Northern Wallkill Biodiversity Plan
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hermit Thrush (<Em>Catharus Guttatus</Em>) and Veery (<Em>C
East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations Student Works 5-2010 Hermit Thrush (Catharus guttatus) and Veery (C. fuscescens) Breeding Habitat Associations in Southern Appalachian High-Elevation Forests. Andrew J. Laughlin East Tennessee State University Follow this and additional works at: https://dc.etsu.edu/etd Part of the Terrestrial and Aquatic Ecology Commons Recommended Citation Laughlin, Andrew J., "Hermit Thrush (Catharus guttatus) and Veery (C. fuscescens) Breeding Habitat Associations in Southern Appalachian High-Elevation Forests." (2010). Electronic Theses and Dissertations. Paper 1695. https://dc.etsu.edu/etd/1695 This Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. Hermit Thrush (Catharus guttatus) and Veery (C. fuscescens) Breeding Habitat Associations in Southern Appalachian High-Elevation Forests __________________ A thesis presented to the faculty of the Department of Biological Sciences East Tennessee State University In partial fulfillment of the requirements for degree Masters of Science in Biological Sciences _________________ by Andrew J. Laughlin May 2010 __________________ Dr. Fred J. Alsop III, Chair Dr. Istvan Karsai Dr. Thomas F. Laughlin Keywords: Birds, Habitat Partitioning, Principal Components Analysis ABSTRACT Hermit Thrush (Catharus guttatus) and Veery (C. fuscescens) Breeding Habitat Associations in Southern Appalachian High-Elevation Forests by Andrew J. Laughlin The Hermit Thrush is a new breeding bird in the Southern Appalachian high-elevation mountains, having expanded its range southward over the last few decades. -
Klamath Network Featured Creature November 2013 Green Heron (Butorides Virescens)
National Park Service U.S. Department of the Interior Klamath Network Featured Creature November 2013 Green Heron (Butorides virescens) fish, insects, spiders, Atlantic coast into South crustaceans, snails, amphibians, Carolina. Green Herons are reptiles and rodents. widely dispersed and common, the largest threat to these birds Behavior: is habitat loss through the Green herons stalk prey by destruction and development of standing still or walking slowly wetlands. in shallow water with thick Interesting Fact: Pierre Howard vegetation. When prey The green heron is known to approaches the heron will dart use objects such as twigs, General Description: Found in and grasp or spear prey with feathers, or insects to lure small stalking sheltered edges of its sharp and heavy bill. Herons fish to the surface. This freshwater bodies, the green hunt at all times of day or night, behavior makes the green heron heron may first appear to be a in shallow brackish water, one of the few bird species that non-descript little bird. Seen in generally avoiding habitat uses tools! the light however, they have frequented by longer-legged deep green to blue-grey back herons. Where to Find in the Klamath and wings, a dark crested head, Network Parks: with a rich chestnut breast and Butorides virescens can be found in neck, and yellow to orange legs. Redwood National and State Juveniles are understated, with Parks, Whiskeytown National brown and cream streaks and Recreation Area, Lava Beds spots. The green heron is more National Monument, and is compact than other herons. probably present in Lassen They have shorter legs, broad Volcanic National Park. -
Scientific Support for Successful Implementation of the Natura 2000 Network
Scientific support for successful implementation of the Natura 2000 network Focus Area B Guidance on the application of existing scientific approaches, methods, tools and knowledge for a better implementation of the Birds and Habitat Directives Environment FOCUS AREA B SCIENTIFIC SUPPORT FOR SUCCESSFUL i IMPLEMENTATION OF THE NATURA 2000 NETWORK Imprint Disclaimer This document has been prepared for the European Commis- sion. The information and views set out in the handbook are Citation those of the authors only and do not necessarily reflect the Van der Sluis, T. & Schmidt, A.M. (2021). E-BIND Handbook (Part B): Scientific support for successful official opinion of the Commission. The Commission does not implementation of the Natura 2000 network. Wageningen Environmental Research/ Ecologic Institute /Milieu guarantee the accuracy of the data included. The Commission Ltd. Wageningen, The Netherlands. or any person acting on the Commission’s behalf cannot be held responsible for any use which may be made of the information Authors contained therein. Lead authors: This handbook has been prepared under a contract with the Anne Schmidt, Chris van Swaay (Monitoring of species and habitats within and beyond Natura 2000 sites) European Commission, in cooperation with relevant stakehold- Sander Mücher, Gerard Hazeu (Remote sensing techniques for the monitoring of Natura 2000 sites) ers. (EU Service contract Nr. 07.027740/2018/783031/ENV.D.3 Anne Schmidt, Chris van Swaay, Rene Henkens, Peter Verweij (Access to data and information) for evidence-based improvements in the Birds and Habitat Kris Decleer, Rienk-Jan Bijlsma (Guidance and tools for effective restoration measures for species and habitats) directives (BHD) implementation: systematic review and meta- Theo van der Sluis, Rob Jongman (Green Infrastructure and network coherence) analysis). -
ORNITOLOGIA NEOTROPICAL ______Volume 25 2014 No
ORNITOLOGIA NEOTROPICAL _________________________________________________________________________ Volume 25 2014 No. 3 _________________________________________________________________________ ORNITOLOGIA NEOTROPICAL 25: 247–260, 2014 © The Neotropical Ornithological Society ACTIVIDADES DIARIAS Y USO DE HÁBITAT DE LA REINITA AMARILLA (SETOPHAGA PETECHIA) Y LA PIRANGA ROJA (PIRANGA RUBRA) EN UN ÁREA VERDE URBANA DE CALI, COLOMBIA Adriana del Pilar Caicedo-Argüelles & Lorena Cruz-Bernate Universidad del Valle, Facultad de Ciencias Naturales y Exactas, Departamento de Biología, Apartado Aéreo 25360 Cali, Colombia. E-mail: [email protected] Abstract. – Daily activities and habitat use of Yellow Warbler (Setophaga petechia) and Red Tana- ger (Piranga rubra) in a green urban area in Cali, Colombia. – Migratory birds are a group with com- plex ecology because they are affected by a variety of biotic and abiotic factors throughout their annual cycle. Although a lot of research has been conducted, further information on basic aspects such as feed- ing ecology is needed. From September 2011 to April 2012, a study was done on habitat use by Yellow Warbler (Setophaga petechia) and Red Tanager (Piranga rubra) on the campus of Universidad del Valle, Cali, Colombia. The recorded data included species, activity and its duration, foraging method, tree spe- cies, substrate, and height. “Foraging” was the activity with the largest proportion of time spent by birds; “Gleaning” was the most common foraging method used by the Yellow Warbler, while the Red Tanager used “Hovering” and “Sallying.” Of 50 plant species used, Samanea saman, Pithecellobium dulce, Gua- zuma ulmifolia, Leucaena leucocephala, Clitoria fairchildiana, and Jacaranda caucana were preferred. The most used height interval was 4–6 m, and substrates where birds were observed most frequently were “Twig,” “Leaves, flowers and fruits,” and “Secondary branch.” The present study demonstrates that an area with abundant trees can provide habitat for migratory birds, despite being located in an urban environment. -
Wildlife of the North Hills: Birds, Animals, Butterflies
Wildlife of the North Hills: Birds, Animals, Butterflies Oakland, California 2005 About this Booklet The idea for this booklet grew out of a suggestion from Anne Seasons, President of the North Hills Phoenix Association, that I compile pictures of local birds in a form that could be made available to residents of the north hills. I expanded on that idea to include other local wildlife. For purposes of this booklet, the “North Hills” is defined as that area on the Berkeley/Oakland border bounded by Claremont Avenue on the north, Tunnel Road on the south, Grizzly Peak Blvd. on the east, and Domingo Avenue on the west. The species shown here are observed, heard or tracked with some regularity in this area. The lists are not a complete record of species found: more than 50 additional bird species have been observed here, smaller rodents were included without visual verification, and the compiler lacks the training to identify reptiles, bats or additional butterflies. We would like to include additional species: advice from local experts is welcome and will speed the process. A few of the species listed fall into the category of pests; but most - whether resident or visitor - are desirable additions to the neighborhood. We hope you will enjoy using this booklet to identify the wildlife you see around you. Kay Loughman November 2005 2 Contents Birds Turkey Vulture Bewick’s Wren Red-tailed Hawk Wrentit American Kestrel Ruby-crowned Kinglet California Quail American Robin Mourning Dove Hermit thrush Rock Pigeon Northern Mockingbird Band-tailed -
Catharus Fuscescens the Veery, Like Most Woodland Thrushes, Is More
Veery Catharus fuscescens The Veery, like most woodland thrushes, is more frequently heard than seen. Most bird ers are familiar with its veer alarm call. Its melodious song, a series of downward spiraling notes, rivals that of the Hermit Thrush. Veeries breed throughout Vermont; their range of accepted habitats overlaps that of all other thrushes except the Gray cheeked. Although accepting a nearly ubiq uitous array of breeding areas, in Connecti cut Veeries preferred moist sites (Berlin 1977) and, indeed, few swamps or moist son's thrushes in overlapping territories woodlands in the Northeast are unoccupied (D. P. Kibbe, pers. observ.). by Veeries. However, Vermont's greatest re The Veery's bulky nest is built on a thick corded breeding densities for the Veery-64 foundation of dead leaves, usually among to 91 pairs per 100 ha (26 to 37 pairs per saplings or in shrubbery on or near the lOa a)-have been found in habitat com ground. Three to 5 pale blue eggs are laid; posed of mixed forest and old fields in cen they are incubated for II to 12 days. Twenty tral Vermont (Nicholson 1973, 1975, 1978). three Vermont egg dates range from May 26 Dilger (195 6a) found that Veeries preferred to July 23, with a peak in early June. Nest disturbed (cutover) forests, presumably lings grow rapidly, and they may leave the because of dense undergrowth there. The nest in as few as 10 days. Nestlings have Veery's acceptance of varied habitat is not been found as early as June 10 and as late surprising in light of its geographic distri as July 6. -
Deciduous Forest Interior Birds Guild
Supplemental Volume: Species of Conservation Concern SC SWAP 2015 Deciduous Forest Interior Birds Guild Baltimore Oriole Icterus galbula Hooded Warbler Setophaga americana Black-and-white Warbler Mniotilta varia Northern Parula Setophaga americana Black-billed Cuckoo Coccyzus erythropthalmus Scarlet Tanager Piranga olivacea Black-throated Blue Warbler Setophaga caerulescens Summer Tanager Piranga rubra Black-throated Green Warbler (nominate race) Wood Thrush Hylocichla mustelina Setophaga virens Worm-eating Warbler Helmitheros vermivorus Broad-winged Hawk Buteo platyperus Yellow-billed Cuckoo Coccyzus americanus Cerulean Warbler Setophaga cerulea Yellow-throated Vireo Vireo flavifroms Eastern Wood-pewee Contopus virens Yellow-throated Warbler Setophaga dominica NOTE: The Black-throated Green Warbler (nominate and Wayne’s) is covered in more detail in its own species account. Contributor (2005): Anna Huckabee Smith (SCDNR) Reviewed and Edited (2012): John Gerwin (NC Museum of Natural Sciences); (2013) Mary Catherine Martin (SCDNR) DESCRIPTION Taxonomy and Basic Description The species described in this report are in the perching bird order, Passeriformes, and represent 8 families: Icteridae (blackbirds), Cuculidae (cuckoos), Parulidae (wood warblers), Thraupidae (tanagers), Turdidae (thrushes), Vireonidae (vireos), Tyrannidae (pewees), and Accipitridae (hawks, kites, eagles). Currently accepted names for the Wood Thrush, Worm-eating Warbler, and Scarlet Tanager are from Gmelin (1789), while the Eastern Wood-pewee was first described by Linnaeus in 1766. The Baltimore Oriole was first described by Mark Catesby in 1731, and Linnaeus named it in 1758 (Rising and Flood 1998). Alexander Wilson first described the Black- billed Cuckoo in 1811, and the Yellow-billed Cuckoo was described by Linnaeus in 1758. The Black-and-White Warbler was first named by Linnaeus in 1766. -
Birds of the East Texas Baptist University Campus with Birds Observed Off-Campus During BIOL3400 Field Course
Birds of the East Texas Baptist University Campus with birds observed off-campus during BIOL3400 Field course Photo Credit: Talton Cooper Species Descriptions and Photos by students of BIOL3400 Edited by Troy A. Ladine Photo Credit: Kenneth Anding Links to Tables, Figures, and Species accounts for birds observed during May-term course or winter bird counts. Figure 1. Location of Environmental Studies Area Table. 1. Number of species and number of days observing birds during the field course from 2005 to 2016 and annual statistics. Table 2. Compilation of species observed during May 2005 - 2016 on campus and off-campus. Table 3. Number of days, by year, species have been observed on the campus of ETBU. Table 4. Number of days, by year, species have been observed during the off-campus trips. Table 5. Number of days, by year, species have been observed during a winter count of birds on the Environmental Studies Area of ETBU. Table 6. Species observed from 1 September to 1 October 2009 on the Environmental Studies Area of ETBU. Alphabetical Listing of Birds with authors of accounts and photographers . A Acadian Flycatcher B Anhinga B Belted Kingfisher Alder Flycatcher Bald Eagle Travis W. Sammons American Bittern Shane Kelehan Bewick's Wren Lynlea Hansen Rusty Collier Black Phoebe American Coot Leslie Fletcher Black-throated Blue Warbler Jordan Bartlett Jovana Nieto Jacob Stone American Crow Baltimore Oriole Black Vulture Zane Gruznina Pete Fitzsimmons Jeremy Alexander Darius Roberts George Plumlee Blair Brown Rachel Hastie Janae Wineland Brent Lewis American Goldfinch Barn Swallow Keely Schlabs Kathleen Santanello Katy Gifford Black-and-white Warbler Matthew Armendarez Jordan Brewer Sheridan A. -
Comparative Osteology and Evolution of the Lungless Salamanders, Family Plethodontidae David B
COMPARATIVE OSTEOLOGY AND EVOLUTION OF THE LUNGLESS SALAMANDERS, FAMILY PLETHODONTIDAE DAVID B. WAKE1 ABSTRACT: Lungless salamanders of the family Plethodontidae comprise the largest and most diverse group of tailed amphibians. An evolutionary morphological approach has been employed to elucidate evolutionary rela tionships, patterns and trends within the family. Comparative osteology has been emphasized and skeletons of all twenty-three genera and three-fourths of the one hundred eighty-three species have been studied. A detailed osteological analysis includes consideration of the evolution of each element as well as the functional unit of which it is a part. Functional and developmental aspects are stressed. A new classification is suggested, based on osteological and other char acters. The subfamily Desmognathinae includes the genera Desmognathus, Leurognathus, and Phaeognathus. Members of the subfamily Plethodontinae are placed in three tribes. The tribe Hemidactyliini includes the genera Gyri nophilus, Pseudotriton, Stereochilus, Eurycea, Typhlomolge, and Hemidac tylium. The genera Plethodon, Aneides, and Ensatina comprise the tribe Pleth odontini. The highly diversified tribe Bolitoglossini includes three super genera. The supergenera Hydromantes and Batrachoseps include the nominal genera only. The supergenus Bolitoglossa includes Bolitoglossa, Oedipina, Pseudoeurycea, Chiropterotriton, Parvimolge, Lineatriton, and Thorius. Manculus is considered to be congeneric with Eurycea, and Magnadig ita is congeneric with Bolitoglossa. Two species are assigned to Typhlomolge, which is recognized as a genus distinct from Eurycea. No. new information is available concerning Haptoglossa. Recognition of a family Desmognathidae is rejected. All genera are defined and suprageneric groupings are defined and char acterized. Range maps are presented for all genera. Relationships of all genera are discussed. -
Periodic and Transient Motions of Large Woodpeckers Michael D
www.nature.com/scientificreports Correction: Publisher Correction OPEN Periodic and transient motions of large woodpeckers Michael D. Collins Two types of periodic and transient motions of large woodpeckers are considered. A drumming Received: 3 July 2017 woodpecker may be modeled as a harmonic oscillator with a periodic forcing function. The transient Accepted: 12 September 2017 behavior that occurs after the forcing is turned of suggests that the double knocks of Campephilus Published: xx xx xxxx woodpeckers may be modeled in terms of a harmonic oscillator with an impulsive forcing, and this hypothesis is consistent with audio and video recordings. Wingbeats are another type of periodic and transient motion of large woodpeckers. A model for the fap rate in cruising fight is applied to the Pileated Woodpecker (Dryocopus pileatus) and the Ivory-billed Woodpecker (Campephilus principalis). During a brief transient just after taking of, the wing motion and fap rate of a large woodpecker may not be the same as in cruising fight. These concepts are relevant to videos that contain evidence for the persistence of the Ivory-billed Woodpecker. Drumming and wingbeats are two types of periodic motion of large woodpeckers. Tis paper discusses these behaviors and related transient motions that occur in evidence for the persistence of the Ivory-billed Woodpecker (Campephilus principalis)1–3. Most woodpeckers signal by drumming, which consists of a rapid series of blows with the bill. Audio S1 contains four drumming events by nearby and distant Pileated Woodpeckers (Dryocopus pileatus). Some members of the Campephilus genus do not engage in this type of drumming but instead signal with double knocks. -
Predation on Vertebrates by Neotropical Passerine Birds Leonardo E
Lundiana 6(1):57-66, 2005 © 2005 Instituto de Ciências Biológicas - UFMG ISSN 1676-6180 Predation on vertebrates by Neotropical passerine birds Leonardo E. Lopes1,2, Alexandre M. Fernandes1,3 & Miguel Â. Marini1,4 1 Depto. de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-910, Belo Horizonte, MG, Brazil. 2 Current address: Lab. de Ornitologia, Depto. de Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, 31270-910, Belo Horizonte, MG, Brazil. E-mail: [email protected]. 3 Current address: Coleções Zoológicas, Aves, Instituto Nacional de Pesquisas da Amazônia, Avenida André Araújo, 2936, INPA II, 69083-000, Manaus, AM, Brazil. E-mail: [email protected]. 4 Current address: Lab. de Ornitologia, Depto. de Zoologia, Instituto de Biologia, Universidade de Brasília, 70910-900, Brasília, DF, Brazil. E-mail: [email protected] Abstract We investigated if passerine birds act as important predators of small vertebrates within the Neotropics. We surveyed published studies on bird diets, and information on labels of museum specimens, compiling data on the contents of 5,221 stomachs. Eighteen samples (0.3%) presented evidence of predation on vertebrates. Our bibliographic survey also provided records of 203 passerine species preying upon vertebrates, mainly frogs and lizards. Our data suggest that vertebrate predation by passerines is relatively uncommon in the Neotropics and not characteristic of any family. On the other hand, although rare, the ability to prey on vertebrates seems to be widely distributed among Neotropical passerines, which may respond opportunistically to the stimulus of a potential food item. -
1 Southeastern Us Coastal Plain
1 In Press: 2000. Chapter XX. Pages __-__ in Richard C. Bruce, Robert J. Jaeger, and Lynn D. Houck, editors. The Biology of the Plethodontidae. Plenum Publishing Corp., New York, N. Y. SOUTHEASTERN U. S. COASTAL PLAIN HABITATS OF THE PLETHODONTIDAE: THE IMPORTANCE OF RELIEF, RAVINES, AND SEEPAGE D. BRUCE MEANS Coastal Plains Institute and Land Conservancy, 1313 N. Duval Street, Tallahassee, FL 32303, USA 1. INTRODUCTION Because the Coastal Plain is geologically and biologically a very distinct region of the southeastern United States -- the southern portion having a nearly subtropical climate -- the life cycles, ecology, and evolutionary relationships of its plethodontid salamanders may be significantly different from plethodontids in the Appalachians and Piedmont. Little attention has been paid, however, to Coastal Plain plethodontids. For instance, of the 133 scientific papers and posters presented at the four plethodontid salamander conferences held in Highlands, North Carolina, since 1972, only three (2%) dealt with Coastal Plain plethodontids. And yet, while it possesses fewer total species than the Appalachians and Piedmont, the Coastal Plain boasts of slightly more plethodontid diversity at the generic level. The genera Phaeognathus, Haideotriton, and Stereochilus are Coastal Plain endemics, whereas in the Appalachians and Piedmont Gyrinophilus is the only endemic genus unless one accepts Leurognathus apart from Desmognathus. In addition, Aneides is found in the Appalachians and not the Coastal Plain, but the genus also occurs in the western U. S. All the rest of the plethodontid genera east of the Mississippi River are shared by the Coastal Plain with the Appalachians and Piedmont. Geographically, the Coastal Plain includes Long Island in New York, and stretches south from the New Jersey Pine Barrens to include all of Florida, then west to Texas (Fig.