, IJAR, 2020,. All rights reserved. …………………………………………………………………………………………………….... Introduction:- Nanotechnology operates at the primary level of the structure of atoms and molecules and it promises the ability to build precise machines and components of molecular size[25]. Nanotechnology is usually described at a minimal dimension of 10 nanometers, equivalent to about 30 molecules. A more relevant definition of nanoscience is a dimension that cannot be further lowered without a substantial change of physical properties and non-theoretical or synthesis process. The exemption of nanotechnology is illustrated in Fig.1. The imbricate of electronics, biosciences, and materials designates the scope of nanotechnology[07]. -
Contamination Control Technology Study for Achieving the Science Objectives of Life-Detection Missions
NASA/TM-20205008709 Contamination Control Technology Study for Achieving the Science Objectives of Life-Detection Missions Chris McKay, Alfonso Davila, Jennifer Eigenbrode, Chris Lorentson, Rob Gold, John Canham, Northrop Grumman, Anthony Dazzo, Therese Errigo, Faith Kujawa, Dave Kusnierkiewicz, Charles Sandy, Erich Schulze and Antonios Seas, October 2020 NASA STI Program ... in Profile Since its founding, NASA has been dedicated CONFERENCE PUBLICATION. to the advancement of aeronautics and space Collected papers from scientific and science. The NASA scientific and technical technical conferences, symposia, seminars, information (STI) program plays a key part in or other meetings sponsored or helping NASA maintain this important role. co-sponsored by NASA. The NASA STI program operates under the SPECIAL PUBLICATION. Scientific, auspices of the Agency Chief Information Officer. technical, or historical information from It collects, organizes, provides for archiving, and NASA programs, projects, and missions, disseminates NASA’s STI. The NASA STI often concerned with subjects having program provides access to the NTRS Registered substantial public interest. and its public interface, the NASA Technical Reports Server, thus providing one of the largest TECHNICAL TRANSLATION. collections of aeronautical and space science STI English-language translations of foreign in the world. Results are published in both non- scientific and technical material pertinent to NASA channels and by NASA in the NASA STI NASA’s mission. Report Series, which includes the following report types: Specialized services also include organizing and publishing research results, distributing TECHNICAL PUBLICATION. Reports of specialized research announcements and completed research or a major significant feeds, providing information desk and personal phase of research that present the results of search support, and enabling data exchange NASA Programs and include extensive data services. -
Exoplanet Biosignatures: a Review of Remotely Detectable Signs of Life
ASTROBIOLOGY Volume 18, Number 6, 2018 Mary Ann Liebert, Inc. DOI: 10.1089/ast.2017.1729 Exoplanet Biosignatures: A Review of Remotely Detectable Signs of Life Edward W. Schwieterman,1–5 Nancy Y. Kiang,3,6 Mary N. Parenteau,3,7 Chester E. Harman,3,6,8 Shiladitya DasSarma,9,10 Theresa M. Fisher,11 Giada N. Arney,3,12 Hilairy E. Hartnett,11,13 Christopher T. Reinhard,4,14 Stephanie L. Olson,1,4 Victoria S. Meadows,3,15 Charles S. Cockell,16,17 Sara I. Walker,5,11,18,19 John Lee Grenfell,20 Siddharth Hegde,21,22 Sarah Rugheimer,23 Renyu Hu,24,25 and Timothy W. Lyons1,4 Abstract In the coming years and decades, advanced space- and ground-based observatories will allow an unprecedented opportunity to probe the atmospheres and surfaces of potentially habitable exoplanets for signatures of life. Life on Earth, through its gaseous products and reflectance and scattering properties, has left its fingerprint on the spectrum of our planet. Aided by the universality of the laws of physics and chemistry, we turn to Earth’s biosphere, both in the present and through geologic time, for analog signatures that will aid in the search for life elsewhere. Considering the insights gained from modern and ancient Earth, and the broader array of hypothetical exoplanet possibilities, we have compiled a comprehensive overview of our current understanding of potential exoplanet biosignatures, including gaseous, surface, and temporal biosignatures. We additionally survey biogenic spectral features that are well known in the specialist literature but have not yet been robustly vetted in the context of exoplanet biosignatures. -
The Search for Biosignatures and Their Relationship to Complex Societies a Biosignature Denotes the Presence of a Substance Or P
The Search for Biosignatures and Their Relationship to Complex Societies A biosignature denotes the presence of a substance or phenomenon that is indicative of life, past or present. Biosignature is a term defined in the context of the field of astrobiology and it represents evidence of life in the context of the system where it is being detected. More specifically, if this system is a planet or a moon, the biosignature represents the detection of chemical compounds on the surface or in the atmosphere (if it has an atmosphere) that are indicative of life on that planet or moon. For example, biosignatures can be chemical compounds, particularly organic compounds, visible macroscopic patterns, atmospheric gases. The past couple of decades have seen an explosion in biosignature science, but currently only the Viking mission has been equipped to search for biosignatures in our solar system. Upcoming missions target the moons Europa and Titan for searches. One of Earth’s biosignatures is the atmospheric composition of gases, particularly oxygen and methane in strong thermodynamic equilibrium, the surface reflectance of the vegetation in color red, and narrow-band, pulse modulated radio signs. These “signatures” together suggest an inhabited planet, but each signature by itself might be a “false positive” in confirming the presence of life. Additional to how we understand the presence of life on Earth as a starting point for biosignature searches on exoplanets, there has been considerable work done in understanding “agnostic biosignature”, or biosignatures that have very little in common with life on Earth. The agnostic biosignatures are based on a broader definition of life, based on processes and activities and not on specific molecular structures. -
PS4: Biosignature Modification in the Oxia Planum Region
Biosignature modification in the Oxia Planum region. Supervision team: Victoria Pearson, Nisha Ramkissoon, Peter Fawdon and Manish Patel External collaborator: Andrew Coates (UCL), Matt Gunn (Aberystwyth University), Ian Hutchinson (University of Leicester) Lead contact: Victoria Pearson [email protected] Description: ESA’s ExoMars 2020 Rosalind Franklin rover is expected to land on Mars in mid-2021, with a primary objective to search for signs of life. A landing site, Oxia Planum, has been selected that is rich in clay minerals, indicative of an environment that has been subjected to aqueous alteration in the past [1-3]. The prior presence of water may indicate that this region was once habitable, but any biosignatures (geochemical indicators for life) left behind may have been modified or even obliterated by subsequent surface processing, such as impact cratering, desiccation and diagenetic aqueous alteration [4]. This project aims to determine the effects of such processing on biosignatures within an Oxia Planum-like environment. It will combine orbital and rover data to develop an Oxia Planum simulant, which will then be used in laboratory simulation experiments to identify how biosignatures could be modified after they experience the types of processing seen at Oxia Planum. The project will begin with the design and production of a prototype Oxia Planum simulant based on existing data obtained from orbiting spacecraft. This prototype will be characterised and tested using instruments akin to those onboard the rover, specifically the Raman Laser Spectrometer (RLS) and infrared spectrometer for ExoMars (ISEM). Once data is returned from the ISEM, RLS and MicrOMEGA (micro Observatoire pour la Minéralogie l’Eau, la Glace et l’Activite) instruments aboard the ExoMars rover, the simulant will be refined, and a final version produced.