Modern Group Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On the Stability of a Class of Functional Equations
Journal of Inequalities in Pure and Applied Mathematics ON THE STABILITY OF A CLASS OF FUNCTIONAL EQUATIONS volume 4, issue 5, article 104, BELAID BOUIKHALENE 2003. Département de Mathématiques et Informatique Received 20 July, 2003; Faculté des Sciences BP 133, accepted 24 October, 2003. 14000 Kénitra, Morocco. Communicated by: K. Nikodem EMail: [email protected] Abstract Contents JJ II J I Home Page Go Back Close c 2000 Victoria University ISSN (electronic): 1443-5756 Quit 098-03 Abstract In this paper, we study the Baker’s superstability for the following functional equation Z X −1 (E (K)) f(xkϕ(y)k )dωK (k) = |Φ|f(x)f(y), x, y ∈ G ϕ∈Φ K where G is a locally compact group, K is a compact subgroup of G, ωK is the normalized Haar measure of K, Φ is a finite group of K-invariant morphisms of On the Stability of A Class of G and f is a continuous complex-valued function on G satisfying the Kannap- Functional Equations pan type condition, for all x, y, z ∈ G Belaid Bouikhalene Z Z Z Z −1 −1 −1 −1 (*) f(zkxk hyh )dωK (k)dωK (h)= f(zkyk hxh )dωK (k)dωK (h). K K K K Title Page We treat examples and give some applications. Contents 2000 Mathematics Subject Classification: 39B72. Key words: Functional equation, Stability, Superstability, Central function, Gelfand JJ II pairs. The author would like to greatly thank the referee for his helpful comments and re- J I marks. Go Back Contents Close 1 Introduction, Notations and Preliminaries ............... -
The Representation Theorem of Persistence Revisited and Generalized
Journal of Applied and Computational Topology https://doi.org/10.1007/s41468-018-0015-3 The representation theorem of persistence revisited and generalized René Corbet1 · Michael Kerber1 Received: 9 November 2017 / Accepted: 15 June 2018 © The Author(s) 2018 Abstract The Representation Theorem by Zomorodian and Carlsson has been the starting point of the study of persistent homology under the lens of representation theory. In this work, we give a more accurate statement of the original theorem and provide a complete and self-contained proof. Furthermore, we generalize the statement from the case of linear sequences of R-modules to R-modules indexed over more general monoids. This generalization subsumes the Representation Theorem of multidimen- sional persistence as a special case. Keywords Computational topology · Persistence modules · Persistent homology · Representation theory Mathematics Subject Classifcation 06F25 · 16D90 · 16W50 · 55U99 · 68W30 1 Introduction Persistent homology, introduced by Edelsbrunner et al. (2002), is a multi-scale extension of classical homology theory. The idea is to track how homological fea- tures appear and disappear in a shape when the scale parameter is increasing. This data can be summarized by a barcode where each bar corresponds to a homology class that appears in the process and represents the range of scales where the class is present. The usefulness of this paradigm in the context of real-world data sets has led to the term topological data analysis; see the surveys (Carlsson 2009; Ghrist 2008; Edelsbrunner and Morozov 2012; Vejdemo-Johansson 2014; Kerber 2016) and textbooks (Edelsbrunner and Harer 2010; Oudot 2015) for various use cases. * René Corbet [email protected] Michael Kerber [email protected] 1 Institute of Geometry, Graz University of Technology, Kopernikusgasse 24, 8010 Graz, Austria Vol.:(0123456789)1 3 R. -
Arxiv:1902.09497V5 [Math.DS]
GELFAND PAIRS ADMIT AN IWASAWA DECOMPOSITION NICOLAS MONOD Abstract. Every Gelfand pair (G,K) admits a decomposition G = KP , where P<G is an amenable subgroup. In particular, the Furstenberg boundary of G is homogeneous. Applications include the complete classification of non-positively curved Gelfand pairs, relying on earlier joint work with Caprace, as well as a canonical family of pure spherical functions in the sense of Gelfand–Godement for general Gelfand pairs. Let G be a locally compact group. The space M b(G) of bounded measures on G is an algebra for convolution, which is simply the push-forward of the multiplication map G × G → G. Definition. Let K<G be a compact subgroup. The pair (G,K) is a Gelfand pair if the algebra M b(G)K,K of bi-K-invariant measures is commutative. This definition, rooted in Gelfand’s 1950 work [14], is often given in terms of algebras of func- tions [12]. This is equivalent, by an approximation argument in the narrow topology, but has the inelegance of requiring the choice (and existence) of a Haar measure on G. Examples of Gelfand pairs include notably all connected semi-simple Lie groups G with finite center, where K is a maximal compact subgroup. Other examples are provided by their analogues over local fields [18], and non-linear examples include automorphism groups of trees [23],[2]. All these “classical” examples also have in common another very useful property: they admit a co-compact amenable subgroup P<G. In the semi-simple case, P is a minimal parabolic subgroup. -
Representations of Direct Products of Finite Groups
Pacific Journal of Mathematics REPRESENTATIONS OF DIRECT PRODUCTS OF FINITE GROUPS BURTON I. FEIN Vol. 20, No. 1 September 1967 PACIFIC JOURNAL OF MATHEMATICS Vol. 20, No. 1, 1967 REPRESENTATIONS OF DIRECT PRODUCTS OF FINITE GROUPS BURTON FEIN Let G be a finite group and K an arbitrary field. We denote by K(G) the group algebra of G over K. Let G be the direct product of finite groups Gι and G2, G — G1 x G2, and let Mi be an irreducible iΓ(G;)-module, i— 1,2. In this paper we study the structure of Mί9 M2, the outer tensor product of Mi and M2. While Mi, M2 is not necessarily an irreducible K(G)~ module, we prove below that it is completely reducible and give criteria for it to be irreducible. These results are applied to the question of whether the tensor product of division algebras of a type arising from group representation theory is a division algebra. We call a division algebra D over K Z'-derivable if D ~ Hom^s) (Mf M) for some finite group G and irreducible ϋΓ(G)- module M. If B(K) is the Brauer group of K, the set BQ(K) of classes of central simple Z-algebras having division algebra components which are iΓ-derivable forms a subgroup of B(K). We show also that B0(K) has infinite index in B(K) if K is an algebraic number field which is not an abelian extension of the rationale. All iΓ(G)-modules considered are assumed to be unitary finite dimensional left if((τ)-modules. -
Representation Theory of Finite Groups
Representation Theory of Finite Groups Benjamin Steinberg School of Mathematics and Statistics Carleton University [email protected] December 15, 2009 Preface This book arose out of course notes for a fourth year undergraduate/first year graduate course that I taught at Carleton University. The goal was to present group representation theory at a level that is accessible to students who have not yet studied module theory and who are unfamiliar with tensor products. For this reason, the Wedderburn theory of semisimple algebras is completely avoided. Instead, I have opted for a Fourier analysis approach. This sort of approach is normally taken in books with a more analytic flavor; such books, however, invariably contain material on representations of com- pact groups, something that I would also consider beyond the scope of an undergraduate text. So here I have done my best to blend the analytic and the algebraic viewpoints in order to keep things accessible. For example, Frobenius reciprocity is treated from a character point of view to evade use of the tensor product. The only background required for this book is a basic knowledge of linear algebra and group theory, as well as familiarity with the definition of a ring. The proof of Burnside's theorem makes use of a small amount of Galois theory (up to the fundamental theorem) and so should be skipped if used in a course for which Galois theory is not a prerequisite. Many things are proved in more detail than one would normally expect in a textbook; this was done to make things easier on undergraduates trying to learn what is usually considered graduate level material. -
MAT 449 : Representation Theory
MAT 449 : Representation theory Sophie Morel December 17, 2018 Contents I Representations of topological groups5 I.1 Topological groups . .5 I.2 Haar measures . .9 I.3 Representations . 17 I.3.1 Continuous representations . 17 I.3.2 Unitary representations . 20 I.3.3 Cyclic representations . 24 I.3.4 Schur’s lemma . 25 I.3.5 Finite-dimensional representations . 27 I.4 The convolution product and the group algebra . 28 I.4.1 Convolution on L1(G) and the group algebra of G ............ 28 I.4.2 Representations of G vs representations of L1(G) ............. 33 I.4.3 Convolution on other Lp spaces . 39 II Some Gelfand theory 43 II.1 Banach algebras . 43 II.1.1 Spectrum of an element . 43 II.1.2 The Gelfand-Mazur theorem . 47 II.2 Spectrum of a Banach algebra . 48 II.3 C∗-algebras and the Gelfand-Naimark theorem . 52 II.4 The spectral theorem . 55 III The Gelfand-Raikov theorem 59 III.1 L1(G) ....................................... 59 III.2 Functions of positive type . 59 III.3 Functions of positive type and irreducible representations . 65 III.4 The convex set P1 ................................. 68 III.5 The Gelfand-Raikov theorem . 73 IV The Peter-Weyl theorem 75 IV.1 Compact operators . 75 IV.2 Semisimplicity of unitary representations of compact groups . 77 IV.3 Matrix coefficients . 80 IV.4 The Peter-Weyl theorem . 86 IV.5 Characters . 87 3 Contents IV.6 The Fourier transform . 90 IV.7 Characters and Fourier transforms . 93 V Gelfand pairs 97 V.1 Invariant and bi-invariant functions . -
Arxiv:1810.00775V1 [Math-Ph] 1 Oct 2018 .Introduction 1
Modular structures and extended-modular-group-structures after Hecke pairs Orchidea Maria Lecian Comenius University in Bratislava, Faculty of Mathematics, Physics and Informatics, Department of Theoretical Physics and Physics Education- KTFDF, Mlynsk´aDolina F2, 842 48, Bratislava, Slovakia; Sapienza University of Rome, Faculty of Civil and Industrial Engineering, DICEA- Department of Civil, Constructional and Environmental Engineering, Via Eudossiana, 18- 00184 Rome, Italy. E-mail: [email protected]; [email protected] Abstract. The simplices and the complexes arsing form the grading of the fundamental (desymmetrized) domain of arithmetical groups and non-arithmetical groups, as well as their extended (symmetrized) ones are described also for oriented manifolds in dim > 2. The conditions for the definition of fibers are summarized after Hamiltonian analysis, the latters can in some cases be reduced to those for sections for graded groups, such as the Picard groups and the Vinberg group.The cases for which modular structures rather than modular-group- structure measures can be analyzed for non-arithmetic groups, i.e. also in the cases for which Gelfand triples (rigged spaces) have to be substituted by Hecke couples, as, for Hecke groups, the existence of intertwining operators after the calculation of the second commutator within the Haar measures for the operators of the correspondingly-generated C∗ algebras is straightforward. The results hold also for (also non-abstract) groups with measures on (manifold) boundaries. The Poincar´e invariance of the representation of Wigner-Bargmann (spin 1/2) particles is analyzed within the Fock-space interaction representation. The well-posed-ness of initial conditions and boundary ones for the connected (families of) equations is discussed. -
The Algebraic Theory of Semigroups the Algebraic Theory of Semigroups
http://dx.doi.org/10.1090/surv/007.1 The Algebraic Theory of Semigroups The Algebraic Theory of Semigroups A. H. Clifford G. B. Preston American Mathematical Society Providence, Rhode Island 2000 Mathematics Subject Classification. Primary 20-XX. International Standard Serial Number 0076-5376 International Standard Book Number 0-8218-0271-2 Library of Congress Catalog Card Number: 61-15686 Copying and reprinting. Material in this book may be reproduced by any means for educational and scientific purposes without fee or permission with the exception of reproduction by services that collect fees for delivery of documents and provided that the customary acknowledgment of the source is given. This consent does not extend to other kinds of copying for general distribution, for advertising or promotional purposes, or for resale. Requests for permission for commercial use of material should be addressed to the Assistant to the Publisher, American Mathematical Society, P. O. Box 6248, Providence, Rhode Island 02940-6248. Requests can also be made by e-mail to reprint-permissionQams.org. Excluded from these provisions is material in articles for which the author holds copyright. In such cases, requests for permission to use or reprint should be addressed directly to the author(s). (Copyright ownership is indicated in the notice in the lower right-hand corner of the first page of each article.) © Copyright 1961 by the American Mathematical Society. All rights reserved. Printed in the United States of America. Second Edition, 1964 Reprinted with corrections, 1977. The American Mathematical Society retains all rights except those granted to the United States Government. -
Multiplicity One Theorem for GL(N) and Other Gelfand Pairs
Multiplicity one theorem for GL(n) and other Gelfand pairs A. Aizenbud Massachusetts Institute of Technology http://math.mit.edu/~aizenr A. Aizenbud Multiplicity one theorem for GL(n) and other Gelfand pairs L2(S1) = L spanfeinx g geinx = χ(g)einx Example (Spherical Harmonics) 2 2 L m L (S ) = m H m m H = spani fyi g are irreducible representations of O3 Example Let X be a finite set. Let the symmetric group Perm(X) act on X. Consider the space F(X) of complex valued functions on X as a representation of Perm(X). Then it decomposes to direct sum of distinct irreducible representations. Examples Example (Fourier Series) A. Aizenbud Multiplicity one theorem for GL(n) and other Gelfand pairs geinx = χ(g)einx Example (Spherical Harmonics) 2 2 L m L (S ) = m H m m H = spani fyi g are irreducible representations of O3 Example Let X be a finite set. Let the symmetric group Perm(X) act on X. Consider the space F(X) of complex valued functions on X as a representation of Perm(X). Then it decomposes to direct sum of distinct irreducible representations. Examples Example (Fourier Series) L2(S1) = L spanfeinx g A. Aizenbud Multiplicity one theorem for GL(n) and other Gelfand pairs Example (Spherical Harmonics) 2 2 L m L (S ) = m H m m H = spani fyi g are irreducible representations of O3 Example Let X be a finite set. Let the symmetric group Perm(X) act on X. Consider the space F(X) of complex valued functions on X as a representation of Perm(X). -
Representation Theorems in Universal Algebra and Algebraic Logic
REPRESENTATION THEOREMS IN UNIVERSAL ALGEBRA AND ALGEBRAIC LOGIC by Martin Izak Pienaar THESIS presented in partial fulfillment of the requirements for the degree MAGISTER SCIENTIAE in MATHEMATICS in the FACULTY OF SCIENCE of the RAND AFRIKAANS UNIVERSITY Study leader: Prof. V. Goranko NOVEMBER 1997 Baie dankie aan: Prof. V. Goranko - vir leiding in hierdie skripsie. RAU en SNO - finansiele bystand gedurende die studie. my ouers - onbaatsugtige liefde tydens my studies. Samantha Cambridge - vir die flink en netjiese tikwerk. ons Hemelse Vader - vir krag en onderskraging in elke dag. Vir my ouers en vriende - julie was die .inspirasie viz- my studies CONTENTS 1 INTRODUCTION TO LATTICES AND ORDER 1 1.1 Ordered Sets 1 1.2 Maps between ordered sets 2 1.3 The duality principle; down - sets and up - sets 3 1.4 Maximal and minimal elements; top and bottom 4 1.5 Lattices 4 2 IMPLICATIVE LATTICES, HEYTING ALGEBRAS AND BOOLEAN ALGEBRAS 8 2.1 Implicative lattices 8 2.2 Heyting algebras 9 2.3 Boolean algebras 10 3 REPRESENTATION THEORY INVOLVING BOOLEAN ALGEBRAS AND DISTRIBU- TIVE LATTICES: THE FINITE CASE 12 3:1 The representation of finite Boolean algebras 12 3.2 The representation of finite distributive lattices 15 3.3 Duality between finite distributive lattices and finite ordered sets 17 4 REPRESENTATION THEORY INVOLVING BOOLEAN. ALGEBRAS AND DISTRIBU- TIVE LATTICES: THE GENERAL CASE 20 4.1 Ideals and filters 20 4.2 Representation by lattices of sets 22 4.3 Duality 27 5 REPRESENTATION THEORY: A MORE GENERAL AND APPLICABLE VIEW -
Arxiv:1705.01587V2 [Math.FA] 26 Jan 2019 Iinlasmtosti Saraysffiin O ( for Sufficient Already Is This Assumptions Ditional Operators Theorem
CONVERGENCE OF POSITIVE OPERATOR SEMIGROUPS MORITZ GERLACH AND JOCHEN GLUCK¨ Abstract. We present new conditions for semigroups of positive operators to converge strongly as time tends to infinity. Our proofs are based on a novel approach combining the well-known splitting theorem by Jacobs, de Leeuw and Glicksberg with a purely algebraic result about positive group representations. Thus we obtain convergence theorems not only for one-parameter semigroups but for a much larger class of semigroup representations. Our results allow for a unified treatment of various theorems from the lit- erature that, under technical assumptions, a bounded positive C0-semigroup containing or dominating a kernel operator converges strongly as t →∞. We gain new insights into the structure theoretical background of those theorems and generalise them in several respects; especially we drop any kind of conti- nuity or regularity assumption with respect to the time parameter. 1. Introduction One of the most important aspects in the study of linear autonomous evolu- tion equations is the long-term behaviour of their solutions. Since these solutions are usually described by one-parameter operator semigroups, it is essential to have affective tools for the analysis of their asymptotic behaviour available. In many applications the underlying Banach space is a function space and thus exhibits some kind of order structure. If, in such a situation, a positive initial value of the evolution equation leads to a positive solution, one speaks of a positive oper- ator semigroup. Various approaches were developed to prove, under appropriate assumptions, convergence of such semigroups as time tends to infinity; see the end of the introduction for a very brief overview. -
Representation Theory of Compact Inverse Semigroups
Representation theory of compact inverse semigroups Wadii Hajji Thesis submitted to the Faculty of Graduate and Postdoctoral Studies in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics 1 Department of Mathematics and Statistics Faculty of Science University of Ottawa c Wadii Hajji, Ottawa, Canada, 2011 1The Ph.D. program is a joint program with Carleton University, administered by the Ottawa- Carleton Institute of Mathematics and Statistics Abstract W. D. Munn proved that a finite dimensional representation of an inverse semigroup is equivalent to a ?-representation if and only if it is bounded. The first goal of this thesis will be to give new analytic proof that every finite dimensional representation of a compact inverse semigroup is equivalent to a ?-representation. The second goal is to parameterize all finite dimensional irreducible represen- tations of a compact inverse semigroup in terms of maximal subgroups and order theoretic properties of the idempotent set. As a consequence, we obtain a new and simpler proof of the following theorem of Shneperman: a compact inverse semigroup has enough finite dimensional irreducible representations to separate points if and only if its idempotent set is totally disconnected. Our last theorem is the following: every norm continuous irreducible ∗-representation of a compact inverse semigroup on a Hilbert space is finite dimensional. ii R´esum´e W.D. Munn a d´emontr´eque une repr´esentation de dimension finie d'un inverse demi- groupe est ´equivalente `ala ?-repr´esentation si et seulement si la repr´esentation est born´ee. Notre premier but dans cette th`eseest de donner une d´emonstrationanaly- tique.